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Antiferromagnetic triangular Blume-Capel model with hard-core exclusions
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Using Monte Carlo simulation, we analyze phase transitions of two antiferromagnetic (AFM) triangular
Blume-Capel (BC) models with AFM interactions between third-nearest neighbors. One model has hard-core
exclusions between the nearest-neighbor (1NN) particles (3NN1 model) and the other has them between the
nearest-neighbor and next-nearest-neighbor particles (3NN12 model). Finite-size scaling analysis reveals that in
these models, the transition from the paramagnetic to long-range order (LRO) AFM phase is either of the first
order or goes through an intermediate phase which might be attributed to the Berezinskii-Kosterlitz-Thouless
(BKT) type. The properties of the low-temperature phase transition to the AFM phase of the 1NN, 3NN1, and
3NN12 models are found to be very similar for almost all values of a normalized single-ion anisotropy parameter,
0 < δ < 1.5. Higher temperature behavior of the 3NN12 and 3NN1 models is rather different from that of the
1NN model. Three phase transitions are observed for the 3NN12 model: from the paramagnetic phase to the
phase with domains of the LRO AFM phase at Tc, from this structure to the diluted frustrated BKT-type phase
at T2, and from the frustrated phase to the AFM LRO phase at T1. For the 3NN12 model, Tc > T2 > T1 at
0 < δ < 1.15 (range I), Tc ≈ T2 > T1 at 1.15 < δ < 1.3 (range II), and Tc = T2 = T1 at 1.3 < δ < 1.5 (range
III). For the 3NN1 model, Tc ≈ T2 > T1 at 0 < δ < 1.2 (range II) and Tc = T2 = T1 at 1.2 < δ < 1.5 (range III).
There is only one first-order phase transition in range III. The transition at Tc is of the first order in range II and
either of a weak first order or a second order in range I.
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I. INTRODUCTION

In recent years, the self-assembly of large triangular
molecules has attracted a great deal of attention (see, e.g.,
Refs. [1,2]). Trimesic acid (TMA) [3–8], BTB [9,10],
melamine [11–13], and some other molecules [14–16] create
patterns of different complexity on the solid-liquid interface
or in ultravacuum conditions on graphite and metal surfaces.
The assemblies of such molecules might be different, but the
so-called honeycomb phase is the dominating low-temperature
pattern.

The statistical models of phase transitions are used to char-
acterize the ordering of such molecules. The honeycomb phase
is represented by the low-temperature long-range order (LRO)
phase on a tripartite lattice with the sites of each sublattice
occupied by occupation variables +1, −1, and 0, respectively.
For example, the “tip-to-tip” ordering of triangular TMA
molecules might be described [17] by the antiferromagnetic
(AFM) nearest-neighbor (1NN) three-state Bell-Lavis model,
which was originally created [18,19] to describe the ordering of
lattice fluids. It is similar to better known triangular AFM lat-
tice models: the Blume-Capel (BC) model [20–23] with some
neglected interactions, the Blume-Emery-Griffiths model [24]
with anisotropic term [25,26], and the diluted triangular
AFM Ising (TAFI) model [27]. The “side-to-side” ordering of
melamine molecules [13] into the honeycomb phase represents
the ordering typical for a triangular AFM BC model.

Hard-core exclusions (infinite repulsive interactions) are
introduced to account for a finite size of large molecules.
To describe the assembly of TMA molecules into a series
of flower phases, a model [28] with rescaled initial lattice
was proposed. In this model, the molecular interactions,
which mimic the H bonds, act between the molecules being
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on third-nearest-neighbor (3NN) sites, and the exclusion is
introduced at 1NN distance.

At least two important questions arise when triangular AFM
and other lattice models are used to describe the molecular
ordering (see, e.g., [12,13,29–32]): to what extent might
the standard models be rescaled and what effect does the
exclusion bring in comparison with classical (i.e., usually
1NN) statistical models? Intuitively, it is clear that the rescaling
to the nNN models (with n > 1) changes the entropy of the
system, repressing the ordered phases and decreasing the phase
transition temperature, since there are more sites for molecular
diffusion. On the other hand, the exclusion decreases the
number of sites for diffusion, and promotion of the ordered
phases increases the transition temperature.

Here we try to answer these questions using a triangular
AFM BC model with exclusions. This model is closely related
to the TAFI model, which was extensively studied [27] due
to its frustrated phase and large entropy at T = 0. The TAFI
model with magnetic field (chemical potential) gives rise to
the ordered three-sublattice structure, denoted as

√
3 × √

3, in
which magnetizations (densities) of two sublattices are equal,
but different from that of the third [33]. When diluted by
nonfixed vacancies, which evolve together with the spins (the
so-called annealed vacancies), the TAFI model also allows
for the three-sublattice LRO structure. Simple substitution
of the occupation variables [34] transforms the diluted TAFI
model in a field into the Ising spin-1 or BC model [20].
The TAFI model can also be mapped into a six-state AFM
clock model [35]. As shown by Cardy [36], the six-state
clock model can exhibit either a first-order transition, two
Berezinskii-Kosterlitz-Thouless (BKT)-type transitions, or
successive Ising, three-state Potts, or Ashkin-Teller-like
transitions. With decrease of temperature, the six-state AFM
clock model on the triangular lattice gives rise to two very
close phase transitions, which are attributed to the Ising
(chiral) and BKT type, respectively [37,38].
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FIG. 1. (Color online) Particle (spin) arrangement in the LRO
AFM phase on triangular lattice for (a) 1NN, (b) 3NN1, and (c)
3NN12 models. Gray regions schematically mark the limits of
exclusion (infinite repulsion) for the central spin.

The earliest studies [21] of the triangular AFM BC model,
performed by renormalization group methods, demonstrated
that this model exhibits the AFM LRO phase, which has the
sites of its three sublattices occupied by variables 1, −1, and
0, respectively. This phase occurs when the ratio of a single-
ion anisotropy parameter, normalized to antiferromagnetic
coupling, δ = �/|J |, is between 0 and 3/2. If δ > 3/2, the
gas (disordered) phase prevails. At δ < 0, the frustrated phase,
typical for the TAFI model, exists. The phase transitions to the
LRO phase were shown [21] to be of the second order for all
δ > 0, except those first-order transitions which occur close to
the boundary of the LRO phase, δ → 3/2. It should be noted
that by treating the model spin variables as particle variables
and using the lattice-gas rather than the magnetic formalism,
the single-ion anisotropy parameter δ might be interpreted as a
chemical potential. In this case, the decrease of δ is associated
with an increase of particle concentration at the expense of
vacancies and transition from the three-state AFM BC model
to the two-state TAFI model (no vacancies) at δ = 0.

A recent Monte Carlo (MC) study [39] of phase transitions
for the AFM BC model revealed that the phase transition
from the paramagnetic to the AFM LRO phase is mediated
by the BKT-type phase in a whole interval of δ > 0, except for
δ � 1.47, where the first-order phase transition between the
paramagnetic and LRO AFM phases was found.

In this paper, we study the AFM BC model with exclusions.
The problem is solved by assuming the AFM interaction of
spins residing on the 3NN sites. Two models with hard-core
exclusions are considered: the 3NN model with exclusions at
the 1NN sites (3NN1) and the 3NN model with 1NN and 2NN
exclusions (3NN12) (see Fig. 1). It should be noted that the
3NN AFM BC model without exclusions is not studied here
because it yields an entirely different type of LRO AFM phase
as its ground state structure.

