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In the literature, it is pointed out that non-Brownian particles tend to show shear-induced diffusive behavior
due to hydrodynamic interactions. Several authors indicate a long correlation time of the particle velocities
in comparison to Brownian particle velocities modeled by a white noise. This work deals with the derivation
of a Fokker-Planck equation both in position and velocity space which describes the process of shear-induced
self-diffusion, whereas, so far, this problem has been described by Fokker-Planck equations restricted to position
space. The long velocity correlation times actually would necessitate large time-step sizes in the mathematical
description of the problem in order to capture the diffusive regime. In fact, time steps of specific lengths pose
problems to the derivation of the corresponding Fokker-Planck equation because the whole particle configuration
changes during long time-step sizes. On the other hand, small time-step sizes, i.e., in the range of the velocity
correlation time, violate the Markov property of the position variable. In this work we regard the problem of
shear-induced self-diffusion with respect to the Markov property and reformulate the problem with respect to
small time-step sizes. In this derivation, we regard the nondimensionalized Langevin equation and develop a new
compact form which allows us to analyze the Langevin equation for all time scales of interest for both Brownian
and non-Brownian particles starting from a single equation. This shows that the Fokker-Planck equation in
position space should be extended to a colored-noise Fokker-Planck equation in both position and colored-noise
velocity space, which we will derive.
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I. INTRODUCTION

Non-Brownian particles in shear flow have become a
considerably discussed topic throughout the literature. As
the name implies, non-Brownian particles do not perform
the well-known Brownian motion, which is an infinitely
short correlated motion due to the molecule pushes of the
surrounding solvent. Still, also non-Brownian particles are
found to perform diffusive motion. This type of diffusion
has been found to occur for particles with negligible inertia
in Stokes flow in the absence of any kind of Brownian or
turbulent diffusion [1]. Indeed, the so-called shear-induced
self-diffusion results from hydrodynamic interactions between
particles in the flow. This remarkable phenomenon has been
subject to various theoretical, experimental, and numerical
works, which are summarized below. The starting point of
theoretical considerations is the two-particle interaction of
purely hydrodynamically interacting particles with negligible
inertia in Stokes flow as described by Batchelor and Green [2],
[3] and in a review by Morris [4]. Though a viscous fluid is
considered, mathematically this implies fore-aft symmetry of
particle pair trajectories and reversibility [2–5].

From a theoretical point of view, this fore-aft symmetry
and reversibility is refracted, the reasons being manifold, cf.
Refs. [4,6–8], including surface roughness [9,10], weak
Brownian motion and interparticle forces [5], and inertia [11].

The underlying process of shear-induced self-diffusion was
evaluated experimentally, see, e.g., Refs. [1,12,13]. Numerical
considerations can be found in, e.g., Refs. [14–17] using the
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Stokesian dynamics method [18] and in, e.g., Ref. [7] using
so-called accelerated Stokesian dynamics [19]. Further, Pine
et al. [20] compare experimental data with numerical results
obtained by the Stokesian dynamics method. Even though
Drazer et al. [15] use a repulsive force in their simulation,
they argue that the diffusive behavior should also follow in the
case of purely hydrodynamically interacting particles. In the
present paper, which focuses on theoretical derivations, we
also regard the case of purely hydrodynamically interacting
particles and follow the assumptions in Refs. [7,8] that enough
many-particle interactions suffice to create diffusive behavior.

The common models to describe particle flows either refer
to an equation of motion (Langevin equation or Langevin-like
equation) or the corresponding Fokker-Planck equation. One
essential part of the present work is an asymptotics of the
equation of motion in Sec. II, which includes the analysis for
Brownian and non-Brownian particles for all apparent time
scales, here the inertial relaxation time scale and the time scale
of configurational changes, in a single starting equation. The
asymptotics to be discussed here can be placed in a context
of other asymptotics, e.g., Refs. [11,18,21–23], whereby we
derive a new compact form which includes all other cases as
special cases.

The corresponding Fokker-Planck equation depends on the
time scale of interest and differs from the Brownian to the
non-Brownian case. The basic version of the Fokker-Planck
equation derived for Brownian particles provides an equation
in position-velocity space (also indicated as phase space
distribution), cf. Refs. [21,24,25]. Under the assumption that
the velocity relaxes to equilibrium on a smaller time scale
than the position, this form can be reduced to position space
(Smoluchowski equation) [24,25]. Further, the reduction of the
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phase space form to position form is analyzed by regarding
multiple time scales in a single Fokker-Planck equation by
Wycoff and Balazs [26] and extended to Brownian particles in
shear flow by Subramanian and Brady [27].

Besides our interest in non-Brownian suspensions, we also
pay attention to the analysis of Brownian particles because
there are still cases when a reduction of the observed time
scale reinforces the use of a coupled position-velocity space
variable, namely the Kramers equation, see, e.g., Ref. [23].
In the non-Brownian case, we identify a similar problem and
therefore propose to also switch to a coupled variable.

Instead of the N-particle Fokker-Planck equation, a
one-particle representation decreases the complexity of the
problem enormously which can be done, e.g., by deriving the
coefficients for a one-particle Fokker-Planck equation from
a one-particle equation of motion, as described technically in
Ref. [23].

One very important aspect that was found in experiments,
e.g., in Ref. [28], and numerical simulations, e.g., in Ref. [7]
or Ref. [15], is that the shear-induced diffusion needs a certain
time to develop, i.e., it is a long-time diffusion. Section II C
gives a summary on diffusion. The time has to be long enough
so enough many-particle interactions can have taken place [7].
In experiments, the authors in Ref. [28] indicate a different
kind of diffusion for the small and intermediate time scales
which is considerably smaller than the shear induced diffusion.
Hence, we stick to Sierou and Brady‘s simulation results [7]
which show a nondiffusive behavior of particle positions for
short times due to long correlation times in the non-Brownian
case. This poses limits to the derivation of the non-Brownian
Fokker-Planck equation.

Existing Fokker-Planck equations for non-Brownian
particles rather selectively model shear-induced diffusion
in position space only using modified diffusion tensors.
Santamarı́a-Holek et al. [29,30] study coupled Fokker-Planck
equations in velocity and position space. They assume that
the coupled Fokker-Planck equation can be transformed into a
Fokker-Planck equation in position space only with a modified
diffusion tensor incorporating thermal and nonthermal effects
considering the second law of thermodynamcis. In this
context, they report a breaking of the fluctuation-dissipation
theorem due to an introduced shear flow which also has
been investigated, e.g., by Mauri and Leporini [31]. Sierou
and Brady [7] use a time-dependent diffusion coefficient
for the small and intermediate time scales which becomes
constant for long times and derive a Fokker-Planck equation
in position space. Breedveld et al. [32] use the Fokker-Planck
equation only in position space for the case of long-enough
time intervals and measure the shear-induced self-diffusivity
by use of a new correlation technique. Further, in Ref. [1],
some of the authors from Ref. [32] and coworkers work with a
Langevin equation with a colored-noise force with zero mean
which contains the hydrodynamic influence of the particles
onto each other. Based on that, they also aim at deriving
the full position diffusion tensor in a modified form, with
a colored-noise force in the equation of motion and, hence,
overcome the common white-noise assumption. Nevertheless,
they do not derive a Fokker-Planck equation in a coupled
variable based on their Langevin equation.

Our work aims at deriving an alternative Fokker-Planck
equation. Based on the assumption from Breedveld et al. [1]
that the hydrodynamic influence of the particles is colored
noise correlated, we transform the N-particle system of
equations of motion to a one-particle equation for the par-
ticle velocity with a colored-noise-correlated hydrodynamic
velocity component. The equations of motion for all N
particles become independent. From that we aim at deriving
the corresponding one-particle Fokker-Planck equation. Most
importantly, we follow a new approach based on the Markov
process assumption. The Markov process assumption, see,
e.g., Ref. [23], allows us to combine the usage of a small
time step for the underlying equations of motion and, at the
same time, to describe the long-time behavior by the Fokker-
Planck equation. The present paper primarily focuses on the
investigation of the Markov process validity in the context
of shear-induced diffusion. We will prove, by the appropriate
choice of the time-step size, which is an important issue of
the present work, that large time-step sizes are not allowed
and small time-step sizes result in violation of the Markov
property of the position variable. In this context we use the
approach of a so-called colored-noise Fokker-Planck equation
which has not been introduced in that context so far and model
the hydrodynamic interaction via a hydrodynamic velocity
component as an Ornstein-Uhlenbeck process. The general
mathematical framework of the underlying colored-noise
Fokker-Planck equation and Ornstein-Uhlenbeck processes
can be found, e.g., in Ref. [23]. Ornstein-Uhlenbeck processes
with exponential autocorrelation functions are a common
scheme to describe colored-noise variables [23]. Further,
the principle of velocity autocorrelation functions decaying
exponentially in time has been observed in several particle-
type situations as, e.g., sedimenting non-Brownian particles
[33]. Our alternative equation is a colored-noise Fokker-Planck
equation meant to carefully fulfill the Markov assumption and
will be presented in Sec. III. Additionally, the solution based
on a Gaussian distribution is shown and analyzed in Sec. IV.
The resulting probability distribution is well founded.

