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On infinite homogeneous structures, two random walkers meet with certainty if and only if the structure
is recurrent; i.e., a single random walker returns to its starting point with probability 1. However, on general
inhomogeneous structures this property does not hold, and, although a single random walker will certainly return
to its starting point, two moving particles may never meet. This striking property has been shown to hold, for
instance, on infinite combs. Due to the huge variety of natural phenomena which can be modeled in terms of
encounters between two (or more) particles diffusing in comblike structures, it is fundamental to investigate if
and, if so, to what extent similar effects may take place in finite structures. By means of numerical simulations we
provide evidence that, indeed, even on finite structures, the topological inhomogeneity can qualitatively affect the
two-particle problem. In particular, the mean encounter time can be polynomially larger than the time expected
from the related one-particle problem.
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I. INTRODUCTION

Network theory generally refers to the investigation of
graphs (meant as a representation of a set of discrete objects
in mutual interaction with each other), focusing on their
topological properties, as well as on the dynamics of arbitrary
agents spreading on them. In particular, diffusion processes
occurring on complex networks (e.g., lacking translational
invariance) can give rise to anomalous behaviors strongly
related to the underlying topology [1–3].

In the last decade network theory has attracted increasing
interest, and an impressive number of results, analytical and/or
numerical, is nowadays available. Most of them are concerned
with very popular models, like scale-free networks, random
graphs à la Erdös-Rényi, small-world networks, and transfrac-
tals [4–6]. These models have proved to be very effective in
describing superstructures, namely, artificial structures such
as the World Web Web, the Internet, social networks, etc. On
the other hand, when dealing with natural structures, such as
macromolecules, disordered materials, or biological systems,
the previous models are no longer so adequate since geometries
generally occurring in nature are typically embeddable in
low-dimensional spaces (this also means that their degree
is finite) and often have a treelike architecture (see, e.g.,
Refs. [7–10]).

A very versatile and interesting model for such structures
is given by combs, which, as we are going to explain, can
strongly affect the underlying dynamic processes.

As a paradigmatic example, here we focus the attention on
reaction-diffusion processes, namely, systems where a given
event is triggered as two or more diffusive particles happen
to be sufficiently close. There exist many basic phenomena
which can be modeled in these terms and which stem from
different fields, such as pharmacokinetics (where the branched
topology of the circulatory systems [10–13]) is known to
deeply affect the diffusion of drugs [14]), in chemical physics
(where energy transfer in comb polymers [15,16] and den-
dronized polymers [9] can exhibit anomalous diffusion [7]),

in neuroscience (where the properties of calcium transport
and reaction in spiny dendrites [13,17,18] can be related to
neural plasticity [19,20]), in condensed matter (where combs
serve as a model for porous materials [21–24]), and even in
architecture (where optimal diffusion through ecological [25]
as well as urbanistic [26] systems is envisaged).

Recently the problem of two simple random walkers
moving on a regular, infinite comb has been rigorously
analyzed [27,28], showing very interesting phenomena: dif-
ferently from homogeneous structures where the two-particle
problem (i.e., the problem of finding how likely it is that two
particles eventually meet) can be mapped into a one-particle
problem (i.e. the problem of finding how likely it is that one
particle eventually reaches a given fixed target), in combs not
only are the two problems intrinsically distinct but also their so-
lution is strikingly different. In fact, a single particle randomly
moving on a comb is certain to eventually visit any site, while
two particles display a finite probability of never encountering
each other, notwithstanding their initial position. This result
has been rigorously proven for infinite combs and suggests that
the topological inhomogeneities of such structures may lead
to dramatic effects for reaction-diffusion processes. However,
as real phenomena necessarily occur in finite structures, it is
fundamental to investigate if and, if so, to what extent similar
effects may take place in finite structures [29].

Indeed, in finite structures, we expect that at intermediate
times (i.e., times long enough to see the emergence of
asymptotic behaviors, but not too long for the random walk to
realize the finiteness of the substrate) the two-particle problem
will exhibit nontrivial features.

In the following we analyze the two-particle problem on
different kinds of finite branched structures, here generically
referred to as G, and we will focus on the probability
distribution PG(t,L) for the time t to first meet on a structure
of size L. From this quantity we can derive the related
moments and, in particular, the mean first encounter time
τG(L). Interestingly, as we will show, PG(t,L) may display
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extremal points mirroring the existence of characteristic time
scales. Moreover we find that, according to initialization, τG
may scale “anomalously” with L, or, more precisely, that the
mean encounter time can be polynomially larger than the time
expected from the related one-particle problem.