The obtained results for the 3NN1 and 3NN12 models are
compared with the results of the 1NN model. We study how the
exclusions affect the type of phase transition, the critical line of
the BKT points, and the phase diagram. The phase diagrams of
all three models are presented in the last section. In both 3NN
models with exclusions, we obtain the same phase transitions
to the BKT-type phase which were obtained in the 1NN model.
However, the similarity extends only to low temperature and
those values of a single-ion anisotropy parameter which are
not close to the gas phase limit. At higher temperature and

close to this limit, the properties are different. The exclusions
decrease the high-temperature point of the BKT-type phase
transition and might stimulate the occurrence of a transition
from the paramagnetic phase to the structure with domains of
the LRO AFM phase.

II. MODEL AND DETAILS OF SIMULATION

The model Hamiltonian has the form

H = −J
∑
i,j

sisj + �
∑

i

s2
i , (1)

where si = ±1,0 is the spin variable on the triangular lattice
site i, J is the antiferromagnetic (J < 0) interaction parameter
acting between the particles at 3NN sites, and � is a single-ion
anisotropy parameter. Here we regard the introduced variables
as describing the magnetic particles in the diluted lattice-gas
model rather than the spin projections. Therefore, in (1),
we write � with plus sign and treat this parameter as a
chemical potential, i.e., the total concentration of ±1 particles
increases (decreases) with decrease (increase) of �. In the
3NN12 model, the interactions between particles separated
by 1NN and 2NN distances are forbidden by taking infinite
repulsion of particles at these sites. In the 3NN1 model, the
interactions between particles in the 1NN sites are forbidden
in the same way. Further, the temperature and single-ion
anisotropy parameter are both normalized to |J |: kBT /|J | and
δ = �/|J |.

Since cluster algorithms for frustrated systems are known
to be ineffective [40], we performed the simulation of
phase transition properties using the local update (single-flip)
Metropolis algorithm and Glauber dynamics. In the beginning,
the sites of a triangular lattice were randomly populated by
particles in states +1, 1, and 0, and the initial energy Ei of
a randomly chosen molecule was calculated. Then the initial
state of that molecule was changed (with equal probability)
to one of two remaining states, and the final energy Ef

was calculated. The new state was accepted if the energy
decreased after the change of state, or accepted with the
probability ∼exp[−(Ef − Ei)/kBT ] if the energy increased.
The calculations were performed with fixed δ (chemical
potential), while the concentration of particles in the nonzero
state was allowed to vary.

For thermal averaging MC calculations and finite-size
scaling (FSS) of both 3NN models with exclusions, we
used the triangular lattices of sizes L × L, with L from 96
up to 288. For calculations of the 1NN model, which we
performed to compare the results, the lattice sizes L = 48,
72, 96, 120 were used [for the 1NN model, J in (1) is acting
between the particles on the 1NN sites]. We used periodic
boundary conditions and (0.2 − 1) × 106 MC steps (MCS)
for thermalization. We estimated the thermalization period
by observing the time evolution of the order parameter and
energy. The tests were performed at different temperatures.
Before gathering statistics for thermal averaging, we also
made additional checks at multiple temperatures near phase
transition points, in order to verify that the sample had entered
an equilibrium state. The thermalization time did not exceed
105 MCS for small lattices and 106 MCS for large lattices and
close to first-order phase transitions.
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Further, we collected averages of 107 MCS for the 3NN
models and 106–107 MCS for the 1NN model and smaller
lattices of the 3NN models. Our simulations were performed
starting from higher temperature (paramagnetic phase) and us-
ing random initial particle configuration. Then the temperature
was gradually decreased in small steps with simulations at the
new temperature starting from the final configuration of the
previous temperature.

To estimate statistical errors, we used the data from n ≈ 5
independent simulation runs, all starting from different initial
states. The observation xi of each run was used to obtain a
mean value x̄ at that particular temperature. The error bar of x̄

is given by σ = s/
√

n − 1 and s2 = 1
n

∑n
i=1(xi − x̄)2.

We also performed the analysis of the autocorrelation time
of energy at Tc at δ = 0.7 for both 3NN models. The integrated
autocorrelation time for the 3NN12 model ranged from τ ∼
103 MCS for L = 120 to τ ∼ 105 MCS for L = 399. For
the 3NN1 model, this time is around one to two orders of
magnitude higher.

The studied system was often characterized by abruptness
of thermodynamic parameters and first-order phase transitions.
Therefore, we performed energy histogram calculations using
single-histogram reweighting techniques [41]. For these cal-
culations, we used lattice sizes L = 120–270. In a few cases,
we employed very large lattice sizes, L = 360 and 399. We
omitted the first 106 MCS and used 2 × 107 MCS to gain
reliable statistics.

Our simulations of thermodynamic parameters (energy deriva-
tives) often proceeded as follows: the phase transition point
was located by thermal averaging and then recalculated at
the phase transition point using the reweighting scheme. The
results were considered reliable if the data obtained by both
methods matched.

For studies of phase transitions, we used the AFM order
parameter. It should be noted that the low-temperature AFM
phase of the 1NN model is stabilized when each sublattice
of the tripartite lattice is occupied by +1, −1, and 0
variables, respectively. The distance between so-occupied
sites is one lattice constant of a triangular lattice, a. The
particle concentration (coverage of sites occupied by the ±1
particles) is c = ∑

i s
2
i /L

2. The stoichiometric concentration
in the 1NN model is cs = 2/3. The low-temperature AFM
phase of both 3NN models has 12 sublattices, only two of
which are occupied by the +1 and −1 particles, respectively,
and all other sublattices are empty. Therefore, the distance
between +1 and −1 particles is 2a and cs = 1/6 in the AFM
phase of both 3NN models. As an order parameter, we use
the staggered magnetization, a slightly revised version of the
one suggested for the 1NN model [39]. It is the average
difference of maximally and minimally occupied sublattices.
For the 3NN model, we had to account for the occupancy of 12
sublattices, and therefore the staggered magnetization has the
form

ms = 〈Ms〉/L2 = 6

〈
max

( ∑
i1∈sub1

si1,
∑

i2∈sub2

si2, . . . ,
∑

i12∈sub12

si12

)
− min

( ∑
i1∈sub1

si,
∑

i2∈sub2

si2, . . . ,
∑

i12∈sub12

si12

)〉/
L2. (2)

Here, i1, . . . ,i12 denote sites belonging to each sublattice,
and the factor 6 is needed to compensate for the stoi-
chiometric concentration of the AFM phase in the 3NN
models. We also calculate the temperature dependences of
the specific heat, Cv = (〈H2〉 − 〈H〉2)/L2kBT 2, susceptibility
χ = (〈M2

s 〉 − 〈Ms〉2)/L2kBT , logarithmic derivatives of 〈Ms〉
and 〈M2

s 〉,

D1s = ∂ ln〈Ms〉
∂β

= 〈MsH〉
Ms

− 〈H〉,
(3)

D2s = ∂ ln
〈
M2

s

〉
∂β

=
〈
M2

s H
〉

M2
s

− 〈H〉,

and Binder order parameter and energy cumulants, Um
B =

1 − 〈M4
s 〉/3〈M2

s 〉2 and UE
B = 1 − 〈H4〉/3〈H2〉2, respectively.

The functions D1s and D2s were introduced in Ref. [42]. They
were shown [39] to be useful for a finite-size scaling of the 1NN
AFM BC model. At the second-order phase transition point
Tc, the maximum of specific heat and susceptibility scale as
Cv ∼ Lα/ν and χ ∼ Lγ/ν , respectively, while the minimum of
D1s and D2s scale as ∼L1/ν . Here, α, β, and ν are critical
exponents of specific heat, susceptibility, and correlation
length, respectively. At the first-order phase transition at Tc,
the extrema of all these functions scale as ∼Ld [43], where d

is the dimensionality of the system.

