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Finite-size effects on return interval distributions for weakest-link-scaling systems
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The Weibull distribution is a commonly used model for the strength of brittle materials and earthquake return
intervals. Deviations from Weibull scaling, however, have been observed in earthquake return intervals and the
fracture strength of quasibrittle materials. We investigate weakest-link scaling in finite-size systems and deviations
of empirical return interval distributions from the Weibull distribution function. Our analysis employs the ansatz
that the survival probability function of a system with complex interactions among its units can be expressed as
the product of the survival probability functions for an ensemble of representative volume elements (RVEs). We
show that if the system comprises a finite number of RVEs, it obeys the κ-Weibull distribution. The upper tail of
the κ-Weibull distribution declines as a power law in contrast with Weibull scaling. The hazard rate function of
the κ-Weibull distribution decreases linearly after a waiting time τc ∝ n1/m, where m is the Weibull modulus and
n is the system size in terms of representative volume elements. We conduct statistical analysis of experimental
data and simulations which show that the κ Weibull provides competitive fits to the return interval distributions
of seismic data and of avalanches in a fiber bundle model. In conclusion, using theoretical and statistical analysis
of real and simulated data, we demonstrate that the κ-Weibull distribution is a useful model for extreme-event
return intervals in finite-size systems.
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I. INTRODUCTION

Extreme events correspond to excursions of a random pro-
cess X(t), where t is the time index, to values above or below
a specified threshold zq . In natural processes, extreme events
include unusual weather patterns, ocean waves, droughts,
flash flooding, and earthquakes. Such phenomena have im-
portant social, economic, and ecological consequences. The
Fisher-Tippet-Gnedenko (FTG) theorem states that if {Xi}ni=1
are independent and identically distributed variables, then
a properly scaled affine transformation of the minimum
χn := min(X1, . . . ,Xn) follows asymptotically (for n → ∞)
one of the extreme value distributions, which include the
Gumbel (infinite support), reverse Weibull1 (positive support)
and Fréchet distributions (negative support).2 Whereas the
FTG theorem is a valuable starting point, many processes
of interest involve complex systems with correlated random
variables. The impact of correlations on the statistical behavior
of complex physical systems thus needs to be understood.
Early research on extreme events statistics focused on purely
statistical approaches [1,2]. Current efforts are based on
nonlinear stochastic models and aim to understand the patterns
exhibited by extreme events and to control them [3–8].
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1The term reverse Weibull refers to the distribution for maxima;

this is known as the Weibull distribution in physical sciences and
engineering.

2Counterpart distributions with reversed supports are obtained for
maxima.

To improve risk assessment methodologies, the statistics
of the return intervals, i.e., the time that elapses between
consecutive crossings of a given threshold by X(t), is an
important property. If the threshold crossing implies failure
(e.g., fracture), then the return intervals are intimately linked
to the strength distribution of the system [9]. Herein we focus
on the return intervals of earthquakes, i.e., earthquake return
intervals (ERI),3 and the return intervals of avalanches in fiber
bundle models under compressive loading. From a broader
perspective, our scaling analysis can be also applied to other
systems or properties governed by weakest-link scaling laws,
such as the strength of quasibrittle heterogeneous materials.

This document is structured as follows. In the remainder
of this section we review the literature on earthquake return
intervals. Section II presents the basic principles of weakest-
link scaling and its connection to the Weibull distribution.
In Sec. III we present an extension of weakest-link scaling
for finite-size systems and motivate the use of the κ-Weibull
distribution. Section IV links the κ-Weibull distribution to
earthquake return intervals using theoretical arguments. In
Sec. V we apply these ideas to seismic data. Section VI

3The terms interevent times, waiting times, and recurrence intervals
are also used. A subtle distinction can be made between recurrence
intervals, which refer to events that take place on the same fault, and
interocurrence intervals, which encompass all faults in a specified
region [29]. The statistical properties of recurrence intervals are
more difficult to estimate, because less information is available
for individual faults. The distinction is, nevertheless, conceptually
important, since recurrence intervals characterize the one-body,
i.e., the single-fault, problem, while interoccurrence intervals are
associated with the activity of the many-body system [10]. Herein
we use the term return intervals without further distinction.
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focuses on the return intervals between avalanches in a fiber
bundle model with global load sharing and demonstrates the
performance of the κ-Weibull distribution on this synthetic
data. Finally, Sec. VII summarizes our conclusions and briefly
discusses the significance of the results.