II. FUNDAMENTAL MODEL DERIVATION

We study a three-dimensional (3D) homogeneous shear
flow with purely hydrodynamically interacting non-Brownian
particles. We assume a particle volume fraction such that
enough particle-particle interactions can take place and
shear-induced diffusion can arise [7]. For appropriate values
of such particle volume fractions we refer to Ref. [7].
The works of Pine et al. [20], Santamarı́a-Holek et al. [30],
and Sierou and Brady [7] show that the intensity of the position
diffusion coefficients and the exact time after which diffusive
behavior starts is influenced by the particle volume fraction.
For our purposes it is most important that shear-induced
behavior sets in generally so the influences of varying particle
volume fractions are not investigated in the present work.
Further, we consider periodic boundary conditions such that
any wall interaction is avoided.

For the purpose of clearness we briefly define the difference
among time, time step, and time scale, because of extensive use
below. Time t is the independent variable on which the process
may vary on the rather generic range t ∈ [t0,∞). A time scale τ

052145-2



COLORED-NOISE FOKKER-PLANCK EQUATION FOR THE . . . PHYSICAL REVIEW E 89, 052145 (2014)

defines the length of a process on which a significant change is
observed, e.g., change in particle configuration, the period of a
cyclic process, or the relaxation time scale of an exponentially
decaying event. Finally, a time step �t is the fraction of the
contemplated time scale (unless otherwise specified), e.g.,
�t = τ/q with q ∈ N, and therefore inherently coupled to
τ . For the time scales to appear in the present work, it has to
be chosen accordingly such that even in the limiting process
of �t → 0, it is a given fraction of this time scale. That means
that a time step �t → 0 with respect to a certain time scale will
still be larger than the next smaller time scale (cf. Ref. [34]).
Further, we would like to point out that a �t � or � τ in the
present work refers to a �t on the next smaller or larger time
scale, whereby a �t < or > τ indicates a time step on the very
same time scale τ .

A. Particle motion described by Langevin equations

The starting point of the present considerations is an
equation of motion for N particles in the system, which is
built up according to the following [18]:

m
dU
dt

= FH + FP + FB. (1)

The system consists of 6N equations, i.e. three degrees of
freedom, respectively, for both translational and rotational
motion for all N particles in the system. m is the generalized
mass- and moment-of-inertia matrix and U is the combined
vector of particle translational and rotational velocities. In
the following, the hydrodynamic force-torque FH , the in-
terparticle or external force-torque FP , and the Brownian
force-torque FB will be introduced. The particle Reynolds
number, Rep = ρf a2γ̇ /η, gives the inertia of the fluid with ρf

as the fluid density, a as particle radius, γ̇ as shear rate, and η

as the suspending medium viscosity.
For Rep � 1, which is one of the key assumptions regarded

in the present work, the hydrodynamic force-torque can be
built up as shown in Refs. [18,35–37],

FH = −RFU(U − U∞) + RFE : E∞. (2)

The operator “:” is a contraction which reduces the multipli-
cation of the rank 3 tensor RFE with the rank 2 tensor E∞
to a vector (cf. Ref. [34]). U∞ is the bulk shear flow. The
translational components of the velocity vector of the bulk
shear flow for one particle α are (γ̇ yα,0,0), with yα as the y

position of this particle α. E∞ is the symmetric part of the
velocity gradient tensor, or the rate of strain tensor, i.e.,

E∞ = 1

2

⎡
⎣0 γ̇ 0

γ̇ 0 0
0 0 0

⎤
⎦. (3)

RFU and RFE are the configuration-dependent resistance ma-
trices describing the connection between the force-torque (F)
and the relative velocity (U − U∞), as well as (F) and the rate
of strain (E∞), respectively. RFU is used to describe the hydro-
dynamic interaction of the particles on each other while RFE

gives the shear-induced disturbances in the flow field [34]. RFU

and RFE can be built up such that they contain hydrodynamic
far-field many-body interactions and near-field lubrication
interactions, see Refs. [18,38] for the full derivation.

In a physical experiment, particles rather naturally do not
coincide and, hence, it is also mandatory for numerical sim-
ulations to introduce an interparticle force FP [35] to model
physical effects as, for instance, particle roughness or residual
Brownian motion [15]. In our theoretical considerations, we
consider purely hydrodynamically interacting particles, and,
thus, particles without interparticle forces, so subsequently
FP is set to zero.

Generally, for the present analysis, we regard a physical
regime where particles are considered to have a larger size
and mass than the particles or molecules of the surrounding
fluid so the time scale of molecular collisions onto the particle
is smaller than any other time scale of interest here [18,23].
Thus, the molecule impacts of the surrounding fluid onto a
particle result in a randomly fluctuating force, i.e. the Brownian
force FB (cf. [21]). The Brownian force FB is modeled such
that it has zero average, i.e. 〈FB〉 = 0, and an infinitely short
autocorrelation time [18],

〈FB(0)FB(t)〉 = 2kT RFUδ(t). (4)

In this context, the 〈〉 brackets are the ensemble average, k is the
Boltzmann constant, and T is the absolute temperature, thus
kT is the thermal energy. δ(t) is a Dirac correlated white noise
which models the infinitely short autocorrelated molecule
pushes onto the particle [39]. The procedure of adding white-
noise sources, i.e., FB in Eq. (1), will subsequently be called
the Langevin approach (see Ref. [23]) while the resulting
equation (1) is referred to as the Langevin equation [18]. As
an alternative to the Langevin equation, stochastic processes
can be described equivalently by a differential equation for
the probability density P , i.e., the Fokker-Planck equation,
cf. Ref. [23], which will be widely employed below. The
Fokker-Planck equation can be set up for Markov processes,
which means that the probability density for a process at
time tn does not depend on earlier values than at time tn−1,
with tn − tn−1 = �t and n ∈ N with 1 � n � q [23]. The
Fokker-Planck equation enables us to calculate any averaged
values of the regarded variable by integration [39,40].

For the following derivations, we limit ourselves to the
translational components of Eq. (1) and, hence, the rotational
degrees of freedom are not considered. Still, the influence
of shear-induced rotation onto the translational motion is
included due to (RFE : E∞)α (the component of RFE : E∞
acting on the particle α) (see Ref. [34]).

B. Asymptotic expansion in the colored-noise regime

In the present subsection, we employ a time-scale asymp-
totics applied to the dimensionless form of Eq. (1).

Below, we define the three elementary time scales on
which the essential physical phenomena will take place, cf.
Refs. [7,18],

τp = m

6πηa
, the inertial relaxation time scale, (5)

τf = 1

γ̇
, the flow time scale, with the shear rate γ̇ , (6)

and

τD = a2

D0
, the diffusive time scale, with D0 = kT

6πηa
, (7)
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TABLE I. Summary of Secs. II B and II C for Brownian particles with τp � τD � τf .

On τp On τD

t , �t <τp >τp <τD >τD

Brownian velocity Correlated Uncorrelated
Configuration Constant Changing
Diffusion Velocity diffusive Position short-time Position long-time
〈yy〉, 〈zz〉 ∼t2 ∼t ∼t

〈�y�y〉, 〈�z�z〉 ∼�t2 ∼�t ∼�t

〈UiUj 〉 with i, j= x, y, z ∼ t Constant

where m is the mass of one particle. D0 is also known as
the Stokes-Einstein diffusivity and captures the diffusivity of
an isolated particle. Of the above-mentioned time scales it is
possible to define dimensionless numbers in order to describe
the significance of different phenomena. The ratio of τD to τf

defines the Peclet number as follows:

Pe = τD

τf

= 6πηa3γ̇

kT
. (8)

As the Peclet number may also be interpreted as the ra-
tio of shear forces to Brownian forces, the suspension is
Brownian for a vanishing Peclet number while it refers to
a non-Brownian suspension for a Peclet number tending to
infinity [18].

The influence of particle inertia is determined by the Stokes
number,

St = τp

τf

, (9)

i.e. the ratio of the inertial relaxation time to the shear
time scale. In the literature various authors investigated the
influence of inertia in terms of finite Stokes numbers, e.g.,
Drossinos and Reeks [41] and Subramanian and Brady [11].
Presently, however, we limit ourselves to a τp, which is
considerably smaller than τf , and, hence, particle inertia shall
be neglected.

For the successional analysis, we may furthermore need to
introduce three placeholder time scales as follows:

τa, a placeholder for the regarded time scale, (10)

τc, the time scale on which the particle configuration of

the system changes,and (11)

τac, the time scale for the velocity autocorrelation. (12)

The system can be analyzed with respect to any of the given
time scales, here τp, τf , and τD from Eqs. (5)–(7), by setting τa

to the time scale of interest. Then the time t and the time-step
size �t are taken in relation to τa . τc is defined such that during
a time step �t on τc, the characteristic distance a particle has
moved is a fraction of its own radius a. The determination of τc

and τac differs significantly from Brownian to non-Brownian
particles.

For Brownian particles (see Refs. [21,23,24,27]) there is
a so-called separation of time scales. This means, in the
Brownian case, that the position of the particle changes on a
time scale that differs from that of the velocity, so τc = τD and
τac = τp with τD � τp. Therefore it is constructive to define
a time step �t in the range τp � �t < τD for the integration
of the Langevin equation (1) such that the configuration (and
thus RFU, RFE, and U∞) and forces on the particle, e.g., FH

and FP effectively stay unchanged over the time step while
the random part of the velocity resulting from the Brownian
motion is completely uncorrelated with the random part from
the previous time step [21,24].