In a following section, we present the values of critical
exponent ratios α/ν and 1/ν at the phase transition point from
the paramagnetic phase, Tc. The ratio α/ν is obtained either
by the combined thermal averaging and reweighted histogram
calculation of the specific heat maximum at Tc or by scaling
these values close to Tc and using the formula Cv − C0 ∼
Lα/νf (tL1/ν) (here, t = |Tc − T |/Tc and the background is
assumed to be C0 = 0). The latter formula also gives the value
of 1/ν, which we alternatively obtain as the average of scaling
of parameters D1s and D2s .

In a case of a BKT-type phase transition, the correlation
length diverges as ξ = ξ0 exp{a[(TBKT − T )/TBKT]−1/2} and
the spin-correlation function decays as 〈sisj 〉 ∼ r

−η

ij , where η is
the critical exponent of the correlation function [44]. The order
parameter at the BKT-type phase transition point scales as
ms(L) ∼ L−η/2. The exponent η might also be obtained from
a part of susceptibility χ ′ = 〈M2

s 〉/L2kBT ∼ L2−η [45]. To
obtain accurate values of the BKT-type phase transitions of the
AFM BC 1NN model at T1 and T2, the FSS of parameters ms

and χ ′ was performed [39]. The following relations were used:

msL
b = f1

{
L−1 exp

[
a

(
T1 − T

T1

)−1/2
]}

, T < T1,

(4)

χ ′Lc = f2

{
L−1 exp

[
a

(
T − T2

T2

)−1/2
]}

, T > T2,
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where b = η/2 and c = 2 − η, and T1 and T2 are the
lower-temperature AFM LRO phase—frustrated (BKT-type)
phase and higher-temperature frustrated phase—paramagnetic
phase transition temperatures, respectively.

III. RESULTS OF SIMULATION

Here the phase transitions of both 3NN models are
demonstrated and classified at 0 < δ < 1.5. We found three
ranges of phase transitions for the 3NN12 model. In range
I (0 < δ < 1.15), there are three phase transitions: two of
them, at T1 and T2, confine the BKT-type phase, and the
third is a high-temperature phase transition at Tc. In range II
(1.15 < δ < 1.3), the BKT-type phase remains, but T2 ≈ Tc.
This range is found also for the 3NN1 model at 0 < δ

< 1.2.
In the remaining range III, there is just one first-order phase

transition at T1 = T2 = Tc. This range is found for both 3NN12
and 3NN1 models and it also exists in the 1NN model at
δ > 1.47. In between 0 and 1.47, the 1NN model demonstrates
just the two transitions bounding the BKT-type phase [39].

A. 3NN12 model at δ = 0.7 (range I)

The temperature dependence of staggered magnetization
[Fig. 2(a)] demonstrates that there are three phase transitions
at δ = 0.7. In addition to two transitions at T1 and T2 [which
correspond to two peaks of susceptibility in Fig. 2(b)], the high-
temperature phase transition at Tc is nicely visible as a twist
of ms(T ) dependence at very low values of ms < 0.05. In the
temperature dependence of susceptibility, the Tc point might
be seen as a small higher-temperature shoulder of the peak at
T2. However, the transition at Tc is manifested by the main

high-temperature peak of the Cv(T ) dependence [Figs. 2(b)
and 2(d))], where the transition at T2 is its hardly discernible
lower-temperature satellite [Fig. 2(c)]. The transition at T1 is
very weakly L dependent [Fig. 2(e)].

All three transitions are best manifested as minima [see
Fig. 3(a)] in temperature dependences of parameters D1s and
D2s (3), which combine the contribution of energy and order
parameter. In Figs. 3(b) and 3(c), where the Binder cumulants
of energy and magnetization are presented, the transition at T1

is seen as a smooth continuous step and the transition at Tc is
seen as a deep minimum. The transition at T2 is not seen in
UE

B , but is clearly seen in Um
B in between the transitions at T1

and Tc.
Visually, the ms(T ) dependence between the transition

points at T1 and T2 is similar to that obtained for the 1NN
model. An analysis of log-log plots of magnetization vs L

[Fig. 4(a)] corroborates the finding of the 1NN model that
the transitions at T1 and T2 belong to the BKT-type phase
transitions. This is seen from the temperature dependence of
the critical exponent of the correlation function, η [Fig. 4(b)],
which for the BKT-type transitions should correspond to the
doubled slope of lines in Fig. 4(a). In the temperature range
between 0.35 and 0.55, the parameter η clearly demonstrates
a plateau. The interval of η values in the plateau roughly
coincides with classical predictions for the critical line of
the BKT-type phase transitions [46]. We performed the FSS
analysis using formula (4) to obtain more accurate values of
transition temperatures T1 and T2 as well as η. The results
are shown in Figs. 5(a) and 5(b). The best fit was obtained
for the values kBT1/|J | = 0.35 ± 0.01, η(T1) = 0.12 ± 0.02
and kBT2/|J | = 0.55 ± 0.01, η(T2) = 0.29 ± 0.02. Here, as
in the 1NN model, the obtained value of T1 is a bit higher
than that at the peak of Cv and very similar to that at the peak
of χ , while T2 lies lower than that obtained at the peak of χ .

(a) (b) (c)

(e)

(d)

FIG. 2. (Color online) Temperature dependence of (a) staggered magnetization and (b) susceptibility of the 3NN12 model at δ = 0.7 for
different values of L. Inset in (a): Magnified behavior of ms(T ) at Tc. Errors in (a) do not exceed symbol size. Dashed lines in (a) and (b) are
guides to the eye. (c) Temperature dependence of specific heat of the 3NN12 model at δ = 0.7 and L = 180. Insets in (c): Cv(T ) dependence
around (d) Tc and (e) T1 for different values of L. The symbols and solid lines in (d) denote the results of thermal averaging and reweighting,
respectively.
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(a) (b) (c)

FIG. 3. (Color online) Temperature dependence of (a) parameter D1s and Binder cumulants (b) UE
B and (c) Um

B of the 3NN12 model at
δ = 0.7 and different values of L. Magnified dependences close to transitions at T1 and Tc are shown in the upper and lower insets, respectively.
Symbols correspond to thermal averaging results; dashed lines are guides to the eye. In lower inset of (b), the results of histogram reweighting
close to Tc are shown by solid lines.

Note that we expected some error in the determination of the
T2 point, since in the 3NN12 model, differently from the 1NN
model, the transition at T2 is not from the paramagnetic phase.
Still, as might be seen from Fig. 5(b), the scaling is quite
satisfactory.

The η interval of the BKT points is rather close to the one
obtained in similar models: the 1NN model (0.12–0.29) [39],
the planar rotator model with sixfold symmetry breaking

(a) (b)

FIG. 4. (Color online) (a) Log-log plot of ms vs L for 3NN12
model at δ = 0.7 in a temperature interval comprising the phase
transition points at T1, T2, and Tc. The BKT-type transition region
is shown by red lines. (b) Temperature dependence of parameter
η calculated for seven (black curve) and five largest (red curve)
lattice sizes. Inset: Temperature dependence of a linear fit accuracy
parameter R2 for both cases.

fields (1/9–1/4) [46], six-state AFM clock model [(0.13–
0.25) [38] and (0.1–0.275) [45]], and TAFI model with 2NN
ferromagnetic interactions (0.15–0.27) [47].

