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Stochastic heat engine with the consideration of inertial effects and shortcuts to adiabaticity
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When a Brownian particle in contact with a heat bath at a constant temperature is controlled by a time-dependent
harmonic potential, its distribution function can be rigorously derived from the Kramers equation with the
consideration of the inertial effect of the Brownian particle. Based on this rigorous solution and the concept
of shortcuts to adiabaticity, we construct a stochastic heat engine by employing the time-dependent harmonic
potential to manipulate the Brownian particle to complete a thermodynamic cycle. We find that the efficiency at
maximum power of this stochastic heat engine is equal to 1 − √

Tc/Th, where Tc and Th are the temperatures of
the cold bath and the hot one in the thermodynamic cycle, respectively.
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I. INTRODUCTION

The concept of heat engines is a classical subject in
thermodynamics. To achieve the highest efficiency, a heat
engine needs to operate a reversible thermodynamic cycle
which requires at least a quasistatic process [1,2] and results
in a vanishing power. The thermodynamic cycle should be
speeded up to produce a finite power. In our times of energy
shortage, it is valuable to investigate how large the efficiency
of a heat engine can be reached when the engine operates
in the region of maximum power. This issue has lead to the
birth of finite-time thermodynamics which has attracted much
attention [3–21] for many years. The most notable result in
finite-time thermodynamics is the Curzon-Ahlborn efficiency,
ηCA ≡ 1 − √

Tc/Th, which is the efficiency at maximum
power for a macroscopically endoreversible heat engine [5]
operating between a cold bath at temperature Tc and a hot bath
at temperature Th.

Recently, researchers started discussing the availability of
the Curzon-Ahlborn efficiency for the microscopic models
[22–24] of heat engines. Schmiedl and Seifert [22] constructed
a stochastic heat engine by using a time-dependent harmonic
potential to control a Brownian particle. Within the framework
of stochastic thermodynamics [25–27], they fully investigated
the energetics of this engine without the consideration of
inertial effects. They found that the efficiency at maximum
power of this stochastic heat engine is smaller than the Curzon-
Ahlborn efficiency. The present author [23] investigated the
energetics of the Feynman ratchet as a heat engine and found
that the efficiency at maximum power of the Feynman ratchet is
larger than the Curzon-Ahlborn efficiency. Esposito et al. [24]
found that the efficiency at maximum power of a quantum-dot
heat engine is even larger than that of Feynman ratchet. On
the one hand, three kinds of microscopic models mentioned
above hint a universality of efficiency at maximum power up
to the quadratic order for heat engines operating between two
heat baths at small temperature difference. This universality
has been confirmed by a model of particle transport [28,29],
a quantum-dot engine [30], and a generic model [31,32] of
heat engines. On the other hand, these studies imply that it is
quite difficult to construct a microscopic model of heat engines
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which can exactly achieve the Curzon-Ahlborn efficiency,
ηCA ≡ 1 − √

Tc/Th.
Although great progress has been made in finite-time

thermodynamics, one of the key challenges is still the realiz-
ability of finite-time adiabatic processes. Generally speaking,
the adiabaticity requires a slow-enough process since the
irreversibility usually accompanies a finite-time process. If
finite-time adiabatic processes are proved to be impossible,
the validation of the Curzon-Ahlborn efficiency and many
main results in finite-time thermodynamics are questionable.
Therefore, it is extremely urgent for us to solve this challenge.
The concept of shortcuts to adiabaticity [33–39] developed
in recent years throws light on this challenge. By utilizing
shortcuts to adiabaticity in a quantum thermodynamical cycle,
del Campo et al. constructed an Otto heat engine working at
finite power and zero friction [38]. Deng et al. also found
that the use of shortcuts to adiabaticity can increase the
efficiency and the power of Otto heat engines in both quantum
and classical regimes [39]. In this paper, we will construct
a solvable model of stochastic heat engines following the
work by Schmiedl and Seifert [22] with the consideration of
the inertial effect of the Brownian particle and shortcuts to
adiabaticity. Surprisingly, the efficiency at maximum power of
this microscopically stochastic model is found to be exactly
equal to the Curzon-Ahlborn efficiency. The rest of this paper
is organized as follows. In Sec. II, we discuss the stochastic
thermodynamics based on the Kramers equation (or the under-
damping Fokker-Planck equation [40]), which will be applied
to the investigation on the finite-time “isothermal” processes
in a thermodynamic cycle. In Sec. III, we describe the concept
of shortcuts to adiabaticity via a harmonic oscillator, which
is helpful to investigate the finite-time “adiabatic” processes
in the thermodynamic cycle. In Sec. IV, we construct a
thermodynamic cycle by using a time-dependent harmonic
potential to control the Brownian particle. In Sec. V, we
investigate the energy transaction and the entropy variation in
the thermodynamic cycle. In Sec. VI, we discuss the efficiency
at maximum power of our stochastic heat engine. The last
section is a brief summary.