For non-Brownian particles (see Ref. [7]), the diffusive
behavior results from the hydrodynamic part of the velocity.
In contrast to the Brownian velocity with short autocorrelation
times, the hydrodynamic velocity component directly depends
on the configuration. Therefore, the time scale of the hydro-
dynamic velocity correlation is the same as the time scale
of position change. In the non-Brownian case, τac = τf and
τc = τf . This means, for �t → 0 on τa = τf , i.e., �t < τf ,
the present velocity is still correlated with velocities from
previous time steps while the configuration is considered as
unchanged over the time step. In contrast, for large �t > τf ,
the forces and configuration are not constant over the time step,
and, in return, the velocities are uncorrelated. A summary of
all the time scales and phenomena that occur on these time

TABLE II. Summary of Secs. II B, II C, and III for non-Brownian particles with τp � τf � τD .

On τp On τf

t , �t <τp >τp <τf >τf

Velocity Correlated Uncorrelated
Configuration Constant Changing
Diffusion Colored-noise velocity diffusive Position long-time
〈yy〉, 〈zz〉 ∼t2 ∼t

〈�y�y〉, 〈�z�z〉 ∼�t2 ∼�t

〈ViVj 〉 with i, j= x, y, z ∼t Constant
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scales can be found in Tables I and II. Note that 〈xx〉 and
〈�x�x〉 are not listed as this behavior differs from the y and
z directions in the case of shear flow in the x direction. Note
that these tables also contain information that will be referred
to in later sections.

In addition to the different time scales, the system imbeds
different length scales. On τa = τc, the appropriate length
to nondimensionalize all lengths is the particle radius a,
cf. Ref. [18].

In the case where the considered time scale is τa = τp,
the characteristic length scale is the correlation length of a
Brownian particle or the distance the particle moves during τp

with the velocity
√

kT
m

, see [40],

l ≈
√

kT

m
τp, (13)

in the absence of any other forces which could introduce
additional length scales.

From τp � τD with τp from Eq. (5) and τD from Eq. (7) it
follows l � a.

In the following, the nondimensionalized form of the
Langevin equation (1) is analyzed. Depending on the physical
situation, special forms of nondimensionalzing (1) were
developed, cf. Refs. [11,18,21,22]. In this context, multiple
time scale analysis has been used to receive reduced forms
of the Fokker-Planck equation for Brownian particles [26,27].
However, we derive a new form of multiple time and length
scale analysis which includes all time and length scales of
interest for both Brownian and non-Brownian particles. This
will be our starting equation, which has not been derived so far.
This new compact form that we will expose for Brownian and
non-Brownian particles shall consolidate the relation between
the equations of motions and their corresponding Fokker-
Planck equations as we will outline which variable is a Markov
variable in the corresponding Fokker-Planck equation. The
above-mentioned different time scales for Brownian and non-
Brownian particles will become apparent below. Further, the
analysis of the Brownian particle case which incorporates the
white noise due to Brownian motion is done in order to show
the special case of the Kramers equation (see, e.g., Ref. [23])
which poses a fundamental mean for our argumentation for
the non-Brownian case.

For the nondimensionalization of Eq. (1), we employ the
assumptions from [18] or [22], which imply that the hydro-
dynamic resistance matrices RFU and RFE are respectively
nondimensionalized with the friction coefficient fr = 6πηa

and the product fra whereby in our work we modify the
nondimensionalization of RFE to frh with h as the placeholder
for the length scales a and l, depending on the respective
time scale that is regarded. The asymptotics will show that

the component referring to l is negligible; however, it is
introduced to present the full analysis on both the time
scales. The components of E∞ are nondimensionalized by
τf = 1/γ̇ . The mass m of one particle, is subsequently
used for any nondimensionalization of quantities with mass
dimension.

In the following, all components of the Langevin equa-
tion (1) with respect to all time scales are considered in the
dimensionless equation. For that, first, all components are
decomposed into their different parts in order to understand
which processes are active on the respective time scales. Note
that we only work with the translational components of Eq. (1).
We will not use any identification mark or index to point that
out. The m reduces to a simple m, since in the translational
components m = m · I , with I as a unity matrix of size
3N × 3N . In the analysis to follow, we need to introduce
two expansion parameters,

ε1 = τp

τD

and ε2 = τp

τf

, (14)

i.e., ε1 as a small parameter for the asymptotic analysis of the
Brownian case and ε2 as a small parameter for the asymptotic
analysis of the non-Brownian case.

For a better understanding of the time-scale expansion to
follow, we consider the key time scales τp and τc for each term
separately in an additive form, whereby Eq. (20) is received
by inserting τp and τD into Eq. (4),

t̃1 = t/τp, t̃2 = t/τc, (15)

x = l x̃1(t̃1) + a x̃2(t̃2), (16)

U = dx
dt

= l

τp

Ũ1(t̃1) + a

τc

Ũ2(t̃2), (17)

U∞
α = (γ̇ yα,0,0) =

(
1

τf

(l ỹ1α(t̃1) + a ỹ2α(t̃2)),0,0

)
, (18)

U∞ = 1

τf

(
l Ũ

∞
1 (x̃1) + a Ũ

∞
2 (x̃2)

)
, (19)

FB = m

τp

l

τp

F̃
B

1 (t̃1) + m

τp

a

τD

F̃
B

2 (t̃2). (20)

The tilde represents the dimensionless components. The index
α represents the α-th particle. In contrast, the indices 1 and 2
refer to the two components of the variables on the respective
time scales. The components with index 1 create equations
on the time scale τa = τp and the components with index
2 create equations on τa = τc. Implementing (15)–(20) into
Eq. (1) where FH has been replaced by (2) and FP is set to
zero, we obtain:

m

(
l

τpτp

dŨ1

dt̃1
+ a

τcτc

dŨ2

dt̃2

)
= −fr R̃FU

(
l

τp

Ũ1 + a

τc

Ũ2

)
+ fr R̃FU

(
l

τf

Ũ
∞
1 + a

τf

Ũ
∞
2

)
+ fr

l

τf

(R̃FE : Ẽ
∞

)1

+ fr

a

τf

(R̃FE : Ẽ
∞

)2 + ml

τpτp

F̃
B

1 + ma

τpτD

F̃
B

2 . (21)
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1. Brownian particles

First, Eq. (21) is considered for Brownian particles. That implies that τc = τD is inserted into Eq. (21). Furthermore, we

multiply Eq. (21) by τpτp

ma
. After applying Eq. (14), to get τp

τf
= Pe ε1 and l

a
=

√
τp

τD
= ε

1/2
1 , we receive

(
ε

1/2
1

dŨ1

dt̃1
+ ε2

1
dŨ2

dt̃2

)
= −ε

1/2
1 R̃FUŨ1 − ε1 R̃FUŨ2 + Pe ε

3/2
1 R̃FUŨ

∞
1 + Pe ε1 R̃FUŨ

∞
2 + Pe ε

3/2
1 (R̃FE : Ẽ

∞
)1

+ Pe ε1(R̃FE : Ẽ
∞

)2 + ε
1/2
1 F̃

B

1 + ε1 F̃
B

2 . (22)

Ordering (22) according to the small parameter ε1 = τp

τD

yields, to leading order, the asymptotics for the Brownian case
in the separate equations (23)–(25) and (28)–(29),

ε
1/2
1 terms:

dŨ1

dt̃1
= −R̃FUŨ1 + F̃

B

1 , (23)

where (23) is an equation of motion on τa = τp, so �t is a
fraction of τp here. As already indicated above, this is the
time scale of velocity correlation for Brownian particles, i.e.,
τac = τp. An analog equation in 1D can be found in Ref. [23].
There is derived the Fokker-Planck equation in correspondence
to Eq. (23), namely Rayleigh‘s equation [23], which is a
Fokker-Planck equation in velocity space, as the velocity is
a Markov variable here, while the position is not. Of course,
the appendant redimensionalized RFU has to be known (note
that on the time scale τp, RFU is constant).

Further,

ε1 terms: 0 = −R̃FUŨ2 + PeR̃FUŨ
∞
2

+ Pe(R̃FE : Ẽ
∞

)2 + F̃
B

2 , (24)

thus, for Pe → 0: 0 = −R̃FUŨ2 + F̃
B

2 . (25)

Equation (24) is an equation of motion on τa = τD , thus
�t is a fraction of τD . Isolating Ũ2 in (24) by multiplying
the inverse of R̃FU and using U = dx

dt
from (17) leads to a

differential equation in position space. One more integration
of (24) yields the change of the particle positions with
Peclet number dependency; see the dimensional analysis in
Refs. [18,21]. The position space differential equation in turn
may be reformulated to an N-particle Fokker-Planck equation
in position space as the positions of all particles are Markovian;
see also Refs. [18,21].

In the following, we may shortly outline the effects of a
position-dependent external force field F(x) added on the left-
hand side of the Langevin equation (1), because in the non-
Brownian case we will use a similar argumentation for the use
of an alternative Fokker-Planck equation. Transferred to our
terminology, such an additional external force F(x) could be
nondimensionalized by the following:

F(x) = m

τkτb

(l F̃1(x/l) + a F̃2(x/a))

= m

τkτb

(l F̃1(x̃1) + a F̃2(x̃2)), (26)

while the time scales τk and τb will subsequently be identified
with some of the given time scales τp, τD , or τf , where we

will distinguish two cases below. In the case that τk and τb

do not equal τp, τD , or τf , additional time scales have to
be introduced in the asymptotics, including the dimensionless
analysis for x [Eq. (16)] and U [Eq. (17)]. For the explanations
to follow we stick to the simpler cases that τk and τb equal
either τp or τD with τkτb = τpτD or τkτb = τ 2

p , whereas the
case that τkτb = τ 2

p prohibits the use of the Fokker-Planck
equation in position space but necessitates another type
of Fokker-Planck equation, namely the Kramers equation
(see, e.g., Refs. [23,25,26,39]).