The calculation of the Binder magnetic fourth-order cu-
mulant Um

B also demonstrated that transitions at T1 and
T2 belong to a universality class of the BKT-type phase
transitions. The Um

B (L) vs Um
B (L′) plots revealed that basically

Um
B (L) → Um

B (L′) with increase of L′ < L, and, consequently,

(a)

][ ][

(b)

FIG. 5. (Color online) Finite-size scaling of (a) ms at T1 [t =
(T1 − T )/T1] and (b) χ ′ at T2 [t = (T − T2)/T2] for the 3NN12
model at δ = 0.7 obtained using first and second scaling relations
(4), respectively.
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FIG. 6. (Color online) Temperature dependence of concentration
for three models at L = 120: 1NN (blue triangles), 3NN12 (black
squares), and 3NN1 (red squares) at δ = 0.3, 0.7, and 1.15.

ν → ∞ in the formula, ∂Um
B (L′)/∂Um

B (L) = (L′/L)1/ν , as for
the BKT-type phase transition point.

The η(T ) dependence [Fig. 4(b)] is also sensitive to the
point at Tc demonstrating a sharp peak at the same value
of temperature where the extrema of D1s , D2s , and Cv are
obtained. This is not unexpected: the Tc is the phase transition
point. The high value of η at Tc makes it impossible to
assign this transition to a universality class of the BKT-type
transitions. If the phase transition would be of the second order,
the order parameter at Tc should scale as ∼L−β/ν . However,
the value of β/ν is much too large and inconsistent with the
second-order phase transition. This is the indication that the
first-order phase transition might take place at Tc.

We noticed that this transition occurs at approximately
the same concentration of particles as the stoichiometric
concentration of the low-temperature LRO AFM phase (see
Fig. 6). Visual inspection of instant particle configuration
reveals a marked increase (in comparison to the paramagnetic
phase) of hexagons with side length 2a and alternation of
+1 and −1 variables on the vertices and 0 in the center, i.e.,
hexagons typical to the low-T phase of the 3NN12 model.
These domains of low-temperature phase exist in a very
small interval of temperature between Tc and T2. Decrease
of temperature from Tc leads to an increase of concentration,
which results in a population of centers of mentioned hexagons
and the formation of a frustrated structure at T2, the structure
which further continues up to the phase transition point at T1.
This increase of concentration is rather abrupt in comparison to
a smooth and continuous increase of c characteristic to the 1NN
model (cf. the curves in Fig. 6). Thus, at Tc, we obtain a strongly
diluted phase with domains of the low-temperature AFM LRO
phase. It is known that dilution in frustrated systems leads to
phase transitions with nonclassical critical exponents, broad
two-maxima histograms with high saddle point, ambiguous

behavior of interface energy, and, in general, makes the FSS
analysis very complicated [48].

The energy histograms at Tc and δ = 0.7 are shown in
Fig. 7. They are two peaked and remain such up to the largest
lattice size studied here, L = 399. Using these histograms, we
calculated interface tension, 2σ = ln[Pmax(L)/Pmin(L)]/L,
and latent heat, �E = |E+ − E−|. Here, Pmax(L) and Pmin(L)
are the probability density of energy at the maximum and
saddle point, respectively; E+(L) and E−(L) are the energies
at the right and left peaks of energy distribution, respectively.
The 2σ even up to L = 399 (limit of our computer resources)
depends on L—thus, we are not sure if we have reached the
lattice sizes suitable for the finite-size scaling. The saddle
point slightly decreases with L, which would indicate in favor
of the first-order phase transition, though the behavior is rather
different from that of the typical first-order phase transition.
The interface tension and latent heat decrease with an increase
of L, as shown in Figs. 7(b) and 7(c). The �E, most likely,
tends to a finite value.

The results of the FSS analysis of specific heat close to Tc

are given in Fig. 8(a). We obtain the following values of critical
exponent ratios: α/ν = 1.04 ± 0.05 and 1/ν = 1.64 ± 0.05 at
δ = 0.7. The calculation of α/ν from the magnitude of Cv peak
at Tc yields the same result [see Fig. 8(c)]. The calculation
of 1/ν from the minima of D1s and D2s at Tc gives us a
much smaller critical exponent of the correlation length, 1/ν =
1.0 ± 0.05.

We also performed histograms and critical exponents
calculation at another point of region I, δ = 0.3. The saddle
point of these histograms is even higher than that at δ = 0.7,
and correspondingly the interface tension is a bit smaller. The
latent heat is similar to that of δ = 0.7. The scaling performed
at δ = 0.3 yields the following critical exponents: α/ν =
0.83 ± 0.05 and 1/ν = 1.5 ± 0.05. The critical exponent
obtained by scaling the parameters D1s and D2s at Tc is
1/ν = 1.0 ± 0.05, i.e., the same as for δ = 0.7.

Thus, in range I at Tc, we do not obtain standard values of
critical exponents. The behavior of thermodynamic parameters
at Tc is much smoother than that in ranges II and III, where
the first-order phase transition is found (Secs. III B and
III C). Therefore, we assume either a weak first-order phase
transition, as often encountered in models with site or bond
dilution [48], or a second-order phase transition with the latent
heat approaching zero at such values of L which exceed our
computer resources. We do not exclude the possibility that
the critical exponents might slightly change for a considerable
increase of L.

It should be noted though that at δ = 0.7, the obtained set
of critical exponents is rather close to the one obtained by Lan-
dau [47] for the tricritical region of the TAFI model with fer-
romagnetic 2NN interactions (α/ν = 1.02 and 1/ν = 1.59).

B. 3NN12 model at other values of δ (ranges II and III)

The transition in range III (1.3 < δ < 1.5 and Tc = T2 =
T1) is clearly of the first order. It is demonstrated by energy
histograms for δ = 1.3 and 1.45 presented in Fig. 9. The saddle
point in this region is much lower than in range I and it
decreases with an increase of L.
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(a)

(b)

(c)

FIG. 7. (Color online) (a) Energy histograms of the 3NN12 model at δ = 0.7, 1.15, and 1.25 (the latter is shifted along the energy axis by
0.05). The L dependence of (b) interface tension and (c) latent heat.

The same, just not as strong, tendency to the first-order
phase transitions is seen in range II (1.15 < δ < 1.3 and Tc ≈
T2 > T1). We have chosen the points δ = 1.15 and δ = 1.25
for a more thorough examination (see histograms in Fig. 7).
The interface tension and latent heat are much higher at these
points than in range I. With respect to transition order at Tc,
this range is intermediate between the ambivalent-order phase

transition in range I and the first-order phase transition in
range III.

Different properties of the phase transition at Tc in ranges
II and III, on one hand, and range I, on the other hand,
might be seen by analyzing the δ dependence of energy
histograms at fixed L [Fig. 9(a)], in particular—interface
tension [Fig. 9(b)] and latent heat [Fig. 9(c)]. It is seen that both

(a) (b) (c)

FIG. 8. (Color online) Finite-size scaling of specific heat of the 3NN12 model: (a) δ = 0.7 and (b) 1.15. The results are fitted using formula
Cv − C0 ∼ Lα/νf (tL1/ν), where t = |Tc − T |/Tc and the background is assumed to be C0 = 0. Large symbols correspond to the results of
thermal averaging; lines and small symbols correspond to results obtained close to Tc by the reweighted histogram method. (c) Log-log
dependences of Cv maximum vs L at different values of δ.
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FIG. 9. (Color online) (a) Energy histograms at various values
of δ at Tc for L = 180 lattice. Corresponding δ dependences of (b)
interface tension (zoomed-in version in inset) and (c) latent heat.

these parameters increase for higher values of δ. Here we can
notice the separation of the system into three mentioned ranges
of behavior: range I featuring two-peaked histograms with
high saddle point, range III demonstrating typical first-order
phase transition, and the intermediate range II. In Fig. 9(b), the
intersection of two lines corresponding to types of behavior in
ranges I and III is around 1.1–1.2 for L = 180. It should be
noted that the behavior at 0 < δ < 0.9 is not as homogeneous
as might be assumed from the main part of Fig. 9(b). The
detailed inset in Fig. 9(b) demonstrates that interface tension
slightly increases when the limit of the TAFI model, δ = 0, is
approached, and therefore has some minimum around δ ≈ 0.5.
This minimum also survives in calculations with other lattice
sizes.