II. STOCHASTIC THERMODYNAMICS

Based on the Kramers equation, we generalize the frame-
work of stochastic thermodynamics developed by Sekimoto
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[25] and Seifert [26,27] in this section. The aim of this section
is to lay the foundation for the discussions on energetics of
“isothermal” processes in the thermodynamic cycle introduced
in Sec. IV.

A. General framework

Let us consider a one-dimensional movement of a Brownian
particle in a heat bath at temperature T . A time-dependent
potential U (x,λ(t)) is applied on the particle, where x is the
spatial coordinate of the particle while the function λ = λ(t)
represents the controlled protocol. Let us take t and p as the
time variable and the momentum of the particle, respectively.
Both the mass of particle and the Boltzmann constant are set
to 1 in the present paper. The equation of motion may be
expressed as the Langevin equation [40],

ẋ = p, ṗ = −∂U (x,λ(t))

∂x
− γp + ζ (t), (1)

where γ is the damping constant while ζ (t) represents
Gaussian white noise satisfying 〈ζ (t)〉 = 0 and 〈ζ (t)ζ (0)〉 =
2γ T δ(t). In this paper, the dot on a variable represents
the total derivative of that variable with respect to time. In
the overdamping case, the inertial effect of the particle can
be neglected. The stochastic thermodynamics without the
consideration of inertial effects has been fully investigated
by Sekimoto [25] and Seifert [26,27]. It is straightforward
to extend their thoughts into the underdamping case where
the inertial effect of the particle plays a substantial role. The
Hamiltonian of the particle may be expressed as

H = p2

2
+ U (x,λ(t)). (2)

The differential of the Hamiltonian can be expressed as

dH =
(

ṗp + ẋ
∂U

∂x

)
dt +

(
λ̇

∂U

∂λ

)
dt, (3)

which enlightens us to define the energy difference

�e ≡ H (tf ) − H (ti), (4)

the input work [41,42]

w ≡
∫ tf

ti

dt λ̇
∂U

∂λ
, (5)

and the absorbed heat

q ≡
∫ tf

ti

dt

(
ṗp + ẋ

∂U

∂x

)
(6)

along a phase trajectory {x(t),p(t)} stemming from a phase
point (xi,pi) at initial time ti and ending at a phase point
(xf ,pf ) at final time tf . The energy balance

�e = w + q (7)

holds for each phase trajectory.
Corresponding to the Langevin equation (1), the distri-

bution function ρ(x,p,t) of the particle is governed by the
Kramers equation as follows [27,40]:

∂ρ

∂t
+ ∇ · J = 0 (8)

with flux

J ≡ pρx̂ − ρ

(
γp + ∂U

∂x
+ γ T

ρ

∂ρ

∂p

)
p̂ (9)

and gradient operator ∇ ≡ x̂∂/∂x + p̂∂/∂p, where x̂ and p̂
represent the unit vectors in the coordinates of position and
momentum of the particle.

The ensemble averages of the quantities in Eqs. (4)–(6) can
be calculated via the similar procedure in Refs. [26,43,44]. The
average energy difference and the average input work may be
expressed as

�E ≡ 〈�e〉 =
∫

dx

∫
dp(Hρ)

∣∣∣∣
tf

ti

(10)

and

W ≡ 〈w〉 =
∫ tf

ti

dt

∫
dx

∫
dp

(
ρλ̇

∂U

∂λ

)
. (11)

Then, using the energy balance and the Kramers equation, we
may derive the average heat absorbed from the medium as
follows:

Q ≡ 〈q〉 =
∫ tf

ti

dt

∫
dx

∫
dp(J · ∇H )

= −
∫ tf

ti

dt

∫
dx

∫
dp

[
γpρ

(
p + T

ρ

∂ρ

∂p

)]
. (12)

The detailed derivation of the above equation is attached in
Appendix A.

In addition, the ensemble average of trajectory entropy may
be defined as [26,27]

S ≡ 〈− ln ρ〉 = −
∫

dx

∫
dp(ρ ln ρ). (13)

By considering this definition and the Kramers equation, we
may derive the variation of entropy,

�S =
∫ tf

ti

dt

∫
dx

∫
dp

[
γ

∂ρ

∂p

(
p + T

ρ

∂ρ

∂p

)]
. (14)

Thus the energy dissipation R ≡ T �S − Q may be expressed
as

R =
∫ tf

ti

dt

∫
dx

∫
dp

[
γρ

(
p + T

ρ

∂ρ

∂p

)2]
� 0. (15)

B. Pedagogical example: Brownian particle in a time-dependent
harmonic potential

Now we consider a Brownian particle in a time-dependent
harmonic potential U = λ2(t)x2/2. Its Hamiltonian can be
expressed as

H (t) = p2

2
+ λ2(t)x2

2
. (16)

It is not hard to verify that the distribution function

ρ = β(t)λ(t)

2π
exp

[
− β(t)

(
p2

2
+ λ2(t)x2

2

)]
(17)

is a special solution to the Kramers equation (8) if

β(t)λ2(t) = const (18)
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and

dβ(t)

dt
= 2γβ(t)[1 − Tβ(t)] (19)

are simultaneously satisfied. This is our first key result in the
present paper.