In fact, in order to better highlight the peculiarity of such
results, we also consider the case of reactions between two
particles, one being mobile and the other immobile. Again, we
are interested in the time for the reaction to (first) occur, and
we measure the related probability distribution QG(t,L) and
its average value ζG .

II. DYNAMICS ON FINITE COMBS

In this section we distinguish between the case of regular
combs, referred to as C (see Fig. 1, left panel), and the case of
irregular combs, referred to as B, where the length of the side
chains is random (see Fig. 1, right panel).

A. Regular combs

Regular combs are built by fixing the length Lx (for
simplicity Lx is even) of the backbone and by attaching
to each of its sites two side chains of length Ly/2, where
Ly = αLx , being α ∈ N; in this way the overall number of
sites N is Lx(αLx + 1). To simplify notation hereafter Lx will
be referred to as L. Periodic boundary conditions are applied to
the backbone, while reflecting boundary conditions are applied
to the side chains. This kind of structure can be embedded in the
two dimensions (d = 2), and extensions to higher dimensional
spaces (d = 3,4, . . .) can also be realized (see also Sec. II B).
Regular, infinite combs have been extensively analyzed in
Ref. [30], where it was shown that the spectral dimension d̃

is given by d̃ = 2(1 − 2−d ). We recall that the latter provides
information about the dynamic properties of the graph; for in-
stance, the probability for a random walker to return to its start-
ing point scales asymptotically like ∼t−d̃/2 (see, e.g., Ref. [1]).

1. Particles starting from the same initial position

Let us consider two random walkers initially placed on the
same site of the backbone. The walkers are allowed to move
up to time t , when they again occupy the same site for the very
first time. The probability distributions PC(t ; L,α) obtained
from numerical simulations are shown in Fig. 2.

Interestingly, PC(t ; L,α) displays three different regimes,
distinguished by two “critical points” corresponding to two
characteristic time scales, which we denote by t1 and t2,

FIG. 1. (Color online) Examples of a regular comb lattice with
Lx = 10 and Ly = 10 (left panel), and of a random comb lattice with
Lx = 10 and side chains of length randomly drawn from a uniform
distribution with average 3 (right panel).
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FIG. 2. (Color online) Probability distribution PC(t ; L,α) for the
first-encounter time on a deterministic comb of linear sizes Lx = 256
and Ly = 4Lx , plotted on a log-log scale (a) to highlight intermediate
times (in between t1 and t2) and on a semilogarithmic scale (b)
to highlight long times (larger than t2). The best fits highlighted
correspond to δ = −0.55 and to t ′ = (2.5 ± 0.1) × 107. The values of
the characteristic times t1 and t2 pertaining to different sizes are shown
in Fig. 3. The cumulative distribution

∑
t PC(t,L,α) (c) is shown

for different choices of L: the curves from left to right correspond
to L = 2k , with k = 2, . . . ,9, respectively. The envelope of the
related starting points is fitted by the curve y = −a/

√
log x + b, with

a = −0.63 ± 0.03 and b = 0.92 ± 0.02. The data shown in these
panels have been obtained via numerical simulations, and the sample
is made of 107 realizations for every L.

respectively. More precisely, at intermediate times, i.e., t1 <

t < t2, the probability distribution decays as a power law,
as expected for an infinite structure (e.g., see Ref. [31]),
suggesting that this time range corresponds to the asymptotic
regime; on the other hand, at long times, i.e., for t > t2, the
probability distribution decays exponentially, suggesting that
this time range corresponds to the emergence of finite size
effects, which provide a “boost” in the likelihood for the two
particles to meet. We stress that the heavy-tailed distribution
means that the first encounter time is broadly spread with
a large (indeed infinite in the thermodynamic limit) mean,
as expected due to the finite collision property displayed by
such structures [32]; in particular, by fitting the data we find
PC(t ; L,α)∼t δ , with δ ≈ −0.55.