A rather similar result is obtained analyzing the magnitude
of the minimum related to Tc of both Binder cumulants, Um

B (Tc)
and UE

B (Tc). They have two very different regions of behavior:
up to approximately δ = 0.9, the minimum of Um

B is around
0.3–0.1, but drastically decreases for higher values of δ. The
minimum of UE

B is rather close to the 2/3 limit up to δ = 0.7,
but again starts to rather abruptly decrease at higher values of δ.

The results of our thermal averaging MC simulation
in ranges II and III demonstrate that the thermodynamic
parameters close to Tc either show thin and high extrema (Cv

and D1s , D2s) or abruptness similar to jump (ms and average
energy); see, e.g., the behavior of normalized coverage at
δ = 1.15 in Fig. 6. These results confirm the results obtained
by histogram calculations that the phase transitions in these
two regions are of the first order.

In ranges II and III, we also performed FSS analysis and
determined the ratios of critical exponents. We obtained α/ν =
1.22, 1.68, and 1.95 (±0.05) and 1/ν = 1.67, 1.94, and 1.99
(±0.05) for δ = 1.15, 1.25, and 1.3, respectively. Some results
of this analysis are presented in Figs. 8(b) and 8(c). While
the values of α/ν and 1/ν at limiting points of the range II,
δ = 1.25 and 1.3, tend to the value 2 and are further stabilized
at d = 2 for δ > 1.3 (range III), the values at the other limiting
point, δ = 1.15, are closer to those of the range I (and the point
δ = 0.7, in particular).

Thus, if the transitions in range I turned out to be of the
second order, then range II would be the tricritical region. It
is interesting that the theoretical prediction for the tricritical
point of the three-state Potts model (α/ν = 10/7 = 1.43 and
1/ν = 12/7 = 1.71 [49]) is in between our values at δ = 1.15
and 1.25.

C. 3NN1 model (ranges II and III)

The exclusion of interactions on 1NN distances leaves
more sites for the diffusion of particles in the 3NN1 model
in comparison to the 1NN and 3NN12 models. Higher entropy
than in these models leads to a decrease of the phase transition
temperature from the paramagnetic phase Tc: it occurs in the
limits of the critical line of the BKT-type phase transition
points. Therefore, the Tc in region II (0 < δ � 1.2) becomes
hardly separable from the high-temperature end of this line,
T2. Thus, the question arises if the point at T2 ≈ Tc is the
higher-temperature end of the BKT-type phase transitions,
as in the 1NN model, or has the properties of the first-
order phase transition, as in the region II of the 3NN12
model.

The ms(T ) dependence at δ = 0.7 is given in Fig. 10(a).
There is no qualitative change in comparison to the 1NN and
3NN12 models at T1, where we observe the low-temperature
BKT-type phase transition. At T2 ≈ Tc, the ms(T ) curve
is weakly dependent on L, which would make it a likely
candidate for the BKT-type transition. On the other hand,
the dependence at this point is very abrupt, as in the case
of the first-order phase transition. The peak of susceptibility
[inset in Fig. 10(a)] at T2 ≈ Tc is much higher than that of
the 3NN12 model at T2 < Tc, but comparable with the one
obtained in the 3NN12 model when T2 ≈ Tc at 1.15 < δ <

1.3. The specific heat demonstrates a sharp L-dependent peak
at T2 ≈ Tc [Figs. 10(b) and 10(c)] which clearly increases
with increase of δ [Fig. 10(e)]. The peak of Cv at T1 is almost
L independent. It is also very small in comparison with the
main peak [Fig. 10(d)].

The log-log plots of ms vs T dependence [Fig. 11(a)]
and, consequently, η vs T dependence in Fig. 11(b) clearly
demonstrate the region of the BKT-type phase transitions and
T1 as its low-temperature end (η ∼ 0.12 at T1). However,
the high-temperature end of the BKT-type transitions line
shows a high peak at Tc ≈ T2 instead of rounding which
is characteristic to T2 encountered in the 1NN and 3NN12
models. Moreover, the FSS analysis of the phase transition
point close to T1 might be performed [see Fig. 12(a)] using
the first formula (4), and the best fit gives T1 = 0.34 ±
0.01 and η(T1) = 0.12 ± 0.02. However, the FSS analysis
using the second formula (4) close to Tc ≈ T2 is rather
unsuccessful.

The critical behavior at the T2 ≈ Tc peak of η(T ) depen-
dence is also inconsistent with any reasonable β/ν values
related to the second-order phase transition. All of these
facts indicate that for the 3NN1 model, the transition at T1

is the BKT-type phase transition, but the high-temperature
transition at Tc ≈ T2 is not. The latter conclusion is further
confirmed by the histograms calculation. The saddle point in
the two-peak energy histograms of Fig. 13(a) at δ = 0.7 rather
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(a) (b)(c)

(d)

(e)

FIG. 10. (Color online) Temperature dependence of (a) staggered magnetization, (inset a) susceptibility, and (c), (d) specific heat close to
transition points T2 ≈ Tc and T1 of the 3NN1 model at δ = 0.7 and different values of L. (b) The Cv(T ) dependence at δ = 0.7 and L = 120.
(e) The Cv(T ) dependence at L = 120 and different values of δ.

systematically decreases with increase of L, supporting the
idea of the first-order phase transition at this point.

One more argument in favor of the first-order phase
transition at Tc ≈ T2 of the 3NN1 model in region II comes
from analysis of the autocorrelation time of energy. As
mentioned, the integrated autocorrelation time for the 3NN1
model at δ = 0.7 and Tc ≈ T2 is around one to two orders
of magnitude higher than for the 3NN12 model at δ = 0.7
and Tc > T2, and is approximately τ ∼ 104–105 for L = 120
and close to the limit of our calculations, τ ∼ 106–107, for
L = 399. Such difference between the autocorrelation times
for both models indicates the much stronger first-order nature
of the 3NN1 model transition.

Nevertheless, the extrema of the Cv , D1s , and D2s pa-
rameters in region II at Tc ≈ T2 do not scale with L2 as
for the usual first-order phase transition. This is clearly seen
extending the lattice sizes up to L = 399. The Cv scales with
critical exponents α/ν = 0.97 ± 0.05 and 1/ν = 1.55 ± 0.05
[Fig. 12(b)]. The FSS of the D1s and D2s parameters gives
a very similar result for 1/ν. The same is true when 1/ν

is obtained from scaling of Tc(L) = Tc(∞) + aL−1/ν , when
Tc(∞) is the one used for scaling in Fig. 12(b).