The above distribution function (17) implies that〈
p2

2

〉
=

〈
λ2(t)x2

2

〉
= 1

2β(t)
, (20)

which may be regarded as the equipartition of energy if we
interpret 1/β(t) as the effective temperature of the ensemble
of Brownian particles in the time-dependent potential. By
combining Eqs. (18) and (20), we derive 〈x2〉 = const and
〈p2〉 ∝ λ2(t), which imply that the width of the position
distribution is time independent while the width of the
momentum distribution is expanded when the potential is
enhanced (λ increases with time) and vice versa.

With the consideration of Hamiltonian (16) and distribution
function (17), Eqs. (10), (12), (14), and (15) may be trans-
formed into

�E = 1/β(tf ) − 1/β(ti), (21)

Q = −γ

∫ tf

ti

dt[1/β(t) − T ], (22)

�S = (1/2) ln[β(ti)/β(tf )], (23)

and

R = γ

∫ tf

ti

dt[1 − β(t)T ]2/β(t), (24)

respectively. The energy dissipation R is non-negative and it
vanishes merely for the equilibrium state β(t) = 1/T = const.

III. SHORTCUTS TO ADIABATICITY

Researchers have always thought that the realization of
an adiabatic change requires an extremely slow control to
the system. For example, the area of phase space enclosed
in an energy shell for a one-dimensional system in classical
mechanics may be expressed as I = ∮

pdx, where the integral
is taken over the path in the phase space for a given energy
and driving protocol. Classical mechanics tells us that the
quantity I is an adiabatic invariant, remaining constant along a
Hamiltonian trajectory {x(t),p(t)} when the protocol is varied
infinitely slowly [45]. In quantum mechanics, the adiabatic
theorem [33,46] implies that a physical system remains in
its instantaneous eigenstate if a given perturbation is varied
slowly enough and if there is a gap between the corresponding
eigenvalue and the others. Recently, it was found that it is
possible to generate a shortcut to adiabaticity under which
the value of classical quantity I is preserved exactly, and
the quantum system remains in its instantaneous eigenstate
even the driving protocol is varied in a finite rate [35–39].
For simplicity, we consider a Brownian particle in a time-
dependent harmonic potential again. The Hamiltonian is still
expressed as Eq. (16). During time ti < t � tf , the protocol
varies from λi ≡ λ(ti) to λf ≡ λ(tf ). With consideration of a

counterdiabatic driving Hamiltonian,

HC(t) = H (t) − λ̇(t)

2λ(t)
xp, (25)

with H (t) being the original system Hamiltonian (16), the
evolution of the system can be enforced along the adiabatic
manifold of the system Hamiltonian [35–39]. The only
requirement is λ̇(ti) = λ̇(tf ) = 0 such that HC(ti) = H (ti) at
the initial time ti and HC(tf ) = H (tf ) at the final time tf .
There exists a certain arbitrariness for selecting the protocol
λ(t). One simple choice is

λ(t) = λi + (λf − λi)�

(
t − ti

tf − ti

)
, (26)

where the function �(t) is defined as �(t) ≡ 3t2 − 2t3. Note
that the main results in the present paper are independent of
this choice.

The equations of motion governed by the counterdiabatic
driving Hamiltonian HC(t) may be expressed as

ẋ = ∂HC

∂p
= p − λ̇(t)

2λ(t)
x

ṗ = −∂HC

∂x
= −λ2(t)x + λ̇(t)

2λ(t)
p. (27)

According to the above equations of motion, it is not hard to
verify that the value of I = ∮

pdx ∝ H (t)/λ(t) is conserved
exactly along the Hamiltonian trajectory {x(t),p(t)}, for any
protocol λ(t) [35].

In the following discussion, we will prove that the shortcut
to adiabaticity can link two canonical states with different
effective temperatures. This is our second key result in the
present paper which is crucial to construct the “adiabatic”
processes in the thermodynamic cycle in Sec. IV.

Assume that the system initially stays in a canonical
state with effective temperature β−1

i . The initial distribution
function of the system may be expressed as

ρi = βiλi

2π
exp[−βiH (ti)] (28)

with the Hamiltonian

H (ti) = p2
i /2 + λ2

i x
2
i /2, (29)

where (xi,pi) represents the point in the phase space at initial
time ti . According to the Liouville theorem, the distribution
function is invariant along the phase trajectory since the
microscopic motions abide by the Hamilton equation (27)
when the system is not in contact with any heat bath, that
is, the distribution function of final state should be

ρf = ρi = βiλi

2π
exp[−βiH (ti)]. (30)

We will seek an effective temperature β−1
f such that the

distribution function (28) may be expressed as a canonical
distribution

ρf = βf λf

2π
exp[−βf H (tf )] (31)

with the Hamiltonian

H (tf ) = p2
f /2 + λ2

f x2
f /2, (32)
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where (xf ,pf ) represents the point in the phase space at final
time tf . According to the Hamilton equation (27), we can
derive

dH (t)

dt
= H (t)

d ln λ(t)

dt
, (33)

which leads to H (tf ) = H (ti)λf /λi . The derivation of the
above equation is attached in Appendix B. By substituting
this equation into Eq. (31), we obtain