Wilemski [25] (among others like, e.g., Ref. [26]) gives a
rule for the use of the Fokker-Planck equation in position,∣∣∣∣τ

2
p

m

∂ F(x)

∂x

∣∣∣∣ � 1. (27)

Inserting F(x) with τkτb = τpτD into Eq. (27) does not pose
any problems as the condition is fulfilled. The corresponding
Fokker-Planck equation is an equation in position space, as for
Eq. (24). For the second case that τkτb = τ 2

p , Eq. (27) is not
fulfilled. Adding the force F(x) from Eq. (26) with τkτb = τ 2

p

to the right-hand side of Eq. (21), we see that these terms
dominate on the τD time scale, i.e. in Eq. (24). The approach
is as follows [23]: The regarded time scale τa = τD has to be
scaled down to τa = τp. The equation of interest for this case
is the equation of motion on the smaller time scale τp, i.e.,
Eq. (23). The corresponding Fokker-Planck equation to (23)
is a Fokker-Planck equation in velocity (Rayleigh‘s equation)
which does not take into account the position dependency
of F(x). So, in this case, the corresponding Fokker-Planck
equation to the equation of motion on τp, i.e., (23), has to be
a Fokker-Planck equation in position and velocity space, the
so-called Kramers equation, where neither the velocity nor the
position alone is Markovian but only a coupled variable in
position-velocity space.

Finally,

Pe ε
3/2
1 terms: 0 = R̃FUŨ

∞
1 + (R̃FE : Ẽ

∞
)1, (28)

and ε2
1 terms:

dŨ2

dt̃2
= 0. (29)

Equations (23) and (28) are equations on τp. Equation (28)
with ε

3/2
1 components can be neglected when compared to

Eq. (23) with the ε
1/2
1 components. The same argumentation

applies for Eqs. (24) and (29), which are both equations on
τD . Therefore, Eq. (29) with ε2

1 components can be neglected
when compared to Eq. (24) with ε1 components. Thus, in the
following, Eqs. (28) and (29) are not considered.
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2. Non-Brownian particles

For non-Brownian particles, τc = τf . Setting this into Eq. (21) above and multiplying by τpτp

ma
yields with τp

τD
= 1

Pe
τp

τf
and

l
a

=
√

1
Pe

τp

τf
=

√
1

Peε
1/2
2 the following:

(√
1

Pe
ε

1/2
2

dŨ1

dt̃1
+ ε2

2
dŨ2

dt̃2

)
= −

√
1

Pe
ε

1/2
2 R̃FUŨ1 − ε2 R̃FUŨ2 +

√
1

Pe
ε

3/2
2 R̃FUŨ

∞
1 + ε2 R̃FUŨ

∞
2 +

√
1

Pe
ε

3/2
2 (R̃FE : Ẽ

∞
)1

+ ε2(R̃FE : Ẽ
∞

)2 +
√

1

Pe
ε

1/2
2 F̃

B

1 + 1

Pe
ε2 F̃

B

2 . (30)

Ordering according to small ε2 = τp

τf
� 1 (which means a

small Stokes number) yields the separate equations (31)–(35),√
1

Pe
ε

1/2
2 terms:

dŨ1

dt̃1
= −R̃FUŨ1 + F̃

B

1 . (31)

Equation (31) is the equation of motion on τp, where the
hydrodynamic shear forces have no influence since they are of
order O(ε3/2

2 ) in Eq. (34). Pe tends to ∞, thus (31) and (34) do
not have the same significance as (23) and (28). As mentioned
above, in the non-Brownian case, τac = τf , so the time scale τp

is not in the scope of interest for the shear-induced diffusion.
Further,

ε2 terms: 0 = −R̃FUŨ2 + R̃FUŨ
∞
2 + (R̃FE : Ẽ

∞
)2 + 1

Pe
F̃

B

2 ,

(32)

thus, for Pe → ∞: 0 = −R̃FUŨ2+R̃FUŨ
∞
2 +(R̃FE : Ẽ

∞
)2.

(33)

Equations (32) and (33) give the change of position on τf .
It is important to note that the present approach also covers
existing special approaches, as, for example, Eq. (33) can
also be found as part of a Stokes number expansion in U in
Ref. [11].

Finally,√
1

Pe
ε

3/2
2 terms: 0 = R̃FUŨ

∞
1 + (R̃FE : Ẽ

∞
)1, (34)

and ε2
2 terms:

dŨ2

dt̃2
= 0. (35)

For the description on τp, Eq. (34) with ε
3/2
2 components can

be neglected when compared to Eq. (31) with ε
1/2
2 components.

Also, the ε2
2 components of Eq. (35) can be neglected in

comparison to the ε2 components of Eq. (32).
As we are interested in investigating the Fokker-Planck

equation for non-Brownian particles for the case of shear-
induced diffusion which occurs on τf , we analyze Eq. (33)
in the following. After returning to the dimensional represen-
tation and rearranging terms in Eq. (33), it follows for a single
particle α that:

0 = −fr (Uα − U∞
α ) + Fop

α (36)

with Fop
α = −(R∗

FU(U − U∞))α + (RFE : E∞)α, (37)

where ∗ indicates the hydrodynamic influence of all the other
particles on a particle α resulting from −RFU(U − U∞) in
Eq. (33). The α components are still bold, as they denote
a vector with the three components for the x, y, and z

directions. Note that the diagonal components of RFU

include both the friction fr of an isolated particle and the
hydrodynamic influence of the other particles [34]; therefore,
a decomposition according to (36) is possible with nonzero
diagonal elements of R∗

FU.
In Ref. [1], an analog to Eq. (36) is presented for the

equation of motion of a non-Brownian particle with the
hydrodynamic influence of the other particles expressed in
a colored-noise force. We declare Fop

α also as a colored-noise
force. In contrast to the Langevin equations, cf. Eq. (1),
equations of motion with a colored-noise force, as (36), are
called Langevin-like equations [23].

For our starting point, we rewrite Eq. (36) according to the
following:

Uα = U∞
α + V α with V α = 1

fr

Fop
α . (38)

We model 1
fr

Fop
α as a colored-noise velocity V α . In contrast to

Eq. (1) which actually is an N -particle system of coupled equa-
tions (38) belongs to a system of 3N independent equations
where the velocity V has to be modeled separately. The model
for the colored-noise velocity will be presented in Sec. III.

It will be pointed out below that the derivation of a Fokker-
Planck equation strongly depends on the appropriate choice of
the regarded time scale τa and the time step size �t , which is
an important issue of the present work. Most importantly, we
derive a possible alternative approach for the Fokker-Planck
equation based on (38).

C. Shear-induced diffusion in comparison
to Brownian diffusion

The basic approach may be taken from Refs. [23] and [42].
The Fokker-Planck equation is a parabolic differential equation
for the probability density P(s,t), see Ref. [23],

∂P(s,t)
∂t

= −
r∑

i=1

∂

∂si

Ai(s)P + 1

2

r∑
i,j=1

∂2

∂si∂sj

Dij (s)P, (39)

and can be derived by the differential quotient �P/�t , with
�P(s,t) = P(s,t + �t) − P(s,t) in the limit �t → 0. s is
the set of variables of interest si with dimension r , here, e.g.,
position or velocity.
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The drift Ai and diffusion terms Dij of the Fokker-Planck
equation can be found by evaluating s in the Langevin
equation (1) during the characteristic time step �t on the
regarded time scale τa ,

Ai(s) = 〈�si〉s

�t
, (40)

Dij (s) = 〈�si�sj 〉s

�t
, (41)

for �t → 0, whereas �si is the change of the variable of
interest during �t , i.e., �si = si(t + �t) − si(t). The 〈〉s

represents a conditional average with a known constant
reference value, whereby in our paper an index s denotes the
reference to the current s(t). The time step �t for integrating
the equations of motion, e.g., (1) on the time scale τa , has to
be small so s does not change much during �t . Due to the
smallness of �t , all terms with O(�t) in the calculation of
(40) and (41) can be neglected. In the following, we consider
linear Fokker-Planck equations which, following the definition
from Ref. [23], limits us to drift coefficients which are linear
functions of s and constant diffusion terms Dij . Further, s is
supposed to be a Markov variable. Then the change of s during
�t serves to find �P/�t , or ∂P/∂t in the limit �t → 0.

1. Brownian particles

At first we will briefly discuss details for Brownian
particles because their diffusive behavior shows analogies to
the non-Brownian case. For times τp � t < τD there is a so
-called short-time self-diffusivity and for times τD < t there
is a so-called long-time self-diffusivity [22,43]. For arbitrary
times t , both in the short-time diffusive regime and in the
long-time diffusive regime, use of Eq. (41) requires time steps
τp � �t < τD to capture the short-time diffusivity of position.
Since the configuration is unchanged during this time-step size
(and thus forces depending on the configuration), Brownian
particles with hydrodynamic interactions can be described
by a Fokker-Planck equation in position space, cf. Refs.
[21,24]. Here, the N-particle diffusion tensor is D = kT R−1

FU,
cf. Ref. [18].

For time steps τD < �t to capture the long-time diffusion,
the configuration is not constant during �t and thus forces
depending on the configuration are not constant either, and
O(�t) terms cannot be neglected. Hence, in the present
context, time steps τD < �t are not allowed for the derivation
of a corresponding Fokker-Planck equation in position space
[see also Sec. III, Eq. (60)], cf. Ref. [21].