The points t1 and t2 can therefore be extracted for different
sizes L as the onset of a power law behavior and of an
exponential behavior, respectively. These values are shown in
Fig. 3, where we provide evidence that t1 scales like t1∼LxLy ,
while t2 scales like t2∼LxL

γ
y , where γ ≈ 1.75; as we will

show in the following, t2 is closely related to the mean first
encounter time τC .
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FIG. 3. (Color online) From the distribution PC(t ; L,α) we ex-
tracted t1(L,α) (upper panel) and t2(L,α) (lower panel). These
characteristic times were divided by α and by αγ , respectively, and
plotted versus L. By assuming γ = 1.75 we obtain a nice collapse of
data points. Best fits (solid lines) correspond to power laws with
exponents 2 and γ , respectively, hence suggesting t1∼LxLy and
t2∼LxL

γ
y .

In order to highlight the size dependence of the first-
encounter time distribution it is convenient to consider the
cumulative distribution

∑
t PC(t ; L,α). As shown in Fig. 2(c),

at short times the cumulative distributions pertaining to
different values of α overlap nicely with the curve expected
from the infinite-structure case PC(t); otherwise stated, as long
as t < t1(L,α), PC(t ; L,α) is indistinguishable from PC(t),
consistent with the fact that finite size behavior has not
emerged yet. Thus, by fitting the early-time envelopes of
PC(t ; L,α) we get an estimate for PC(t), which turns out to
saturate to 1 with a rate scaling as 1/

√
log t .

Now, from the distribution PC(t ; L,α), one can derive the
mean first encounter time:

τC(L,α) ≡
∞∑

t=0

t PC(t ; L,α). (1)

Results for different values of α and L are shown in Fig. 4. By
properly fitting the data we find that

τC(L,α) ∼ LxL
γ
y ∼ L1+γ . (2)

Interestingly, we can speculate that 1 + γ = d + d̃/2 ≈ 2.75.
Let us now consider the case where one of the two particles

is immobile and fixed at a given point on the backbone,
while the other is allowed to perform a random walk starting
from the same site. Again, we are interested in the time the
particles meet for the first time; in this case, the reaction time
corresponds to the first return time of the mobile particle.

Results for the distribution QC(t ; L,α) of the first-encounter
time and for the related cumulative distribution

∑
t QC(t ; L,α)

are shown in Fig. 5. Analogously to PC(t ; L,α), we can
distinguish an early-time regime, an intermediate regime, and
a late-time regime. The second one is the most interesting; it
displays a power-law decay with the probability distributions
scaling as tρ , with ρ ≈ −1.25. Notice that ρ < δ, namely,
when a particle is fixed, the distribution is less broad, consistent
with the fact that, when both particles are mobile, the reaction
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FIG. 4. (Color online) Mean first encounter time τC(L,α) versus
L for different choices of α, represented by different symbols, so that
from below α = 1,2,4,10. In a logarithmic scale these data are well
fitted by a linear law (solid line), i.e., log(τC) = A + γ log(L), where
γ turns out to be independent of α, while A depends logarithmically
on α (see the inset), hence suggesting for τC(L,α) the overall behavior
given by Eq. (2).

much less likely due to the finite collision property. For large
sizes L the late-time regime exhibits a peak corresponding to
the mobile particle being close to the starting point.

As for the mean encounter time

ζC(L,α) ≡
∑

t

t QC(t ; L,α), (3)

we get (see Fig. 6)

ζC(L,α) ∼ LxLy ∼ L2. (4)

This result can be understood by mapping the random walk
on the comb into a continuous-time random walk on a linear
chain, where the waiting time distribution is identical for all
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FIG. 5. (Color online) Probability distribution QC(t ; L,α) for the
time of first return to the starting point on the backbone for a random
walker placed on a regular, square comb of linear size Lx = 4096 (a).
Different choices for the backbone size are compared by considering
the cumulative distribution

∑
t QC(t,L,α) (b): from left to right

the curves correspond to L = 4k , with k = 2,3,4,5,7, respectively.
Notice that only the mid-to-long time regime is shown: curves overlap
up to a characteristic time after which finite size effects emerge. The
data shown here have been obtained via numerical simulations, and,
for every L, the sample contains 107 realizations.
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FIG. 6. (Color online) Mean return time for a particle starting on
the backbone of a regular comb of linear size L and side chains of
length αL; several choices of α are considered, as given in the legend.
In order to get data collapse, ζC(L,α) is divided by α. The data from
the simulations (symbols) are best fitted by the power law y = L2/2
(solid line), hence suggesting the overall behavior given by Eq. (4).
The inset highlights, in a linear scale, the scatter of the data around
the approximation αL2.

nodes and has an average given by the mean time spent by
the original walk on the side chain; this mean waiting time
ultimately corresponds to the mean time τ1 spent by a random
walk, which started on the origin of a finite chain of length Ly ,
to first return to its initial point [33–35]. Then, denoting with τ2

the mean number of steps taken by a continuous-time random
walk to first return to its starting point on a ring of length Lx ,
we can derive ζC ∼ τ1τ2. Now, recalling that τ1 and τ2 scale
linearly with the size of the underlying structure (see, e.g.,
Ref. [34]), we finally get ζC ∼ τ1τ2 ∼ LyLx , as anticipated.