ρf = βf λf

2π
exp

[
− βf λf

λi

H (ti)

]
. (34)

By comparing the above equation with Eq. (30), we obtain

βf λf = βiλi, (35)

which implies that the system will stay finally in the canonical
state with effective temperature β−1

f after it undergoes the
shortcut to adiabaticity governed by the Hamiltonian equation
(27) if it initially stays in the canonical state with effective
temperature β−1

i . The effective temperatures of the initial
state and the final state should satisfy Eq. (35). Since the
microscopic motion abides by the Hamilton equation (27),
there is no heat exchange and entropy production in the
shortcut to adiabaticity during time interval tf − ti . Therefore,
we can realize the relatively quick but adiabatic transition from
one canonical state to another compatible canonical state. In
addition, since both the initial state and the final state are
canonical, the width of momentum distribution and the energy
difference between these two canonical states still satisfy
Eqs. (20) and (21), respectively.

IV. MODEL

We construct a Carnot-like thermodynamic cycle by using
a time-dependent harmonic potential U = λ2(t)x2/2 to ma-
nipulate a Brownian particle. As depicted in Fig. 1, the cycle
consists of four processes as follows.

FIG. 1. (Color online) Thermodynamic cycle. The dashed lines
correspond to Eq. (18) while the dotted lines correspond to β(t)λ(t) =
const, the continuation of Eq. (35). A, B, C, and D represent four
processes in the thermodynamic cycle, respectively.

A. “Isothermal” expansion

This process corresponds to the solid line linking 0 and
1 in Fig. 1. Here the word isothermal merely indicates that
the Brownian particle is in contact with a hot bath at constant
temperature Th. It does not mean that the effective temperature
of the system is constant. During time 0 < t � t1, the protocol
λ(t) varies monotonically from λ(0) ≡ λ0 to λ(t1) ≡ λ1(> λ0).
According to the discussion below Eq. (20), the width of
momentum distribution is expanded when λ increases with
time. It is in this sense that this process is referred to as an
expansion.

On the other hand, Eq. (18) implies that β(t) decreases with
time when λ(t) increases with time. Then from Eq. (19) we
solve

1/β(t) = Th(1 − che
−2γht ), (36)

with a parameter ch > 0. γh represents the damping constant
for the particle in the hot bath. From Eq. (18) we obtain the
protocol

λ(t) = λ0

√
(1 − che−2γht )/(1 − ch). (37)

In particular, we have

β−1
0 ≡ 1/β(0) = Th(1 − ch), (38)

β−1
1 ≡ 1/β(t1) = Th(1 − chτh), (39)

and

λ1 ≡ λ(t1) = λ0

√
(1 − chτh)/(1 − ch), (40)

where τh ≡ e−2γht1 .

B. “Adiabatic” compression

This process corresponds to the dotted line linking 1 and 2
in Fig. 1. With the aid of shortcuts to adiabaticity discussed in
Sec. III, the protocol λ(t) varies monotonically from λ(t+1 ) ≡
λ1 to λ(t2) ≡ λ2(< λ1) during time t1 < t � t2. The whole
system is not in contact with any heat bath. According to Eq.
(35), the effective temperature β−1

2 at time t2 should satisfy

β2λ2 = β1λ1. (41)

Note that this process is marked with the dotted line in Fig. 1
because we cannot actually define the effective temperature of
the system in the whole process except at times t1 and t2. In
fact, it is unnecessary for us to define the effective temperature
in this process except at times t1 and t2. On the other hand,
we find β−1

2 < β−1
1 from Eq. (41) since λ2 < λ1. According

to the discussion in Sec. III, the states at times t1 and t2
are two canonical states with effective temperatures β−1

1 and
β−1

2 , respectively. Thus the width of momentum distribution at
time t2 is narrower than that at time t1 with the consideration
of Eq. (20). It is in this sense that we call this process an
“adiabatic” compression.

C. “Isothermal” compression

This process corresponds to the solid line linking 2 and 3
in Fig. 1. Here the word isothermal merely indicates that the
Brownian particle is in contact with a cold bath at constant
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temperature Tc. During time t2 < t � t3, the protocol λ(t)
varies monotonically from λ(t+2 ) ≡ λ2 to λ(t3) ≡ λ3(< λ2).
According to the discussion below Eq. (20), the width of
momentum distribution narrows down when λ decreases with
time. It is in this sense that this process is called a compression.