Thus, our results in range II imply that the two transitions at
T2 and Tc are separate transitions at two very close temperature
points (as in some other frustrated systems [37,50]). This is
seen from the FSS results in Fig. 11 for the 3NN1 model

(a) (b)

FIG. 11. (Color online) (a) Log-log plot of ms vs L for the 3NN1 model at δ = 0.7 in a temperature interval comprising the phase transition
points at T1, T2, and Tc. The BKT-type transition region is shown by red lines. (b) Temperature dependence of parameter η obtained from
(a). Insets: (upper) η(T ) dependence close to Tc peak for the five (black curve) and three largest (red curve) lattice sizes, respectively; (lower)
temperature dependence of a linear fit accuracy parameter R2.
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(a) (b)

FIG. 12. (Color online) Finite-size scaling of the 3NN1 model
parameters at δ = 0.7: (a) ms at T1 [t = (T1 − T )/T1] and (b) Cv

at Tc ≈ T2 using scaling relation Cv ∼ Lα/νf (tL1/ν), where t =
|Tc − T |/Tc.

and very similar results for the 3NN12 model at δ = 1.15.
The parameter η in Fig. 11 is around 0.3 (higher limit
of the BKT-type phase) up to T2 and then jumps abruptly to
the maximum value with slight increase of temperature. The
maximum of η is obviously related to the phase transition at
Tc, which is shown to be of the first order by the histograms
calculation. On the other hand, the critical line of the BKT-type
points has to have its highest temperature point at T2 until the
BKT-type phase exists. Certainly, these two phase transition
points are extremely close and their proximity further increases
excluding small lattices from consideration [see inset in
Fig. 11(b)]. Thus, though we notice some tendency of these
points to merge with further increase of lattice size L, within
the accuracy of our calculations, they should be separate
transitions with Tc � T2.

The first-order type of transition at δ > 1.2 (region III) is
much more explicit than at δ = 0.7. The critical exponents
tend to the value 2, demonstrating typical first-order behavior.
The extrema of Cv , D1s , and D2s clearly scale as ∼L2 even
when smaller lattices are used for the analysis.

(a) (b)

(c)

FIG. 13. (Color online) (a) Energy histograms, (b) interface ten-
sion 2σ = 1

L
ln(Pmax/Pmin), and (c) latent heat of the 3NN1 model at

δ = 0.7.

IV. DISCUSSION

Both 3NN models with exclusions, as well as the 1NN
model, possess the BKT-type frustrated structure in between
the temperature points T1 and T2. The temperature range
between these two points decreases with an increase of a
single-ion anisotropy parameter δ, until the two BKT-type
transitions flow into one first-order phase transition from
the paramagnetic to the AFM LRO phase at δc. The δc =
1.47 [39], 1.3, and 1.2 for the 1NN, 3NN12, and 3NN1 models,
respectively. Phase diagrams of all three models are presented
in Figs. 14(a), 14(b), and 14(d). It is seen that in the range
0 < δ < δc, the low-temperature phase transition temperature
T1 does not depend on the model.

The value δc, characterizing the limit of the BKT-type phase
(T1 = T2), was obtained studying the extrema of temperature
dependences of functions Cv , χ , Um

B , D1s , and D2s for different
values of δ. The spread of T1 values (as well as T2 values)
among all these different functions was rather small. It is
known, however, that the values of T1 and T2 obtained from
these extrema slightly differ from those obtained using the FSS
analysis (4). The results of the FSS analysis for the 3NN12
model are presented in Fig. 14(b) by gray dots. Though the
mismatch of results given by these two methods decreases
with an increase of δ, the value of δc obtained using FSS (4) is
1.3 (to compare with δc ≈ 1.35 obtained from the extrema of
mentioned functions).

Let us compare the high-temperature phase transitions of
1NN and 3NN12 models in more detail. The 1NN model
demonstrates the paramagnetic-to-BKT-type phase transition
at T2. The 3NN12 model shows two transitions: from the para-
magnetic phase to the structure, which has the stoichiometry
and separate domains of the LRO AFM phase at Tc, and
the higher-temperature transition to the BKT-type phase at
T2. The frustrated phase in the 3NN12 model disorders at
lower temperature than in the 1NN model because the 3NN12
model has higher entropy, i.e., a larger number of free sites for
hopping and higher probability of inhomogeneous distribution
of particles into domains.

The occurrence of the phase transition at Tc is related to
the fact that exclusions create an inhomogeneous distribution
of particles in the disordered phase and, as a result, make
the energy and other thermodynamic functions more abrupt at
higher temperature. Thus, an income of particles is hindered
and their coverage c is artificially maintained too small for
that particular temperature (in comparison to the 1NN model).
A decrease of temperature enhances AFM correlations and
the “normal” coverage is recovered by a sudden increase
of c. This might be seen, e.g., in the c(T ) dependences in
Fig. 6, where the hump in the c(T ) dependence marks the
region of frustrated phase, or the temperature dependences
of internal energy, which cause sharp peaks of Cv at Tc.
The “semiordered” AFM phase has a chance to form in the
3NN12 model, since the favorable conditions (relatively low
temperature and stoichiometry of the AFM phase) allow for
the AFM domains phase to occur just before the hump. Higher
concentration and correspondingly broader hump (lower val-
ues of δ) shift the Tc value to higher temperature, while lower
concentration (δ > 1) makes the hump small and Tc → T2

(Fig. 6).
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(a) (b) (c)

(d)

FIG. 14. The phase diagrams of all three models: (a) 1NN (L = 48), (b) 3NN12 (L = 180), and (d) 3NN1 (L = 180). (c) The dependence
of transition temperature Tc ≈ T2 on a chosen model with full exclusion (see text). The crosses in (a) are the results of Ref. [39]. The gray dots
in (b) are the results of the FSS calculations using formula (4). Dashed lines are guides to the eye.

The entropy of the 3NN1 model is even higher than that of
the 1NN or 3NN12 models and therefore the temperature of the
phase transition from the paramagnetic phase is the lowest of
all three models. Moreover, this phase transition in the 3NN1
model occurs at such a value of temperature that lies within
temperature limits of the BKT-type phase in the 1NN model.
Therefore, contrary to the 1NN model, which has the line of
critical BKT-type points between T1 and T2, and the 3NN12
model, which (at least in a part of δ range) demonstrates three
phase transitions (T1, T2, and Tc), the 3NN1 model shows
a reduced temperature interval of the BKT-type phase. The
end point of this phase at T2 almost coincides with Tc for all
values of δ. An analogous situation is in the 3NN12 model
at a narrow range, 1.15 < δ < 1.3. As shown in Sec. III C,
we obtain two separate transitions at very close temperature
points (Tc � T2). Note, however, that here we did not study
the nature of the planar phase. Therefore, we did not introduce
the order parameter for the BKT-type phase transition. By
employing two order parameters, it might be possible to study
both of these transitions separately, in order to determine if
they merge or not [as for, e.g., the six-state clock [37,38] and
fully frustrated XY (FFXY) [50] models].

It should be noted that the 3NN12 model is a unique
model in which the distinction of higher-temperature phase
transitions at Tc and T2 is clearly seen. In addition to this model,
two other models with full exclusions up to the interaction
distance were also studied: the 5NN model with exclusions up
to 4NN (5NN1234) and the 6NN model with exclusions up
to 5NN (6NN12345). Within the accuracy of our calculations,
all models except 3NN12 demonstrate two transitions at one
temperature point at Tc ≈ T2. The transition temperature at this
point and the parameter δc in all models with full exclusions
for entropic reasons gradually decreases with increase of
interaction distance of the model [see Fig. 14(c)].