On τa = τp with �t < τp or t < τp, Brownian particle
velocities are correlated while the mean-square displacements
(〈�x2〉, 〈�y2〉, 〈�z2〉, and 〈xx〉, 〈yy〉, 〈zz〉) show quadratic
behavior in �t , respectively, in time t [23,34,40]. Hence, the
position is not diffusive on τa = τp nor even a Markovian
variable, since the velocity from the last time step is not fully
relaxed and thus needed to update the particle‘s position [23].

In contrast, on τp, the velocity variable for one particle α

exhibits diffusive behavior with a linear in time mean-square
velocity 〈Ui(t)Uj (t)〉 for i,j = x,y,z [39]. In the previous
Sec. II B, the underlying equation of motion for τa = τp

is given in Eq. (23) whereby the corresponding Fokker-

Planck equation is built up in velocity space, named
Rayleigh‘s equation, cf. Ref. [23]. It can be shown that
on τa = τp for times t → ∞, the mean-square velocity
〈Ui(t → ∞)Uj (t → ∞)〉 is no longer linear in time, but a
constant, i.e. the equilibrium value [23], cf. Appendix A,
Eq. (A3) with t → ∞.

2. Non-Brownian particles

For non-Brownian particles under shear flow in x direction,
Sierou and Brady show simulation results with a linear
behavior in time for times t → ∞, i.e., t > τf , for the
mean-square displacements in the y and z directions, with
initial positions of the particles in the origin [7],

〈yy〉 ∼ 2Dyyt, (42)

〈zz〉 ∼ 2Dzzt, (43)

with the angle brackets here and in the rest of the paper
as an average over all particles in the system. As the Dij

coefficients in the non-Brownian context include averages over
all particles they do not present the positions of all particles in
the system anymore. They are not comparable to the Brownian
N -particle diffusion tensor D = kT R−1

FU mentioned above.
The exact time t for shear-induced diffusion to arise also
depends on the particle volume fraction and may not be
exactly t = τf , see, e.g., Ref. [7]. For short times, t < τf ,
Sierou and Brady illustrate quadratic behavior in time. In
contrast to Brownian diffusion, the shear-induced diffusion
of non-Brownian particles exhibits a difficulty as it appears
only for t → ∞ on τa = τf , see, e.g., Refs. [1,7,15,28]. This
corresponds to the long-time diffusivity in the Brownian case.
The authors in Ref. [7] explain that the beginning of the linear
behavior at times t > τf marks the beginning of the diffusive
behavior of position with a constant diffusion coefficient after
enough particle-particle interactions have taken place and the
velocity is not correlated anymore. So at arbitrary times t

(including times t > τf ), time steps of �t > τf capture the
diffusive behavior in Eq. (41) while time steps �t < τf do
not. A summary on the time scales can be taken from Table II
in Sec. II B.

In contrast to Eqs. (42) and (43) for the diffusive component
in the y and z directions, the diffusion components in the x

direction, i.e., Dxx and Dxy , are more complicated because
of the shear flow in the x direction (Ref. [7] which refers to
Ref. [44]),

〈xx〉 = 2Dxxt + 2Dxyγ̇ t2 + 2
3Dyyγ̇

2t3, (44)

〈xy〉 = 2Dxyt + Dyyγ̇ t2, (45)

where Dxy = Dyx is the only off-diagonal component [5,7].
Extracting Dxx and Dxy via the mean-square displacements in
Eqs. (44) and (45) in analogy to gaining Dyy and Dzz from
(42) and (43) causes a difficulty, as the authors in Ref. [7]
point out. Namely, for very large times t in the non-Brownian
case, it is difficult to extract Dxx and Dxy from Eqs. (44) and
(45) because the terms of order O(t2) and O(t3) dominate. So,
instead, they derive Dxx and Dxy by calculating 〈xx〉 and 〈xy〉
from

∫ t

0 Uα(t ′)dt ′ = ∫ t

0 U∞
α (t ′) + Uh

α(t ′)dt ′ = x∞ + xh with
xh as the hydrodynamic displacement due to the hydrodynamic
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velocity component Uh, resulting from a time derivative of
Eqs. (44) and (45), which also can be found in general form in
Ref. [23], as follows:

∂t 〈xx〉 − 2〈x (γ̇ y)〉 = 2Dxx, (46)

∂t 〈xy〉 − 〈y (γ̇ y)〉 = 2Dxy. (47)

Finally, Sierou and Brady [7] receive diffusion coefficients
with a coupling term,

Dxx(t) = 1

2

d

dt
〈xhxh〉 +

〈
dxh

dt

∫ t

0
γ̇ y(t ′)dt ′

〉
, (48)

Dxy(t) = 1

2

d

dt
〈xhy〉 + 1

2

〈
dy

dt

∫ t

0
γ̇ y(t ′)dt ′

〉
. (49)

They justify the dependence on t in order to use the diffusion
tensors also for short times t where the diffusive behavior has
not started yet and claim that both the diffusion tensors become
constant for large times t .

Still, we would like to point out that at arbitrary times t ,
even in the long-time limit t → ∞, i.e., t > τf , the behavior of
position is nondiffusive for small time-step sizes �t < τf on
the time scale τa = τf . This implies that the description of the
diffusive regime necessitates time-step sizes �t > τf . On the
other hand, large time-step sizes �t > τf cause a problem as
we will point out in the next Sec. III. Our argumentation will be
similar to problems that arise in the Brownian case either when
an external force field F(x) changes too fast (see Sec. II B, the
Kramers equation) or when �t > τD . So we do not intend
to increase the time-step size to �t > τf until the position is
diffusive. In contrast, we model the colored-noise velocity V α

in Eq. (38) such that it is diffusive for �t < τf on τa = τf . The
mean square of V α will be linear in time for times t < τf . For
times t → ∞, 〈V 2〉 is a constant, in analogy to the Brownian
velocity 〈(Ui(t → ∞))2〉 as mentioned above. A summary on
the time scales can be found in Tables I and II in Sec. II B. We
will need diffusion coefficients for the colored-noise velocities
which we will derive from Dxx , Dyy , Dzz, and Dxy .

III. ALTERNATIVE APPROACH FOR THE
FOKKER-PLANCK EQUATION BASED ON

THE COLORED-NOISE ASSUMPTION

In the present work, Eq. (38) is the basis for the derivation
of the Fokker-Planck equation of the shear-induced self-
diffusion process, whereby from now on we explicitly write
the dependence on time t to account for the correlation of
varying times. The hydrodynamic velocity Vi(t) results from
the hydrodynamic interaction on this particle due to all other
particles. Here, Vi(t), exhibits a colored-noise property as
follows:

Ux(t) = U∞
x (t) + Vx(t), (50)

Uy(t) = Vy(t), (51)

Uz(t) = Vz(t), (52)

for time t > τf in order to map the diffusive regime. Note that
this is the equation for one particle α in the full system. The
whole system for all N particles consists of 3N equations.

These 3N equations all are independent since the influence of
the particles onto each other is going to be modeled separately
in V . Thus it makes no difference if the averaging procedures
are for a single particle over different configurations, i.e.,
ensemble averages, or if averaging procedures are performed
over all particles in the system. We will use the latter case for
the purpose of manageability and we will skip the α index in the
following. The important question is to find the corresponding
Fokker-Planck equation. Hence, which time scale shall be
taken as the underlying time scale τa and which variable is
a Markov variable on this time scale must be determined.

We know from above that in the non-Brownian case,
on τa = τf , for �t > τf the position is diffusive and as
the velocity changes with the configuration, the velocity is
uncorrelated for this time-step size. However, the configuration
will only be constant for �t → 0, respectively, �t < τf . So
whether �t should be larger or smaller than τf must be
determined. At first, we have to develop a model for Vi . In
a second step, the drift and diffusion terms in position for both
�t < τf and �t > τf will be considered separately to show
that time-step sizes �t < τf are necessary.

Presently, we assume that the colored-noise velocity Vi(t)
itself is a Markov process and can be mimicked by an
Ornstein-Uhlenbeck process (cf. Refs. [23,45]) represented
by the following Langevin equation:

dVi(t)

dt
= − 1

τcorr
Vi(t) + Li(t), (53)

for i = x,y,z with white noise Li(t). The denotation as a
colored-noise velocity also has its origin in the fact that this
velocity component is correlated on the same time scale as the
configuration changes. This is in stark contrast to the velocity
in the Brownian case, which is correlated on τp and thus on
a much smaller time scale than the change of position. Due
to the Markov property, the value of Vi(t) depends on the
value from the previous time step but not from earlier time
steps. V is defined on τf and not on τp as it results from
the equation of motion (36) for non-Brownian particles on
τf . τcorr is the correlation time of the colored-noise velocity.
According to Ref. [7] the correlation time of the velocity in the
non-Brownian case is τf . Since in our colored-noise velocity
model (53) we have to account for these long correlation times,
τcorr is set to τf . The white noise Li(t) introduces a randomness
which results in the diffusive behavior in the position space
for times t > τf , t → ∞.

For an Ornstein-Uhlenbeck process the following results
apply in the limit t → ∞ [23,39,45]:

〈Li(t + t ′)Lj (t)〉 = Bij δ(t ′), (54)

〈Vi(t + t ′)Vj (t)〉 = Bij τf

2
exp

(−|t ′|
τf

)
, (55)

〈Vi(t)〉 = 0, (56)

where V fulfills these equations for t → ∞, which is the
equilibrium state. The large t guarantees that there is no
dependency on the initial value Vi(0), cf. Appendix A,
Eq. (A3). Further, for our case the large time t guarantees
that it is in the regime where shear-induced diffusion has
already started. We will show how to gain the Bij coefficients
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in Sec. III B. Later, the Bij coefficients will appear in our new
colored-noise Fokker-Planck equation. Equation (55) accounts
for the long correlation times which result in colored noise in
contrast to the white noise from the Brownian force FB , cf.
Eq. (1).