On the other hand, Eq. (18) implies that β(t) increases with
time when λ(t) decreases with time. Then from Eq. (19) we
solve

1/β(t) = Tc

[
1 + cce

−2γc(t−t2)
]
, (42)

with a parameter cc > 0. γc represents the damping constant
for the particle in the cold bath. The effective temperature at
time t2 may be expressed as

β−1
2 ≡ 1/β(t2) = Tc(1 + cc). (43)

By considering Eqs. (39)–(41) and (43), we obtain

λ2 = Tc(1 + cc)

Th

√
1 − ch

λ0√
1 − chτh

. (44)

With the consideration of Eq. (18), we obtain the protocol

λ(t) = λ2

√[
1 + cce−2γc(t−t2)

]
/(1 + cc). (45)

In particular, from the above equation and Eq. (42) we have

β−1
3 ≡ 1/β(t3) = Tc(1 + ccτc) (46)

and

λ3 ≡ λ(t3) = λ0
Tc

√
1 + cc

Th

√
1 − ch

√
1 + ccτc

1 − chτh

, (47)

where τc ≡ e−2γc(t3−t2).

D. “Adiabatic” expansion

This process corresponds to the dotted line linking 3 and 0
in Fig. 1. With the aid of shortcuts to adiabaticity discussed in
Sec. III, the protocol λ(t) varies monotonically from λ(t+3 ) ≡
λ3 to λ(t4) ≡ λ4(> λ3) during time t3 < t � t4. The whole
system is not in contact with any heat bath. According to
Eq. (35), the effective temperature β−1

4 at time t4 should satisfy

β4λ4 = β3λ3. (48)

Note that this process is marked with the dotted line in
Fig. 1 because we cannot define the effective temperature of
the system in the whole process except at times t3 and t4.
In fact, it is unnecessary for us to do that except at times t3
and t4. On the other hand, we find β−1

4 > β−1
3 from Eq. (48)

since λ4 > λ3. According to the discussion in Sec. III, the
states at times t3 and t4 are two canonical states with effective
temperatures β−1

3 and β−1
4 , respectively. Thus the width of

momentum distribution at time t4 is wider than that at time t3
with the consideration of Eq. (20). It is in this sense we call
this process an “adiabatic” expansion.

To make a full cycle, the periodic conditions λ4 = λ0 and
β4 = β0 should be imposed, which leads to the following
constraint:

(1 + cc)(1 − ch) = (1 − chτh)(1 + ccτc) (49)

with the consideration of Eqs. (38) and (46)–(48).

It should be emphasized that we have explicitly constructed
a new type of thermodynamic cycle which differs from that
considered by Curzon and Ahlborn. The effective temperature
of the “isothermal” processes is assumed to be constant in
the Curzon-Ahlborn model [5]. It is still unclear whether the
Curzon-Ahlborn model is reliable within the framework of
statistical mechanics. While in the present model, the relation
between the value of protocol λ(t) and the time-dependently
effective temperature 1/β(t) of the “isothermal” processes
is well defined. In this sense, Fig. 1 may be regarded as a
counterpart of the PT diagram of a reversible engine in the
present irreversible model. This new construction is our third
key contribution in the present paper.

V. ENERGETICS

In this section, we will investigate the energy transaction
and the entropy variation in the four processes mentioned
above.

First, in the “isothermal” expansion, we obtain the energy
difference

�EA ≡ β−1
1 − β−1

0 = Thch(1 − τh), (50)

the heat absorbed from the hot bath

QA ≡ −γh

∫ t1

0
dt[1/β(t) − Th] = 1

2
Thch(1 − τh), (51)

the work input

WA ≡ �EA − QA = 1
2Thch(1 − τh), (52)

the entropy variation

�SA ≡ 1

2
ln

β0

β1
= 1

2
ln

1 − chτh

1 − ch

� 0, (53)

and the energy dissipation

RA ≡ γh

∫ t1

0
dt[1 − β(t)Th]2/β(t)

= Th

2

[
ln

1 − chτh

1 − ch

− ch(1 − τh)

]
(54)

from Eqs. (21)–(24) and (36)–(39).
Second, as mentioned below Eq. (35), since the system is

not in contact with any heat bath and its evolution abides
by the Hamilton equation (27), both the heat exchange
and the entropy production are vanishing in the “adiabatic”
compression, which are denoted by

QB = 0 and �SB = 0, (55)

respectively. The Hamilton equation is microscopically re-
versible, thus this “adiabatic” compression is reversible in
the level of dynamics. However, this “adiabatic” compression
slightly differs from a reversible process such as an adiabatic
process in a conventional thermodynamic cycle. Here we
merely indicate that the initial state 1 and the final state 2
in Fig. 1 are located in an isentropic line. During the process
of “adiabatic” compression connecting these two states, the
entropy and the temperature are not well defined except at these
two states, whereas both the entropy and the temperature are
well defined in the whole adiabatic process in the conventional
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thermodynamic cycle. Similar discussion is also available for
the “adiabatic” expansion. The work input and the energy
difference may be expressed as

WB = �EB ≡ β−1
2 − β−1

1 = Tc(1 + cc) − Th(1 − chτh)

(56)

according to Eqs. (39) and (43) as well as in the discussion
below Eq. (35).