A. Earthquake return intervals

Earthquake patterns can be investigated over different
spatial supports which range from a single fault to a system of
faults [10]. Both isolated faults and fault systems represent
complex problems that combine nonlinear and stochastic
elements. Various probability functions have been proposed
to model the earthquake return interval distribution (for a
recent review see Ref. [11]). Several authors have proposed
that earthquakes are manifestations of a self-organized system
near a critical point [12–14] or of a system near a spinodal
critical point [15,16]. Both cases imply the emergence of power
laws. Bak et al. [12] introduced a global scaling law that relates
earthquake return intervals with the magnitude and the distance
between the earthquake locations. These authors analyzed
seismic catalog data over a period of 16 years from an extended
area in California that includes several faults (ca. 3.35 × 105

events). They observed power-law dependence over eight
orders of magnitude, indicating correlations over a wide range
of return intervals, distances, and magnitudes. Corral and
coworkers [13,17–19] introduced a local modification of the
scaling law so the return interval probability density function
(pdf) follows the universal expression fτ (τ ) � λf̃ (λ τ ), where
f̃ (τ ) is a scaling function and the typical return interval τ̄ is
specific to the region of interest.

Saichev and Sornette [14,20] generalized the scaling func-
tion by incorporating parameters with local dependence. Their
analysis was based on the mean-field approximation of the
return interval pdf in the epidemic-type aftershock sequence
(ETAS) model [21]. ETAS incorporates the main empirical
laws of seismicity, such as the Gutenberg-Richter dependence
of earthquake frequency on magnitude, the Omori-Utsu law
for the rate of the aftershocks, and a similarity assumption
that does not distinguish among foreshocks, main events, and
aftershocks (any event can be considered as a trigger for
subsequent events).

Several studies of earthquake catalogs and simulations
show that the Weibull distribution is a good match for the
empirical return interval distribution [22–31]. In addition
to statistical analysis, arguments supporting the Weibull
distribution are based on extreme value theory [32], numerical
simulations of slider-block models [29], and growth-decay
models governed by the geometric Langevin equation [4]. The
Weibull distribution is also used to model the fracture strength
of brittle and quasibrittle engineered materials [33–35] and
geologic media [36]. With respect to extreme value theory, if
we ignore correlations the FTG theorem favors the Weibull
because the return intervals are non-negative, whereas the
Fréchet distribution for minima has negative support and the
Gumbel distribution has unbounded support.

A physical connection between the distribution of shear
strength of the Earth’s crust and the ERI distribution was
proposed in Ref. [9]. According to a simplified stick-slip
model, if the shear strength follows the Weibull distribution,

under certain conditions the ERI also follows the Weibull
distribution with parameters which are determined from the
respective strength parameters and the exponent of the loading
function. The conditions include the following: (i) the stress
increase during the stick phase follows a power-law function
of time, (ii) the duration of the slip phase can be ignored, (iii)
the residual stress is uniform across different stick-slip cycles,
and (iv) the parameters of the Earth’s crust shear strength
distribution are uniform over the study area. In particular,
if the shear strength follows the Weibull distribution with
modulus ms and the stress increases with time as a power
law with exponent β between consecutive events, then the
ERIs also follow the Weibull distribution with modulus m =
msβ. On a similar track, a recent publication reports strong
connections between the statistics of laboratory mechanical
fracture experiments and earthquakes [37,38].

II. WEAKEST-LINK SCALING

The weakest-link scaling theory underlies the Weibull
distribution. Weakest-link scaling was founded by the works
of Gumbel [1] and Weibull [2] on the statistics of extreme
values; it is used to model the strength statistics of various
disordered materials [33,39–41]. Weakest-link scaling treats a
disordered system as a chain of critical clusters, also known as
links or representative volume elements (RVEs). The strength
of the system is determined by the strength of the weakest link,
hence the term weakest-link scaling [42]. The concept of links
is straightforward in simple systems, such as one-dimensional
chains. In higher dimensions the RVEs correspond to critical
subsystems, possibly with their own internal structure, failure
of which destabilizes the entire system [43]. We consider
systems that follow weakest-link scaling and comprise n links.
We use the symbol x to denote the values of a random variable
X which can represent mechanical strength or time intervals
between two events.

We denote by F
(i)
1 (x) = Prob(X � x) the cumulative dis-

tribution function (cdf) that X takes values that do not
exceed x. For example, if X denotes mechanical strength
(return intervals), then F

(i)
1 (x) is the probability that the i-th

link has failed when the loading has reached the value x

(when time τ = x has passed). Respectively, we denote by
Fn(x) the probability that the entire system fails at x. The
function Rn(x) := 1 − Fn(x) represents the system’s survival
probability. The principle of weakest-link scaling is equivalent
to the statement that the system’s survival probability is
equal to the product of the link survival probabilities; this
is expressed mathematically as

Rn(x) =
n∏

i=1

R
(i)
1 (x). (1)

If all the RVEs share the same functional form for R
(i)
1 (x), (1)

leads to

Rn(x) = [
R

(i)
1 (x)

]n
. (2)