A. Drift and diffusion terms in position space

In the following, the drift and diffusion terms in position
space are analyzed with respect to the time-step size �t . We
will show that a time step �t < τf is necessary. Note that the
present derivation for the drift and diffusion terms will be done
for the x direction only as this is also the direction of shear
flow. The y and z directions work analogously. First, we regard
the drift term which consists of a term due to the shear flow
�x∞ and a term due to the hydrodynamic interactions �xh.
Here we show the full drift coefficient for this work (we use
the rules for these coefficients from, e.g., Refs. [39] and [23]).
From Eqs. (50) and (53) we have:

〈�x〉 = 〈�x∞〉 + 〈�xh〉, (57)

with 〈�x∞〉 =
〈 ∫ tn+1

tn

y(t)γ̇ dt

〉
, 〈�xh〉 =

∫ tn+1

tn

〈Vx(t)〉dt,

(58)

and 〈Vx(tn+1)〉 = 〈Vx(tn)〉 exp

(
−�t

τf

)
. (59)

Note that the order of the averaging and the integration can be
interchanged, cf. Ref. [42]. Now we regard the first and second
parts of Eq. (57) separately for �t > τf and �t < τf .

In the first part of Eq. (57), y is expanded in a Taylor series
around tn, cf. the derivation of the Fokker-Planck equation in
Refs. [23,42],

〈�x∞〉 =
〈 ∫ tn+1

tn

y(tn)γ̇ dt

〉
+

〈 ∫ tn+1

tn

(t − tn)
dy(tn)

dt
γ̇ dt

〉

+
〈 ∫ tn+1

tn

O((t − tn)2)dt

〉

= 〈y(tn)〉γ̇�t+
[
(t − tn)2

2

〈
dy(tn)

dt

〉
γ̇

]tn+1

tn

+O(�t3)

〈�x∞〉x,V

�t
= γ̇

(
y(tn) + �t

2

dy(tn)

dt

)
+ O(�t2). (60)

Note that in Eq. (60) we added the x,V index to account for
the conditional average from Eq. (41) with constant x,V at
time tn. As a result, the 〈〉 brackets for the constant values at
tn can be removed. In the following, the dimensionless form
is regarded. Since we are only interested in the question if
�t should be smaller or larger than τf , τa is set to τf and
thus only the components on τf are regarded (and not possible
components on τp) as follows:

a

τf

〈�x̃∞〉x,V

�t̃
= 1

τf

(
a ỹ(tn)+τf �t̃

2

a

τf

dỹ(tn)

dt̃
+ · · ·

)
(61)

with �t = τf �t̃ , dy

dt
= a

τf

dỹ

dt̃
[see Eq. (17)] and γ̇ = 1

τf
. Note,

that dy(tn)
dt

= Vy(tn), see Eq. (51). For �t → 0, i.e., �t < τf ,
terms of order O(�t̃) can be neglected since �t̃ → 0. For

�t > τf , the higher-order terms cannot be neglected since
�t̃ > 1.

This means that the update of the position cannot be realized
with only the position of the last time step. U∞, depending also
on the position, cannot be taken as constant over the time step.
For an alternative argumentation concerning the problem of
too-large time-step sizes in analogy to the Kramers equation,
see Appendix D. We come to the conclusion that, for time steps
�t > τf , a Fokker-Planck equation in the position is not valid
here as the drift term U∞ (corresponding to an inhomogeneous
force field) changes too fast for this time step, cf. (the Kramers
equation and the condition for constant forces over the time
step).

We also analyze the 〈�xh〉 part of Eq. (57), where for
�t < τf , �t → 0, cf. Eq. (59), we have the following:

〈Vx(tn+1)〉V = 〈Vx(tn)〉V + O(�t), (62)

〈�xh〉 =
∫ tn+1

tn

〈Vx(t)〉dt = 〈Vx(tn)〉�t + O(�t2), (63)

〈�xh〉x,V

�t
= Vx(tn) + O(�t), (64)

where terms of order O(�t) can be neglected. The O(�t)
terms in (62) come from the series representation of the
exponential function in (59).

For the purpose of completeness, we also analyze 〈�xh〉
for �t > τf . We see from Eq. (59) that 〈Vx(tn+1)〉V ≈ 0 for
�t → ∞. The time-step size is longer than the correlation
length of the colored-noise velocity and thus, using Eq. (59),

〈�xh〉 =
∫ tn+1

tn

〈Vx(t)〉dt (65)

=
∫ tn+1

tn

〈Vx(tn)〉 exp

[
− (t − tn)

τf

]
dt, (66)

〈�xh〉x,V = 〈Vx(tn)〉V τf = Vx(tn)τf , (67)

and thus

〈�xh〉x,V

�t
≈ 0. (68)

Due to the problems arising for large �t in the context
of U∞, in the present work, the time step �t is considered
to be much smaller than the time scale of configurational
changes, τf . For this case, the bulk velocity is considered to be
constant over the time step and the drift term for the position
in our alternative Fokker-Planck equation later is achieved by
combining Eqs. (60) and (64) into 〈�x〉x,V

�t
= γ̇ y(tn) + Vx(tn).

Hence, the correlation time τf of Vi is larger than the time step
employed in the present work.

This colored-noise property destroys the Markov prop-
erty of the position (for a mathematical reason, see, e.g.,
Ref. [23]). We conclude that also for the small time-step size
it is not possible to derive a consistent Fokker-Planck equation
in position space.

The same analysis can be conducted for the diffusion terms.
Again the rules for the diffusion terms for Ornstein-Uhlenbeck
processes and Fokker-Planck equations can be found, e.g.,
in Refs. [34,39], or [23]. The diffusion coefficients can be
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achieved by using the following equation (already mentioned
in Sec. II C):

〈�x�x〉 =
〈( ∫ tn+1

tn

y(t)γ̇ dt

)2〉

+ 2

〈 ∫ tn+1

tn

∫ tn+1

tn

U∞
x (t ′)Vx(t ′′)dt ′dt ′′

〉

+
〈 ∫ tn+1

tn

∫ tn+1

tn

Vx(t ′)Vx(t ′′)dt ′dt ′′
〉
. (69)

For �t → 0, i.e., �t < τf ,

〈�x�x〉x,V = 〈
U∞

x (tn)2
〉
x,V �t2 + 2

〈
U∞

x (tn)Vx(tn)
〉
x,V �t2

+ 〈
V 2

x (tn)
〉
V �t2 = 0, (70)

with 〈V 2
x (tn)〉V = V 2

x (tn); see also Appendix B. We see here
the quadratic component that arises for small times (compare
simulation results from Sierou and Brady [7], mentioned
above).

The calculation of the first and second parts of Eq. (69)
poses further difficulties. But, at least for the diffusivity of the
position in the y and z directions, where there are no such
terms as the first and second parts of Eq. (69), we see that the
time-step size should be larger than τf in order to reach the
linear regime. For �t → ∞, i.e., �t > τf , in Appendix B in
Eq. (B1) is shown that 〈�xh�xh〉x,V = V 2

x (tn)τ 2
f +

Bxxτ
2
f �t − 3

2Bxxτ
3
f , thus linear behavior in �t .

B. Colored-noise Fokker-Planck equation

Due to this conflict, the traditional Fokker-Planck equation
in position space has to be extended. On the time scale τa = τf

with �t < τf , the colored-noise velocity is a diffusive process.
This is analog to the Brownian case, where for τa = τp not the
position but the velocity is assumed to be diffusive. In the
present work, it is not the whole velocity but only Vi ,

for �t < τf and �t → 0: 〈�Vi�Vj 〉V = Bij�t, (71)

for �t > τf and �t → ∞:

〈�Vi�Vj 〉V = Bij τf

2
+ Vi(tn)Vj (tn) = const. (72)

For a proof see Appendix A and for an overview see Table II
in Sec. II B.

In order to avoid the violation of the Markov property
of the position variables, we use a colored-noise approach
for the Fokker-Planck equation. Van Kampen [23] gives a
general mathematical description for colored-noise problems
in 1D under the assumption of a composite Markov process
which means that the behavior of the one variable space can
be decomposed from the other variable space and thus is
added separately in the Fokker-Planck equation which yields
a modified form of Eq. (39). We extend this approach to the
3D shear-induced diffusion problem. This means that by using
Eq. (39) there are no diffusion coefficients in position space
[as for small time-step sizes, the mean-square displacements
are of order O(�t2), cf. Eq. (70)] and due to the composite
Markov process assumption, no coupled diffusion coefficients
of position and the colored-noise velocity. The diffusion

coefficients for Vi according to Eq. (41) are obtained from
(71) as 〈�Vi�Vj 〉V

�t
= Bij . Thus, we only need the coefficients

Bij .
Integrating Eq. (55) for t → ∞ yields for Bij the following:

Bij =
∫ ∞

0
lim
t→∞〈Vi(t + t ′)Vj (t)〉dt ′

2

τf

[∫ ∞

0
exp

(−t ′

τf

)
dt ′

]−1

(73)

=
∫ ∞

0
lim
t→∞〈Vi(t + t ′)Vj (t)〉dt ′

2

τ 2
f

. (74)

The determination of Bij requires knowledge of∫ ∞
0 limt→∞〈Vi(t + t ′)Vj (t)〉dt ′.