Third, in the “isothermal” compression, we obtain the
energy difference

�EC ≡ β−1
3 − β−1

2 = −Tccc(1 − τc), (57)

the heat absorbed from the cold bath

QC ≡ −γc

∫ t3

t2

dt[1/β(t) − Tc] = −1

2
Tccc(1 − τc), (58)

the work input

WC ≡ �EC − QC = − 1
2Tccc(1 − τc), (59)

the entropy variation

�SC ≡ 1

2
ln

β2

β3
= 1

2
ln

1 + ccτc

1 + cc

� 0, (60)

and the energy dissipation

RC ≡ γc

∫ t3

t2

dt[1 − β(t)Tc]2/β(t)

= Tc

2

[
ln

1 + ccτc

1 + cc

+ cc(1 − τc)

]
(61)

from Eqs. (21)–(24) and (42)–(46).
Fourth, both the heat exchange and the entropy production

are vanishing in the “adiabatic” expansion, which are denoted
by

QD = 0 and �SD = 0, (62)

respectively. The work input and the energy difference may be
expressed as

WD = �ED ≡ β−1
0 − β−1

3 = Th(1 − ch) − Tc(1 + ccτc),

(63)

according to Eqs. (38) and (46) as well as the discussion below
Eq. (35).

When the system completes a whole cycle, it will return to
its initial state. Since the energy and the entropy of the system
are state variables, both of them should be unchanged when
the system completes the whole cycle. In fact, from Eqs. (50),
(56), (57), and (63), we can confirm �EA + �EB + �EC +
�ED = 0. With the consideration of Eqs. (53), (55), (60), (62),
and constraint (49), we can also verify �SA + �SB + �SC +
�SD = 0. The work output may be expressed as

Wout ≡ −(WA + WB + WC + WD)

= 1
2 [Thch(1 − τh) − Tccc(1 − τc)] (64)

from Eqs. (52), (56), (59), and (63). This result is consistent
with Wout = QA + QC directly derived from the energy
balance in the whole cycle. When Wout > 0, this system
operates as a heat engine.

The efficiency of the engine is defined as the ratio of the
work output to the heat absorbed from the hot bath, which
reads

η ≡ Wout

QA

= 1 − Tccc(1 − τc)

Thch(1 − τh)
(65)

with the consideration of Eqs. (51) and (64). It is not hard to
verify that η is less than the Carnot efficiency ηC ≡ 1 − Tc/Th

from Eq. (49).
The power is defined as the work output divided by the

period (t4) for completing the whole cycle, which reads

P ≡ Wout

t4
= Thch(1 − τh) − Tccc(1 − τc)

2t4
. (66)

VI. EFFICIENCY AT MAXIMUM POWER

Now let us optimize the heat engine. To maximize the
power (66) under the constraint (49), we introduce a Lagrange
multiplier � and then seek the maximum of the extended
function as follows:

I ≡ Thch(1 − τh) − Tccc(1 − τc)

2t4

+�[(1 − chτh)(1 + ccτc) − (1 + cc)(1 − ch)]. (67)

The procedure of maximization is standard. From
∂I/∂ch = 0 and ∂I/∂cc = 0, we can obtain

Th(1 − τh)/2t4 = �[(1 + ccτc)τh − (1 + cc)] (68)

and

Tc(1 − τc)/2t4 = �[(1 − chτh)τc − (1 − ch)], (69)

respectively. Dividing Eq. (68) by Eq. (69), we arrive at

Th(1 − τh)

Tc(1 − τc)
= 1 − τh + cc(1 − τhτc)

1 − τc − ch(1 − τhτc)
. (70)

On the other hand, from constraint equation (49), we have

1 − τhτc = (1 − τc)/ch − (1 − τh)/cc. (71)

Substituting this equation into Eq. (70), we can obtain

cc(1 − τc)/ch(1 − τh) =
√

Th/Tc. (72)

Substituting the above equation into Eq. (65), we obtain the
efficiency at maximum power,

ηmP = 1 −
√

Tc/Th. (73)

This is our fourth key result in the present paper. Interestingly,
this result is exactly equal to the Curzon-Ahlborn efficiency for
endoreversible heat engines working at maximum power al-
though the present stochastic model looks quite different from
Curzon-Ahlborn endoreversible heat engines. The effective
temperatures are time dependent and well defined in the two
“isothermal” processes in our model while they are presumed
to be constant in the Curzon-Ahlborn model. Furthermore,
from Eqs. (71) and (72) we can also solve the following:

ch = (1 −
√

Tc/Th)(1 − τc)/(1 − τhτc) (74)

and

cc = (
√

Th/Tc − 1)(1 − τh)/(1 − τhτc). (75)
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FIG. 2. (Color online) Schematic diagram of protocol (77). A,
B, C, and D represent four processes (“isothermal” expansion,
“adiabatic” compression, “isothermal” compression, and “adiabatic”
expansion) in the thermodynamic cycle, respectively. The times t1,
t2, t3, and t4 are not plotted in the same scale.

By substituting the above two equations into Eq. (66), we
achieve the maximum power

Pmax ∝ (
√

Th −
√

Tc)2, (76)

which displays the same behavior as the maximum power of
Curzon-Ahlborn endoreversible heat engines [5].