The obtained energy histograms at Tc of both 3NN12 and
3NN1 models were found to be two peaked in a whole range
of δ values. However, the height of the saddle point in these

histograms clearly depends on δ. The δ dependences of inter-
face tension, latent heat, and Binder cumulants demonstrate
that there are three ranges of behavior of phase transitions.
In range III, the transition at Tc = T2 = T1 is clearly of the
first order. This is evidenced by two-peaked histograms with
a saddle point which is either very deep or decreasing with an
increase of L. The magnitudes of critical exponents α/ν and
1/ν are close to 2. The histograms in intermediate range II (at
Tc ≈ T2 > T1) have a higher saddle point than those in region
III, but they also decrease with an increase of L. This allows
one to attribute the transition at Tc in this range to the first
order as well. However, in this range, the finite-size scaling
at the Tc point gives critical exponents different from (though
rather close to) 2.

We could not give a definite answer on the type of phase
transition at Tc in range I of the 3NN12 model. The obtained
energy histograms are two peaked, but the saddle point is
rather high. Extrapolation of the values of interface tension
and latent heat at lattice sizes used in this paper shows that
they approach finite limits at L → ∞. The thermodynamic
functions at the phase transition are rather smooth in this
range and the obtained critical exponents are nonstandard.
This would allow one to attribute the transition to “weak”
first-order phase transitions observed in some diluted and
frustrated systems [48]. Nevertheless, we cannot completely
rule out the possibility of a classical phase transition. An
analysis of scaling corrections to specific heat at Tc in range I
demonstrates that either very large lattice sizes are needed to
obtain the critical exponent of the first-order phase transition
or the critical exponents are nonstandard.

A similar phase diagram as of the 3NN12 model might
be observed in other frustrated systems. The phase transitions
from the paramagnetic to fully frustrated phase in the square
φ4 FFXY model [50] proceed either through (i) an Ising and
BKT phase transitions sequence with very close transition
temperatures (at small values of parameter D similar to our
δ), (ii) a tricritical region (intermediate values of D) featuring
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histograms with high saddle point, or (iii) first-order phase
transitions (high values of D).

Here we studied strongly diluted lattices with small
concentration of particles (spins). Such studies require huge
computer resources and therefore might leave some questions
not completely answered. However, the main tendencies are
quite clear: exclusions do not affect the low-temperature phase
transition; they make the high-temperature phase transition
more abrupt; rescaling of the lattice stimulates the entropic
effects and decreases the high-temperature phase transition
temperature; in a case of the 3NN12 model, the formation of

domains of low-temperature structure might reveal itself as a
phase transition at high temperature.
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[39] M. Žukovič and A. Bobák, Phys. Rev. E 87, 032121 (2013).
[40] P. D. Coddington and L. Han, Phys. Rev. B 50, 3058 (1994).
[41] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635

(1988); ,63, 1658 (1989).