Notice that the two-particle problem and the one-particle
problem lead to qualitatively different results, having τC/ζC ∼
Lγ−1 → ∞.

2. Particles starting from different initial positions
on the backbone

Let us consider two random walkers initially placed on two
distinct sites of the backbone; to fix the ideas let us choose two
nodes at the maximal mutual distance L/2 (of course the parity
of the two starting nodes has to be the same). The walkers are
allowed to move up to time t , where they occupy the same site
for the very first time. The probability distributions P ′

C(t ; L,α)
obtained from numerical simulations are shown in Fig. 7 (left
panel).

Such distributions peak at a point t1 which defines a
characteristic time scale for the encounter to occur. We
extracted t1 for different values of L and of α: the results
are summarized in Fig. 7 (right panel). The data collapse
when divided by αγ ′

, with γ ′ ≈ γ ; such collapsed data can
be fitted by L3, in such a way that we get the overall behavior
t1 ∼ L

3−γ ′
x L

γ ′
y .

Again, the “critical” points of the distributions are inti-
mately related to the mean encounter time

τ ′
C(L,α) ≡

∑

t

tP ′
C(t,L). (5)
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FIG. 7. (Color online) Distribution P ′
C(t,L) for the first encounter

time of two particles starting on the backbone at a distance L/2 of
each other. Different choices for the backbone length are considered
and compared: from left to right Lx = 4k , with k = 1,2, . . . ,5; here
Lx = 2Ly , that is, the sides of the comb form a square. On the right
panel we show the fit for the extremal time t1 divided by αγ in order
to get data collapse. The data shown here have been obtained via
numerical simulations, and, for every L, the sample contains 107

realizations.

In fact, as shown in Fig. 8, the mean encounter time scales as
t1; we have, namely,

τ ′
C(L,α) ∼ L3−γ ′

x Lγ ′
y ∼ L3. (6)

Notice that when both particles are mobile their (extensive)
initial distance enters sublinearly into the mean encounter time,
since τ ′

C/τC ∼ L2−γ .
Finally, we investigate the case of one immobile particle,

fixed at a given site on the backbone, and one mobile particle
starting at a distance L/2 on the backbone and performing a
random walk until it reaches for the first time the fixed particle.

Results for the distribution of the first encounter time
Q′

C(t ; L,α) are shown in Fig. 9 (left panel). Analogously
to P ′

C(t ; L,α), namely, to the case of two mobile particles,
Q′

C(t ; L,α) peaks at a characteristic time denoted by t1. We
extracted the value of t1 for different choices of the comb
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FIG. 8. (Color online) Mean encounter time τ ′
C(L,α) for two

moving particles which start from nodes on the backbone at a distance
L/2. The collapse of the data points is obtained by dividing τ ′

C(L,α)
by αγ ′

and assuming that γ ′ = 1.75. Numerically obtained data
(symbols) are best fitted by a power law with exponent 3 (solid line),
hence suggesting the overall behavior given by Eq. (6).

052147-4



SLOW ENCOUNTERS OF PARTICLE PAIRS IN BRANCHED . . . PHYSICAL REVIEW E 89, 052147 (2014)

10
0

10
10

10
5

10
−6

10
−4

10
−2

t

Q
C(

t;
L

,α
)

10
2

10
1

10
3

10
0

10
5

10
10

L
t 1

α = 1
α = 2
α = 3
α = 10

(a) (b)

FIG. 9. (Color online) (a) Distribution Q′
C(t ; L,α) for the time to

first reach a point on the backbone distant by L/2. Different choices
for the backbone are considered and compared: from left to right, the
curves refer to Lx = 4k , with k = 1,2, . . . ,7. In every case Lx = 2Ly ,
i.e., the sides of the comb form a square. (b) The values of the
characteristic time t1 (symbols) corresponding to the maximum of
the distribution Q′