In addition, we can easily design the protocol for the
maximum power according to Eqs. (26), (37), (40), (44),
(45), (47), (49), (74), and (75). The values of the protocol
λ = λ(t) at times t1, t2, t3, and t4 are found to be λ1 =
λ0

√
(1 − chτh)/(1 − ch), λ2 = λ1

√
Tc/Th, λ3 = λ0

√
Tc/Th,

and λ4 = λ0, respectively. The time-dependent protocol for
the maximum power may be expressed as

λ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ0

√
(1 − che−2γht )/(1 − ch), 0 < t � t1

λ1 − λ1ηmP�
(

t−t1
t2−t1

)
, t1 < t � t2

λ2

√
[1 + cce−2γc(t−t2)]/(1 + cc), t2 < t � t3

λ3 + λ0ηmP�
(

t−t3
t4−t3

)
, t3 < t � t4

(77)

where the function �(t) is still defined as �(t) ≡ 3t2 − 2t3.
The values of ch and cc may be calculated from Eqs. (74) and
(75), respectively. The schematic diagram of protocol (77) is
depicted in Fig. 2.

VII. SUMMARY AND DISCUSSION

In this work, we construct a stochastic heat engine by using
a time-dependent harmonic potential to control a Brownian
particle. By considering the inertial effect of the particle
and shortcuts to adiabaticity, we find that the efficiency
at maximum power for this microscopically stochastic heat
engine is exactly equal to the Curzon-Ahlborn efficiency
for endoreversible heat engines. Our microscopic model has
several advantages relative to the Curzon-Ahlborn model. The
effective temperatures are well defined in two “isothermal”

processes. It is unnecessary for us to assume the effective
temperatures to be constant as done in the Curzon-Ahlborn
model. In particular, Eqs. (36) and (42) reveal that the effective
temperatures are actually inconstant, which is consistent with
the fact recently pointed out in Ref. [47] that the assumption of
constant effective temperatures is not the necessary condition
for achieving the Curzon-Ahlborn efficiency. In addition, the
finite-time adiabatic processes in our model can be realized
with the aid of shortcuts to adiabaticity. It is still unknown how
to realize finite-time adiabatic processes for a macroscopic heat
engine such as the Curzon-Ahlborn model.

The present stochastic heat engine follows the exquisite
model proposed by Schmiedl and Seifert [22]. But our start
point differs from theirs. In Ref. [22], Schmiedl and Seifert are
focused on the overdamping case where the inertial effect of
the Brownian particle is neglected while we are concerned with
the underdamping case where the inertial effect plays a large
role. However, it is this small distinction in the start point
that leads to qualitatively different consequences. First, the
process in which the protocol λ(t) increases (decreases) with
time corresponds to a compression (an expansion) of position
distribution in Schmiedl-Seifert model, while the process
in which the protocol λ(t) increases (decreases) with time
corresponds to an expansion (a compression) of momentum
distribution in our model. In other words, the protocol
generating the thermodynamic cycle of a heat engine in Sec. IV
leads to a refrigerator rather than a heat engine within the
framework of Schmiedl-Seifert model. Second, the finite-time
adiabatic processes in our model can be realized with the aid
of shortcuts to adiabaticity. Suddenly switching the Brownian
particle from a hot bath to a cold bath will not produce entropy
in the Schmiedl-Seifert model since the position distribution is
instantaneously unchanged. However, the mismatch of kinetic
energy in this transition will inevitably result in heat exchange
between two heat baths. This point is similar to the criticism
[48] to Feynman’s analysis of the ratchet as a heat engine.
That is, the adiabatic transition in the Schmiedl-Seifert model
is not genuinely adiabatic. In succeeding work by Seifert’s
group [49], Schmiedl et al. also found that it is important
to consider the inertial effect (i.e., the kinetic energy) in the
adiabatic transition. They obtained a counterintuitive result
that the minimal work in the adiabatic transition averaged on an
initially thermalized ensemble for harmonic potentials is given
by the adiabatic work even in the limit of short transition times.
It is necessary for us to investigate the relationship between
this result and the shortcut to adiabaticity in the future research.

The present model may be generalized in two aspects. First,
the reverse thermodynamic cycle will lead to a stochastic
refrigerator. The optimization of refrigerators has been investi-
gated by many researchers [50–54]. A reasonable target func-
tion is called the χ criterion, which is defined as the product
of the coefficient of performance of refrigerators and the rate
of heat absorbed from the cold bath [50,51]. The coefficient
of performance at maximum χ criterion for endoreversible
refrigerators is found to be

√
Th/(Th − Tc) − 1 [50]. It is

straightforward to derive the coefficient of performance at the
maximum χ criterion for the stochastic refrigerator. Second,
the quantum version of the present stochastic heat engine is
an intriguing topic. To do that, we need to overcome several
difficulties such as the subtle definition of quantum Carnot-like
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thermodynamic cycle and the proper definitions of work and
heat [55,56].