The Bij coefficients are not the same as the diffusion coeffi-
cients Dij . Byy is connected to Dyy using 〈Uy(t + t ′)Uy(t)〉 =
〈Vy(t + t ′)Vy(t)〉 with Eq. (51).

From the known rule Dyy=
∫ ∞

0 limt→∞〈Uy(t + t ′)Uy(t)〉dt ′
(cf. Refs. [7,46] or with a colored-noise force in Ref. [1]) we
find that

Dyy =
∫ ∞

0
lim
t→∞〈Vy(t + t ′)Vy(t)〉dt ′. (75)

For Dzz the procedure is fully analogous.
Equation (73) results in:

Bij = 2Dij

τ 2
f

, for i,j = y,z. (76)

A mathematically analog form to Eq. (76) can also be found
in Ref. [46]. In contrast to Dij , which scales as a2γ̇ = a2/τf ,
cf. e.g., Ref. [7], our coefficients Bij scale as a2/τ 3

f , as can
also be seen by regarding the dimensions in Eq. (71). Under
use of the exponentially decaying correlation for long times t ,
i.e., Eq. (55), we find for the x direction the following:∫ ∞

0
lim
t→∞〈Vx(t + t ′)Vx(t)〉dt ′

= Dxx −
〈 ∫ ∞

0
lim
t→∞ U∞

x (t ′)Vx(t)dt ′
〉

= 1

2

d

dt
〈xhxh〉, (77)

for proof, see Appendix C. The coupled U∞
x , Vx term

corresponds to the coupled term of Sierou and Brady [7] in
Eq. (48). Consequently, we obtain:

Bxx = 2

τ 2
f

1

2

d

dt
〈xhxh〉. (78)

For the xy component the procedure is analogous (compare
proof for the xx component in Appendix C) resulting in the
following:∫ ∞

0
lim
t→∞〈Vx(t + t ′)Vy(t)〉dt ′ = 1

2

d

dt
〈xhy〉, (79)

and, hence, we obtain

Bxy = 2

τ 2
f

1

2

d

dt
〈xhy〉. (80)

As shown above, the Bij coefficients can be derived via
the position diffusion coefficients, i.e., the mean-square
displacements. As already mentioned in the context of the
non-Brownian position diffusion tensors Dij in Sec. II C, also
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the Bij coefficients do not incorporate any position dependency
since these are only one-particle velocity diffusion tensors.
The mean-square displacements can be achieved either by
experiments, see, e.g., the work of Breedveld et al. [1], or
by numerical simulation, e.g., via the accelerated Stokesian
dynamics method [19] as done by Sierou and Brady [7]. Hence,
all terms necessary to determine 〈Vi(t + t ′)Vj (t)〉, and thus Bij ,
are available. The drift for the colored-noise velocity results
from Eq. (40) by calculating �Vi = Vi(tn+1) − Vi(tn) with
Eq. (59) for small time-step sizes �t .

Inserting the terms into Eq. (39) under the assumption of a
composite Markov process yields

∂P(x,y,z,Vx,Vy,Vz,t)

∂t

= − ∂

∂x
(U∞

x + Vx

)
P − ∂

∂y
(Vy)P − ∂

∂z
(Vz)P

+ 1

τf

∂

∂Vx

VxP + 1

τf

∂

∂Vy

VyP + 1

τf

∂

∂Vz

VzP

+ 1

2
Bxx

∂2P
∂Vx∂Vx

+ 1

2
Byy

∂2P
∂Vy∂Vy

+ 1

2
Bzz

∂2P
∂Vz∂Vz

+ 2
1

2
Bxy

∂2P
∂Vx∂Vy

. (81)

We observe the separated behavior in position terms and
colored-noise velocity terms due to the composite Markov
process. The third and fourth lines of Eq. (81) correspond to the
Fokker-Planck equation of the Ornstein-Uhlenbeck process of
V . Altogether, Eq. (81) is a Fokker-Planck equation describing
the shear-induced self-diffusion of non-Brownian particles
taking into account long correlation times. The analysis of the
different time-scale phenomena gives rise to the assumption

that a coupled variable of position and colored-noise velocity
is necessary in order to fulfill the Markov property.

IV. SOLUTION OF THIS FOKKER-PLANCK EQUATION:
THE PROBABILITY DISTRIBUTION P

Fokker-Planck equations of type of (39) can be solved
according to Ref. [23] by a Gaussian distribution of the form

P(s,t) = (2π )−
1
2 r (Det�)−

1
2 exp

[
−1

2
(sT − 〈sT 〉)

×�−1(s − 〈s〉)
]
, (82)

with �(t) =
∫ t

0
e(t−t ′)A De(t−t ′)AT

dt ′, (83)

〈s〉 = et As(0), (84)

and initial condition P(s,0) = ∏6
i=1 δ(si − si(0)). The super-

script T indicates the transposed terms.
In accordance to the algorithm of solution in Ref. [23], we

set our initial variables x(0), y(0), z(0), Vx(0), Vy(0), Vz(0) to
zero. Setting this into Eq. (84) shows that the variables 〈x〉,
〈y〉, 〈z〉, 〈Vx〉, 〈Vy〉, and 〈Vz〉 are zero in Eq. (82). For the
actual evaluation of the analytic solution and an asymptotic
expansion for large t , MAPLE16 (Maplesoft, Waterloo Maple
Inc.) was employed. With the assumption t → ∞ it is implied
that the diffusive regime has started. Therefore, in the present
work, terms of order O(exp(−t/τf )) are neglected, when
summed with terms of order O(t0), and, respectively, terms
of order O(tn) are neglected when summed with terms of
order O(tn+1), for n � 0. We have to keep in mind that the
displacement in the x direction grows as

√
t3 in contrast

to the displacements in y and z directions which grow as√
t , see Eqs. (42), (43), and (44). In the limit t → ∞ to

leading order the approximated probability distribution is
given by:

P(x,y,z,Vx,Vy,Vz,t) = (2π )−
6
2

((
BxxByy − B2

xy

)
γ̇ 2B2

yyB
2
zzt

5τ 9
f

96

)−1/2

exp

{
−1

2

[
(x − 1/2γ̇ yt)2

1
12Byyt3γ̇ 2τ 2

f

+ y2

Byytτ
2
f

+ z2

Bzztτ
2
f

+ 2Vx
2(

Bxx − B2
xy

/
Byy

)
τf

+ 2Vy
2(

Byy − B2
xy

/
Bxx

)
τf

+ 4VxVy

(Bxy − BxxByy

/
Byy)τf

+ 2Vz
2

Bzzτf

+ Vyγ̇ t(x − 1/2ytγ̇ )

1/12γ̇ 2t3Byyτf

− 2yVy

Byytτf

− 2zVz

Bzztτf

]}
. (85)

The prefactor of the Gaussian distribution can be decomposed into((
BxxByy − B2

xy

)
γ̇ 2B2

yyB
2
zzt

5τ 9
f

96

)−1/2

=
((

BxxByy − B2
xy

)
Bzzτ

3
f

8

)−1/2 (
γ̇ 2B2

yyt
4τ 4

f Bzztτ
2
f

12

)−1/2

. (86)

The highest order of the prefactor, i.e., Eq. (86) agrees with
the composite Markov process, as it can be separated. The
first part of the product on the right-hand side of (86) equals
the prefactor of a process corresponding to a Fokker-Planck
equation for an Ornstein-Uhlenbeck process in V . From

Eq. (55) with t ′ = 0, it follows that 〈Vi(t)Vj (t)〉 = Bij τf

2 ; hence,
the colored-noise velocity is in equilibrium for large times.
Further, we want to compare our resulting probability dis-
tribution P(x,y,z,Vx,Vy,Vz,t) with the solution of Breedveld
et al. [32], who use a Fokker-Planck equation solely in position
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space and gain a corresponding P(x,y,z,t). The second part
of our prefactor in Eq. (86) equals the highest order of the
prefactor of P(x,y,z,t) corresponding to their Fokker-Planck
equation in position space, see Ref. [32]. The τ 2

f terms in the
second part arise due to the connection between Bij and Dij ,
cf. Eq. (76).

The first three terms of the exponent of our
P(x,y,z,Vx,Vy,Vz,t) in (85) are position-related terms and
agree with the highest-order terms of the P(x,y,z,t) from
the position Fokker-Planck equation in Ref. [32], whereby
the term (x − 1/2γ̇ yt)2 implies the increasing affine motion
of the particle from zero (due to the starting position y = 0)
to the total velocity of yγ̇ t . The colored-noise terms in the
exponent of our P(x,y,z,Vx,Vy,Vz,t), i.e., third and fourth
lines of (85), correspond to the terms from a Fokker-Planck
equation for the Ornstein-Uhlenbeck process V . The terms in
the fourth line of Eq. (85) account for a coupling effect of the
displacement and the colored-noise velocity.

When the probability distribution P(x,y,z,Vx,Vy,Vz,t)
from Eq. (85) is inserted into our Fokker-Planck colored-noise
equation (81), it fulfills the Fokker-Planck equation to an
accuracy in order O((1/t)

7
2 ). The time is supposed to be large

in order to come into the shear-induced diffusion regime.