C(t ; L,α) were extracted for different choices of α

(see the legend) and plotted versus L. Notice that the data collapse
is obtained dividing t1 by α. The best fit (solid line) corresponds to
a power law with exponent 3. The data shown in these panels have
been obtained via numerical simulations, and, for every L, the sample
contains 107 realizations.

sizes and summarized the results in Fig. 9 (right panel): the
overall behavior is given by t1 ∼ LyL

2
x . Again, t1 defines a

characteristic time scale for the encounter to occur, and its
behavior is mirrored by the mean encounter time

ζ ′
C(L,α) ≡

∑

t

t Q′
C(t ; L,α). (7)

In fact, for the latter we found

ζ ′
C(L,α) ∼ LyL

2
x ∼ L3, (8)

as shown in Fig. 10.
Such a scaling can be understood by mapping the problem

into a continuous-time random walk picture as done before
for ζC . The extra factor L appearing in Eq. (8) is due to the
mean number of steps needed by the walker to attain for the
first time a distance L/2 along the backbone, which scales as
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FIG. 10. (Color online) Mean encounter times τCd
(darker) and

ζCd
(brighter) with fitting functions for d = 3 (a) and for d = 4 (b).

The best fits (dashed lines) correspond to power laws, as reported.
The data shown in these panels have been obtained via numerical
simulations, and, for every L, the sample contains 107 realizations.

L2. In fact, the number of steps required to cover a distance
x ∼ L/2 on a ring of length L scales as x(L − x) ∼ L2 [34].

We also notice that in this case (at least for the small
sizes considered) there is no qualitative difference in the mean
reaction time according to whether one of the two particles is
kept fixed or not, that is, τ ′

C/ζ
′
C ∼ 1. Moreover, in both cases,

the mean time scales super-linearly with the total volume,
namely, with N3/2.

In conclusion, we expect that the leading scaling with L3

represents an upper bound for the mean time to encounter
of two particles started at any mutual distance. In particular,
we verified that when particles start at the maximal distance
2Ly + Lx/2 (namely, on extremal points of farthest teeth), the
mean encounter time scales as L3. In fact, the time to reach the
backbone contributes with a subleading term L. Moreover, we
checked that when the starting sites are chosen randomly, the
mean encounter time (where the average runs now also over
the initial positions) scales like L3.

B. Higher-order branched structures

Many natural branched structures, such as neurites and
dendrites, may display so-called secondary, tertiary, and
higher-order branches (see, e.g., Ref. [36]), that is to say, the
(first-order) side chains of a comb can be further branched
by (second-order) side chains, and so on in a recursive
way. Combs exhibiting (d − 1)-th order branches can be
embedded in a d-dimensional space and are therefore called
d-dimensional combs [30,37], hereafter referred to as Cd .
One can therefore ask whether the slowing down phenomena
evidenced for two-dimensional combs also emerge in higher-
dimensional combs.

Here we consider the mean encounter time τCd
for two

random walkers starting on the same site on the backbone
and the mean return time ζCd

for a random walker starting
on the backbone, focusing on their dependence on the linear
size of the structure; for simplicity we restrict ourselves to the
case of combs with the same linear size along all directions,
i.e., Lx = Ly = Lz ≡ L, for d = 3 and analogously for higher
orders.

Results are summarized in Fig. 11: as highlighted by fitting
functions, ζCd

follows the behavior expected for Euclidean
structures [38], while τCd

grows qualitatively faster, namely,

τCd
∼ L1+γd , (9)

ζCd
∼ Ld, (10)

where 1 + γ3 ≈ 3.88 and 1 + γ4 ≈ 4.94, hence confirming
the relation 1 + γd = d + d̃/2 = d + 1 − 2−d , proposed in
Sec. II A.

Thus, even for higher-order combs the two-particle en-
counter turns out to be slow and τCd

/ζCd
∼ L1−2−d

. Moreover,
for d 
 1, we expect that the mean encounter time scales as
∼L1+d = V 1+1/d ∼ V .

C. Randomly branched structures

In this section we present results obtained for branched
structures, which differ from those analyzed before, by
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FIG. 11. (Color online) Mean encounter time divided by α,
namely, ζ ′

C/α when one particle is immobile and the other is
mobile starting from a site at a distance L/2. Different values of
L are considered, as shown by the legend. The solid line scales
like L3.

exhibiting some degree of randomness. More precisely, we
will consider structures with a backbone of length Lx and
side chains whose length Ly is a stochastic variable with a
given (finite) mean value 〈Ly〉 (see Fig. 1, right panel). These
models are closer to biological structures; for instance, when
considering transport processes in spiny dendrites one finds
that for the distribution of spines along the dendrite, their sizes
and shapes appear to be highly random [18,39].