052144-12

http://dx.doi.org/10.1038/nchem.517
http://dx.doi.org/10.1038/nchem.517
http://dx.doi.org/10.1038/nchem.517
http://dx.doi.org/10.1038/nchem.517
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141259
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141259
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141259
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141259
http://dx.doi.org/10.1021/jp014214u
http://dx.doi.org/10.1021/jp014214u
http://dx.doi.org/10.1021/jp014214u
http://dx.doi.org/10.1021/jp014214u
http://dx.doi.org/10.1021/la0507737
http://dx.doi.org/10.1021/la0507737
http://dx.doi.org/10.1021/la0507737
http://dx.doi.org/10.1021/la0507737
http://dx.doi.org/10.1021/jp072726o
http://dx.doi.org/10.1021/jp072726o
http://dx.doi.org/10.1021/jp072726o
http://dx.doi.org/10.1021/jp072726o
http://dx.doi.org/10.1002/1438-5171(200204)3:1<25::AID-SIMO25>3.0.CO;2-K
http://dx.doi.org/10.1002/1438-5171(200204)3:1<25::AID-SIMO25>3.0.CO;2-K
http://dx.doi.org/10.1002/1438-5171(200204)3:1<25::AID-SIMO25>3.0.CO;2-K
http://dx.doi.org/10.1002/1438-5171(200204)3:1<25::AID-SIMO25>3.0.CO;2-K
http://dx.doi.org/10.1021/la0467640
http://dx.doi.org/10.1021/la0467640
http://dx.doi.org/10.1021/la0467640
http://dx.doi.org/10.1021/la0467640
http://dx.doi.org/10.1021/jp0762774
http://dx.doi.org/10.1021/jp0762774
http://dx.doi.org/10.1021/jp0762774
http://dx.doi.org/10.1021/jp0762774
http://dx.doi.org/10.1021/ja801883t
http://dx.doi.org/10.1021/ja801883t
http://dx.doi.org/10.1021/ja801883t
http://dx.doi.org/10.1021/ja801883t
http://dx.doi.org/10.1021/ja908919r
http://dx.doi.org/10.1021/ja908919r
http://dx.doi.org/10.1021/ja908919r
http://dx.doi.org/10.1021/ja908919r
http://dx.doi.org/10.1038/nature01915
http://dx.doi.org/10.1038/nature01915
http://dx.doi.org/10.1038/nature01915
http://dx.doi.org/10.1038/nature01915
http://dx.doi.org/10.1103/PhysRevLett.100.156101
http://dx.doi.org/10.1103/PhysRevLett.100.156101
http://dx.doi.org/10.1103/PhysRevLett.100.156101
http://dx.doi.org/10.1103/PhysRevLett.100.156101
http://dx.doi.org/10.1103/PhysRevB.77.201408
http://dx.doi.org/10.1103/PhysRevB.77.201408
http://dx.doi.org/10.1103/PhysRevB.77.201408
http://dx.doi.org/10.1103/PhysRevB.77.201408
http://dx.doi.org/10.1021/jp711221u
http://dx.doi.org/10.1021/jp711221u
http://dx.doi.org/10.1021/jp711221u
http://dx.doi.org/10.1021/jp711221u
http://dx.doi.org/10.1021/ja4002025
http://dx.doi.org/10.1021/ja4002025
http://dx.doi.org/10.1021/ja4002025
http://dx.doi.org/10.1021/ja4002025
http://dx.doi.org/10.1126/science.1129309
http://dx.doi.org/10.1126/science.1129309
http://dx.doi.org/10.1126/science.1129309
http://dx.doi.org/10.1126/science.1129309
http://dx.doi.org/10.1021/jp206181p
http://dx.doi.org/10.1021/jp206181p
http://dx.doi.org/10.1021/jp206181p
http://dx.doi.org/10.1021/jp206181p
http://dx.doi.org/10.1088/0305-4470/3/5/015
http://dx.doi.org/10.1088/0305-4470/3/5/015
http://dx.doi.org/10.1088/0305-4470/3/5/015
http://dx.doi.org/10.1088/0305-4470/3/5/015
http://dx.doi.org/10.1063/1.3253297
http://dx.doi.org/10.1063/1.3253297
http://dx.doi.org/10.1063/1.3253297
http://dx.doi.org/10.1063/1.3253297
http://dx.doi.org/10.1103/PhysRev.141.517
http://dx.doi.org/10.1103/PhysRev.141.517
http://dx.doi.org/10.1103/PhysRev.141.517
http://dx.doi.org/10.1103/PhysRev.141.517
http://dx.doi.org/10.1016/0031-8914(66)90027-9
http://dx.doi.org/10.1016/0031-8914(66)90027-9
http://dx.doi.org/10.1016/0031-8914(66)90027-9
http://dx.doi.org/10.1016/0031-8914(66)90027-9
http://dx.doi.org/10.1103/PhysRevB.14.4946
http://dx.doi.org/10.1103/PhysRevB.14.4946
http://dx.doi.org/10.1103/PhysRevB.14.4946
http://dx.doi.org/10.1103/PhysRevB.14.4946
http://dx.doi.org/10.1103/PhysRevB.17.4411
http://dx.doi.org/10.1103/PhysRevB.17.4411
http://dx.doi.org/10.1103/PhysRevB.17.4411
http://dx.doi.org/10.1103/PhysRevB.17.4411
http://dx.doi.org/10.1088/0305-4470/11/5/026
http://dx.doi.org/10.1088/0305-4470/11/5/026
http://dx.doi.org/10.1088/0305-4470/11/5/026
http://dx.doi.org/10.1088/0305-4470/11/5/026
http://dx.doi.org/10.1103/PhysRevB.23.3448
http://dx.doi.org/10.1103/PhysRevB.23.3448
http://dx.doi.org/10.1103/PhysRevB.23.3448
http://dx.doi.org/10.1103/PhysRevB.23.3448
http://dx.doi.org/10.1103/PhysRevB.38.6741
http://dx.doi.org/10.1103/PhysRevB.38.6741
http://dx.doi.org/10.1103/PhysRevB.38.6741
http://dx.doi.org/10.1103/PhysRevB.38.6741
http://dx.doi.org/10.1103/PhysRevA.4.1071
http://dx.doi.org/10.1103/PhysRevA.4.1071
http://dx.doi.org/10.1103/PhysRevA.4.1071
http://dx.doi.org/10.1103/PhysRevA.4.1071
http://dx.doi.org/10.1103/PhysRevA.11.2090
http://dx.doi.org/10.1103/PhysRevA.11.2090
http://dx.doi.org/10.1103/PhysRevA.11.2090
http://dx.doi.org/10.1103/PhysRevA.11.2090
http://dx.doi.org/10.1088/0305-4470/12/2/012
http://dx.doi.org/10.1088/0305-4470/12/2/012
http://dx.doi.org/10.1088/0305-4470/12/2/012
http://dx.doi.org/10.1088/0305-4470/12/2/012
http://dx.doi.org/10.1103/PhysRevE.77.051204
http://dx.doi.org/10.1103/PhysRevE.77.051204
http://dx.doi.org/10.1103/PhysRevE.77.051204
http://dx.doi.org/10.1103/PhysRevE.77.051204
http://dx.doi.org/10.1016/0031-8914(50)90130-3
http://dx.doi.org/10.1016/0031-8914(50)90130-3
http://dx.doi.org/10.1016/0031-8914(50)90130-3
http://dx.doi.org/10.1016/0031-8914(50)90130-3
http://dx.doi.org/10.1103/PhysRev.79.357
http://dx.doi.org/10.1103/PhysRev.79.357
http://dx.doi.org/10.1103/PhysRev.79.357
http://dx.doi.org/10.1103/PhysRev.79.357
http://dx.doi.org/10.1088/0305-4470/13/3/007
http://dx.doi.org/10.1088/0305-4470/13/3/007
http://dx.doi.org/10.1088/0305-4470/13/3/007
http://dx.doi.org/10.1088/0305-4470/13/3/007
http://dx.doi.org/10.1103/PhysRevE.86.051118
http://dx.doi.org/10.1103/PhysRevE.86.051118
http://dx.doi.org/10.1103/PhysRevE.86.051118
http://dx.doi.org/10.1103/PhysRevE.86.051118
http://dx.doi.org/10.1063/1.1755670
http://dx.doi.org/10.1063/1.1755670
http://dx.doi.org/10.1063/1.1755670
http://dx.doi.org/10.1063/1.1755670
http://dx.doi.org/10.1021/jp9098649
http://dx.doi.org/10.1021/jp9098649
http://dx.doi.org/10.1021/jp9098649
http://dx.doi.org/10.1021/jp9098649
http://dx.doi.org/10.1080/01411594.2012.745532
http://dx.doi.org/10.1080/01411594.2012.745532
http://dx.doi.org/10.1080/01411594.2012.745532
http://dx.doi.org/10.1080/01411594.2012.745532
http://dx.doi.org/10.1063/1.4825079
http://dx.doi.org/10.1063/1.4825079
http://dx.doi.org/10.1063/1.4825079
http://dx.doi.org/10.1063/1.4825079
http://dx.doi.org/10.1103/PhysRevB.16.2205
http://dx.doi.org/10.1103/PhysRevB.16.2205
http://dx.doi.org/10.1103/PhysRevB.16.2205
http://dx.doi.org/10.1103/PhysRevB.16.2205
http://dx.doi.org/10.1103/PhysRevB.17.3650
http://dx.doi.org/10.1103/PhysRevB.17.3650
http://dx.doi.org/10.1103/PhysRevB.17.3650
http://dx.doi.org/10.1103/PhysRevB.17.3650
http://dx.doi.org/10.2183/pjab.86.643
http://dx.doi.org/10.2183/pjab.86.643
http://dx.doi.org/10.2183/pjab.86.643
http://dx.doi.org/10.2183/pjab.86.643
http://dx.doi.org/10.1143/JPSJ.60.1523
http://dx.doi.org/10.1143/JPSJ.60.1523
http://dx.doi.org/10.1143/JPSJ.60.1523
http://dx.doi.org/10.1143/JPSJ.60.1523
http://dx.doi.org/10.1088/0305-4470/13/4/037
http://dx.doi.org/10.1088/0305-4470/13/4/037
http://dx.doi.org/10.1088/0305-4470/13/4/037
http://dx.doi.org/10.1088/0305-4470/13/4/037
http://dx.doi.org/10.1103/PhysRevE.66.026111
http://dx.doi.org/10.1103/PhysRevE.66.026111
http://dx.doi.org/10.1103/PhysRevE.66.026111
http://dx.doi.org/10.1103/PhysRevE.66.026111
http://dx.doi.org/10.1088/0305-4470/37/14/003
http://dx.doi.org/10.1088/0305-4470/37/14/003
http://dx.doi.org/10.1088/0305-4470/37/14/003
http://dx.doi.org/10.1088/0305-4470/37/14/003
http://dx.doi.org/10.1103/PhysRevE.87.032121
http://dx.doi.org/10.1103/PhysRevE.87.032121
http://dx.doi.org/10.1103/PhysRevE.87.032121
http://dx.doi.org/10.1103/PhysRevE.87.032121
http://dx.doi.org/10.1103/PhysRevB.50.3058
http://dx.doi.org/10.1103/PhysRevB.50.3058
http://dx.doi.org/10.1103/PhysRevB.50.3058
http://dx.doi.org/10.1103/PhysRevB.50.3058
http://dx.doi.org/10.1103/PhysRevLett.61.2635
http://dx.doi.org/10.1103/PhysRevLett.61.2635
http://dx.doi.org/10.1103/PhysRevLett.61.2635
http://dx.doi.org/10.1103/PhysRevLett.61.2635
http://dx.doi.org/10.1103/PhysRevLett.63.1658.2
http://dx.doi.org/10.1103/PhysRevLett.63.1658.2
http://dx.doi.org/10.1103/PhysRevLett.63.1658.2


ANTIFERROMAGNETIC TRIANGULAR BLUME-CAPEL . . . PHYSICAL REVIEW E 89, 052144 (2014)

[42] A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081
(1991).

[43] M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 34,
1841 (1986).

[44] J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys.
6, 1181 (1973).

[45] M. S. S. Challa and D. P. Landau, Phys. Rev. B 33, 437
(1986).
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