V. SUMMARY

The comparison of Brownian to non-Brownian diffusion
behavior reveals that the short-time diffusivity of Brownian
particles, captured by Fokker-Planck equations in position
space [23], is not existent in the non-Brownian case. As
shown, e.g., in Ref. [7], the non-Brownian particles only
show long-time diffusive behavior. Other works in that context
focus on modifying the diffusion tensor in the position space
Fokker-Planck equation, e.g., Refs. [7,32], in order to describe
non-Brownian particles. In contrast, our intention was to
investigate whether generally the Fokker-Planck equation
restricted to position space still is a suitable means to also
describe the non-Brownian suspensions. For that, we started
with an analysis of the Brownian particles’ equation of motion
in comparison to the non-Brownian case by using a new
compact formulation. By means of the Kramers equation
[23] we outlined a special situation which necessitates the
use of a Fokker-Planck equation in coupled position-velocity
space in the Brownian case. In that context, we showed
that the non-Brownian case creates a similar situation and
thus also requires an alternative Fokker-Planck equation. We
adapted the approach of Ref. [1] where they assume that the
hydrodynamic influence of the other particles results in a
force with long correlation time, i.e., a colored-noise force.
We reformulated the problem with a colored-noise velocity
and assumed that this colored-noise velocity can be modeled
by an Ornstein-Uhlenbeck process. Then we applied the strict
rules of the mathematical framework of Markov processes
and validity ranges of the Fokker-Planck equation described
in Ref. [23] to show that the Markov property of the position
in the present case is violated. Furthermore, we showed that
the Fokker-Planck equation in position can be used neither
for short time-step sizes nor for long time-step sizes. Our
approach suggests that in the present case a coupled variable

has to be introduced which then is a Markov variable again.
This leads to the conclusion that the Fokker-Planck equation
has to be built up in a coupled position and colored-noise
velocity space. The method used to obtain all coefficients
necessary to determine the new Fokker-Planck equation is
shown. Furthermore, the resulting probability distribution is
derived, which is an extension of the probability distributions
derived from position space Fokker-Planck equations for non-
Brownian particles [32] in combination with the probability
distributions according to Ornstein-Uhlenbeck processes.
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APPENDIX A

We will prove the relations (71) and (72), i.e.,

for �t < τf and �t → 0: 〈�Vi�Vj 〉V = Bij�t + O(�t2),

(A1)

for �t > τf and �t → ∞ :

〈�Vi�Vj 〉V = Bij τf

2
+ Vi(tn)Vj (tn), (A2)

whereby the 〈〉 brackets are supposed to be related to tn instead
of t = 0.

From �Vi = Vi(tn+1) − Vi(tn) we have:
〈�Vi�Vj 〉V = 〈Vi(tn+1)Vj (tn+1)〉V − 〈Vi(tn+1)Vj (tn)〉V −

〈Vi(tn)Vj (tn+1)〉V + 〈Vi(tn)Vj (tn)〉V .
The following rule from Ref. [39] for a general equation

for the velocity autocorrelation according to an Ornstein-
Uhlenbeck process is transferred to our colored-noise velocity
as follows:

〈Vi(t
′)Vj (t ′′)〉V = Vi(0)Vj (0) exp

[−(t ′ + t ′′)
τf

]

+Bij τf

2

{
exp

(−|t ′ − t ′′|
τf

)

− exp

(−(t ′ + t ′′)
τf

)}
. (A3)

Transferring Eq. (A3) to 〈Vi(t ′)Vj (t ′′)〉V yields:

〈Vi(t
′)Vj (t ′′)〉V = Vi(tn)Vj (tn) exp

[−(t ′ + t ′′ − 2tn)

τf

]

+Bij τf

2

{
exp

(−|t ′′ − t ′|
τf

)

− exp

[−(t ′ + t ′′ − 2tn)

τf

]}
. (A4)
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Therefore, we have the following:

〈�Vi�Vj 〉V = Vi(tn)Vj (tn) exp(−2�t/τf )

+ Bij τf

2
[exp(0) − exp(−2�t/τf )]

− 2

{
Vi(tn)Vj (tn) exp(−�t/τf )

+ Bij τf

2
[exp(−�t/τf ) − exp(−�t/τf )]

}
+Vi(tn)Vj (tn)

= Vi(tn)Vj (tn) exp(−2�t/τf )

+ Bij τf

2
[1 − exp(−2�t/τf )]

− 2Vi(tn)Vj (tn) exp(−�t/τf ) + Vi(tn)Vj (tn).

(A5)

For �t → ∞ the following applies:

〈�Vi�Vj 〉V = Bij τf

2
+ Vi(tn)Vj (tn). (A6)

Note that in the case where the 〈〉 brackets are related to t = 0
(instead of V in the index) with t > τf , t → ∞, it follows that
〈Vi(t)Vj (t)〉 = Bij τf /2.

For �t → 0 the following applies:

〈�Vi�Vj 〉V = Bij�t + O(�t2). (A7)

APPENDIX B

Here we will show the �t2 dependence of �x2 in Eq. (70).
Integrating Eq. (A4) yields:

∫ t

tn

∫ t

tn

〈Vi(t
′)Vj (t ′′)〉V dt ′dt ′′

= Vi(tn)Vj (tn)τ 2
f

{
1 − exp

[−(t − tn)

τf

]}2

+Bij τf

{
τf (t − tn) + τ 2

f exp

[−(t − tn)

τf

]
− τ 2

f

}

− 1

2
Bij τ

3
f

{
1 − exp

[−(t − tn)

τf

]}2

. (B1)

For t = tn+1, in the limit �t = (tn+1 − tn) → 0 we have the
following:

∫ t

tn

∫ t

tn
〈Vi(t ′)Vj (t ′′)〉V dt ′dt ′′ = Vi(tn)Vj (tn)�t2.

APPENDIX C

We need to define
∫ ∞

0 limt→∞〈Vx(t + t ′)Vx(t)〉dt ′ in order
to find Bxx .

We will show the relation (77), i.e.,∫ t

0 〈Vx(t + t ′)Vx(t)〉dt ′ = 1
2

d
dt

〈xhxh〉 in the limit t → ∞. The
case for Bxy is analog.

Dxx can be written as shown in Eq. (45): ∂t 〈xx〉 −
2〈x (γ̇ y)〉 = 2Dxx .

With x(t) = ∫ t

0 (Vx(t ′) + U∞
x (t ′))dt ′, x(0) = 0 we find:

〈xx〉 =
〈( ∫ t

0

[
Vx(t ′) + U∞

x (t ′)
]
dt ′

)2〉
, (C1)

∂t 〈xx〉 = 2

〈( ∫ t

0

[
Vx(t ′) + U∞

x (t ′)
]
dt ′

) [
Vx(t) + U∞

x (t)
]〉

,

(C2)

with 〈∫ t

0 Vx(t)Vx(t ′)dt ′〉 = 〈∫ t

0 Vx(t)Vx(t + t ′)dt ′〉 as t → ∞.
This can be shown by integrating Eq. (55) for both cases, t ′
and t + t ′.

Inserting this into the equation for Dxx yields:

Dxx = 1

2

∂

∂t
〈xx〉 − 〈x(γ̇ y)〉

=
〈 ∫ t

0
Vx(t)Vx(t + t ′)dt ′

〉
+

〈 ∫ t

0
U∞

x (t)Vx(t + t ′)dt ′
〉

+
〈 ∫ t

0
Vx(t)U∞

x (t ′)dt ′
〉
+

〈 ∫ t

0
U∞

x (t)U∞
x (t ′)dt ′

〉

−
〈 ∫ t

0
U∞

x (t)Vx(t + t ′)dt ′
〉
−
〈 ∫ t

0
U∞

x (t)U∞
x (t ′)dt ′

〉
,

(C3)

Dxx =
〈 ∫ t

0
Vx(t)Vx(t + t ′)dt ′

〉
+

〈 ∫ t

0
Vx(t)U∞

x (t ′)dt ′
〉
.

(C4)

Thus,

〈 ∫ t

0
Vx(t)Vx(t + t ′)dt ′

〉
= Dxx −

〈 ∫ t

0
Vx(t)U∞

x (t ′)dt ′
〉
(C5)

It can be shown that 〈∫ t

0 Vx(t)U∞
x (t ′)dt ′〉 =

〈Vx(t)
∫ t

0 U∞
x (t ′)dt ′〉. So it follows that 〈∫ t

0 Vx(t)U∞
x (t ′)dt ′〉 =

〈 dxh

dt

∫ t

0 γ̇ y(t ′)dt ′〉. With the diffusion coefficient in the x

direction from Ref. [7], see also Eq. (48) in Sec. II C, Eq. (C5)
yields the following:

〈 ∫ t

0
Vx(t)Vx(t + t ′)dt ′

〉
=

∫ t

0
〈Vx(t)Vx(t + t ′)〉dt ′

= 1

2

d

dt
〈xhxh〉. (C6)

APPENDIX D

The derivation of the drift coefficient can also be compared
to the explanation of the Kramers equation. In case that the
time step on which we regard the system is larger than τf , we
can also define a new time scale based on the length that a
particle would travel in the time �t . We call this new length
L which actually is of the same magnitude as the particle
radius a, but here we just want to show the matter of principle.
The corresponding time scale is called τk with τk � τf with
the �t now small on τk . Now we go back to Eq. (1) with
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FP = 0, FB = 0 and nondimensionalize on the new time scale τk ,

m
dU
dt

= −RFU(U − U∞) + RFE : E∞, (D1)

τp

L

τkτk

m̃
dŨ
dt̃

= −R̃FU

(
L
τk

Ũ − L
τf

Ũ∞
)

+ L
τf

R̃FE : Ẽ∞. (D2)

We see that the term including the shear flow dominates over all other terms; this is the same situation as described in the context
of the Kramers equation where the time scale has to be scaled down from τD to τp, which finally required a coupled variable of
position and velocity.
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