In general, the results are analogous to those obtained for
regular structures, and they do not depend qualitatively on the
distribution [40] from which Ly is drawn, hence conferring to
the overall picture a great robustness.

In particular, here we show results obtained when the length
of side chains is extracted from a uniform distribution in the
range [1,L̄], so that every integer i in this range has the
same probability, 1/L̄, to be chosen and the mean length
is 〈Ly〉 = ∑L̄

i=1 i/L̄ = L̄(L̄ + 1)/2. Numerical results for the
mean time τB(L,α) for two mobile particles starting from the
same site on the backbone to meet again for the first time,
the mean time τ ′

B(L,α) for a mobile particle to first return to
the starting point on the backbone, the mean time ζB(L,α)
for two mobile particles to first encounter having started on
points in the backbone at a distance L/2, and the mean time
ζB(L,α) for a mobile particle to first reach a site at a distance
L/2 on the backbone are shown in Fig. 12 (panels a, b, c,
and d, respectively). The mean values obtained in this context
have been calculated by averaging over both the underlying
random structures and over different realizations of the two
random walks; the latter sampling turns out to be more noisy
than the former, and it basically determines the final error to
be associated to the mean time.

The behavior of the quantities mentioned above can be
summarized as follows:

τB ∼ 〈Ly〉γ Lx, (11)

τ ′
B ∼ 〈Ly〉γ L3−γ

x , (12)

ζB ∼ 〈Ly〉Lx, (13)

ζ ′
B ∼ 〈Ly〉L2

x. (14)
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FIG. 12. (Color online) Normalized mean times for a particle
starting from the backbone of a random comb B to first encounter
another mobile particle with the same initial point (a), to first return to
the initial point (b), to first encounter another mobile particle started at
a distance L/2 (c), and to first reach a site on the backbone at a distance
L/2 (d). These mean times are divided by α to a proper exponent in
order to obtain the data collapse; again, we took γ = 1.75. Several
choices of α are considered, as given by the legend in panel a. Solid
lines represent the best fits, which correspond to the following power
laws: ∼L1+γ , ∼L3, ∼L2, ∼L3, respectively, hence suggesting the
behaviors given in Eqs. (11)–(14). The data shown here have been
obtained via numerical simulations; for every L we extracted 102

random structures, and for each of them we considered a sample made
of 105 realizations. The error bars inserted in each panel refer to the
data sets corresponding to α = 1 and are taken as representative for
the whole ensemble of data. Notice that the error bars are asymmetric
around the data points due to the logarithmic scale.

We notice that no fundamental difference emerges com-
pared to the case of deterministic combs [see Eqs. (1), (4), (6),
and (8), respectively].

We also checked that these results are qualitatively robust
with respect to the introduction of random “defects,” such
as the insertion of a small (i.e., sublinear with respect to L)
number of links connecting nodes belonging to adjacent teeth
(hence implying loops).

Therefore, the slowing of two-particle reactions seems to
derive from the high degree of inhomogeneity exhibited by
such bundled structures, constructed by engrafting a branch
on each vertex of a linear chain. Remarkably, branches do not
have to be strictly separate (i.e., loops may be allowed), and,
by taking as base graph another recurrent graph, analogous
slowing phenomena are expected (see, e.g., Ref. [37]).

III. DISCUSSION

By explicitly studying specific examples we have shown
that topological inhomogeneities deeply affect the kinetics of
two-particle encounter processes even on finite structures. The
main effect we evidenced is a strong slowing of the probability
of encounter, compared with the situation for analogous
regular structures. In particular, it is possible to obtain transient
kinetics, typical of higher-dimensional structures, even in
two-dimensional restricted geometries. This suggests a new
strategy to control reaction kinetics: while, in order to increase
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the survival probability of a species, one usually increases
the spatial dimension, by adding sites, links, or volume to
a given structure, in many cases it is possible to obtain a
similar or stronger effect by judiciously deleting elements,
i.e., by sparing material instead of wasting it. This opens
the way to a new concept of geometrical tuning of chemical
reactions, particularly suitable to restricted, low-dimensional
substrates.
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