Finally, we discuss the realizability of the present stochastic
heat engine in experiments. Recently, Blickle and Bechinger
[57] have demonstrated the experimental realization of a mi-
croscopically Stirling heat engine by using a time-dependent
optical laser trap to control a single colloidal particle of
diameter 2.94 μm. Through qualitative analysis, one can
see that the inertial effect for a particle of diameter in
micrometers is too small to be detected when we observed
in the time scale of seconds. Therefore, the microscopic
heat engine investigated by Blickle and Bechinger is similar
to the stochastic heat engine proposed by Schmiedl and
Seifert rather than the present model. To enhance the relative
strength of inertial effects, one should increase the temporal
resolution to microseconds. This difficulty has been overcome
by experimental scientists [58,59] who achieved a temporal
resolution of 10 ns for a 1-μm silica particle. In addition, the
generation of shortcuts to adiabaticity mentioned in Sec. III
requires a nonlocal control to the system which might be
difficult in experiments. Recently, a local scheme [36,37]
has been proposed, which can help us overcome the second
difficulty. In a word, it is highly promising to realize the present
stochastic heat engine in the laboratory.
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APPENDIX A: DETAILED DERIVATION OF EQ. (12)

The rate of heat absorbed may be defined as

d̄〈Q〉
dt

=
〈
ẋ

∂H

∂x
+ ṗ

∂H

∂p

〉
, (A1)

where d̄ indicates that the heat is not a state variable and
the heat absorbed from the heat bath depends on the detailed
process. The ensemble average 〈.〉 proceeds in two steps [26].
First, we average over all trajectories which are at time t at
given x and p, leading to

〈ẋ|x,p,t〉 = Jx/ρ(x,p,t), 〈ṗ|x,p,t〉 = Jp/ρ(x,p,t), (A2)

where Jx and Jp are the x and p components of J in
Eq. (9), respectively. Second, averaging over all x and p with
distribution function ρ(x,p,t) leads to

d̄〈Q〉
dt

=
〈
ẋ

∂H

∂x
+ ṗ

∂H

∂p

〉

=
∫

dx

∫
dpρ

[
∂H

∂x

Jx

ρ
+ ∂H

∂p

Jp

ρ

]

=
∫

dx

∫
dp

[
∂H

∂x
Jx + ∂H

∂p
Jp

]

≡
∫

dx

∫
dp(∇H ) · J. (A3)

The above equation may also be derived from the continuity
equation of density

dρ

dt
= ∂ρ

∂t
+ ∇ · J (A4)

and the continuity equation of energy

d(Hρ)

dt
= ∂(Hρ)

∂t
+ ∇ · (HJ). (A5)

Using the above two equations, we have

d̄〈Q〉
dt

=
〈
ẋ

∂H

∂x
+ ṗ

∂H

∂p

〉
=

〈
dH

dt

〉
−

〈
∂H

∂λ
λ̇

〉

=
∫

dx

∫
dpρ

dH

dt
−

∫
dx

∫
dpρ

∂H

∂t

=
∫

dx

∫
dp

{[
d(Hρ)

dt
−H

dρ

dt

]
−

[
∂(Hρ)

∂t
−H

∂ρ

∂t

]}

=
∫

dx

∫
dp

{[
d(Hρ)

dt
−∂(Hρ)

∂t

]
−H

(
dρ

dt
− ∂ρ

∂t

)}

=
∫

dx

∫
dp[∇ · (HJ) − H∇ · J]

=
∫

dx

∫
dp(∇H ) · J. (A6)

From this equation, we arrive in the first line of Eq. (12).
With the consideration of the Hamiltonian (2), we have
∂H/∂x = ∂U/∂x and ∂H/∂p = p. Combining Eq. (9), we
finally achieve

d̄〈Q〉
dt

=
∫

dx

∫
dp

{
∂U

∂x
(pρ)

+p

[
−ρ

(
γp+∂U

∂x
+γ T

ρ

∂ρ

∂p

)]}

= −
∫

dx

∫
dp

[
γpρ

(
p + T

ρ

∂ρ

∂p

)]
. (A7)

The integration of the above equation leads to the second line
of Eq. (12).

APPENDIX B: DETAILED DERIVATION OF EQ. (33)

From the Hamiltonian (16), we have ∂H/∂x = λ2x,
∂H/∂p = p, and ∂H/∂λ = λx2. Thus

dH

dt
= ∂H

∂x
ẋ + ∂H

∂p
ṗ + ∂H

∂λ
λ̇ = λ2xẋ + pṗ + λx2λ̇. (B1)

Substituting Eq. (27) into the above equation, we have

dH

dt
= λ2x

(
p − λ̇

2λ
x

)
+ p

(
−λ2x + λ̇

2λ
p

)
+ λx2λ̇

= λ̇

2λ
p2 + λx2λ̇

2
= λ̇

λ

(
p2

2
+ λ2x2

2

)

= λ̇

λ
H = H

d ln λ

dt
. (B2)

That is, Eq. (33) holds and its validation is independent of the
choice of the protocol λ(t).
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