Assuming that R
(i)
1 (x) is independent of n, Eq. (2) implies the

following scaling expression for n > n′:

Rn(x) = [Rn′ (x)]n/n′
. (3)
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If the Weibull ansatz R
(i)
1 (x) = e−φ(x) is satisfied [2],

then Rn(x) = e−n φ(x). Furthermore, if φ(x) = (x/x0)m, then
F (x) := F (i)(x) for i = 1, . . . ,n, and

F (x) = 1 − e−( x
xs

)m, (4)

where xs is the scale parameter and m > 0 is the Weibull
modulus or shape parameter. The size dependence of xs is
determined by xs = x0/n1/m.4

Let us define the double logarithm of the inverse of the
survival function �n(x) = ln ln R−1

n (x). In light of (3), the
following size-dependent scaling is obtained:

�n(x) = �n′(x) + ln(n/n′). (5)

Based on the weakest-link scaling relation (5) and the pioneer-
ing works [44,45], it can be shown using asymptotic analysis
that the system’s cdf tends asymptotically (as n → ∞) to the
Weibull cdf [45,46]. Curtin then showed that the large-scale cdf
parameters depend both on the system and the RVE size [39].

The Weibull pdf is given by f (x) = dF (x)/dx and leads
to the expression

f (x) = m

(
x

τs

)m−1

e−( x
xs

)m . (6)

For m < 1 the Weibull is also known as the stretched expo-
nential distribution [3] and finds applications in generalized
relaxation models [47,48], whereas for m = 2 it is equivalent to
the Rayleigh distribution. For m < 1 the pdf has an integrable
divergence at x = 0 and decays exponentially as x → ∞. For
m = 1 the exponential pdf is obtained, whereas for m > 1 the
pdf develops a single peak with diminishing width as m ↑.

Finally, for the Weibull distribution the function �n(x) is
linearly related to the logarithm of x, i.e., �n(x) = m ln(x/xs),
and (5) implies the size dependence x ′

s

xs
= ( n

n′ )1/m.

III. WEAKEST-LINK SCALING AND
FINITE-SIZE SYSTEMS

The Weibull model assumes the existence of independent
RVEs and n � 1. Nevertheless, there are systems for which
the asymptotic assumption n � 1 is not a priori justified.
For example, fault systems span a wide range of scales
(100–106 m). The size or even the existence of an RVE are
not established for fault systems. In quasibrittle materials, the
RVE is assumed to exist but its size is not negligible compared
to the system size, leading to deviations from the Weibull
scaling in the upper tail of the strength pdf [34,35,43,49].
Using a piecewise Weibull-Gaussian model for the RVE
strength pdf, Bazant et al. [34,35,43,49] proposed that the
system pdf exhibits a transition from Weibull scaling in the
lower (left) tail to Gaussian dependence in the upper tail
at a probability threshold that moves upward as the size
increases.

We consider a system that follows weakest-link scaling
and consists of RVEs with uniform properties. We associate
the parameter κ with the number of effective RVEs through
n = 1/κ . Hence, κ (and also n) are parameters to be estimated

4We assume a fixed RVE size with volume ∝ n.

from the data. Note that n does not need to be integer,
whereas for systems smaller than one RVE n < 1 (κ > 1) is
possible.

A. κ-Weibull distribution

The exponential tail of the Weibull pdf defined in (6)
follows from the fact that the survival probability R(x) =
exp(−[x/xs]m) is defined in terms of the exponential function
exp(−z). On the other hand, over the past few decades
particular attention has been devoted to pdfs that exhibit
power-law tails, namely Ax−α . Such dependence has been
observed in many branches of natural sciences, including
seismology, meteorology, and geophysics [50,51].

The simplest way to treat systems with these features is
to replace the exponential function in the definition of R(x)
by another proper function which generalizes the exponential
function and presents power-law tails. A one-parameter gen-
eralization of the exponential function has been proposed in
Refs. [52,53] and is given by

expκ (z) = (
√

1 + z2κ2 + zκ)1/κ , (7)

with 0 � κ < 1. The above generalization of the ordinary
exponential emerges naturally within the framework of
special relativity, where the parameter κ is proportional
to the reciprocal of light speed [54,55]. In that context,
expκ (z) is the relativistic generalization of the classical
exponential exp(z).

The inverse function of the κ exponential is the κ logarithm,
defined by

lnκ (z) = zκ − z−κ

2κ
. (8)

By direct inspection of the first few terms of the Taylor
expansion of expκ (z), reported in Ref. [56],

expκ (z) = 1 + z + z2

2
+ (1 − κ2)

z3

3!
+ (1 − 4κ2)

z4

4!
+ · · · ,

(9)

it follows that when z → 0 or κ → 0 the function expκ (z)
approaches the ordinary exponential, i.e.,

expκ (z) ∼
z→0

exp(z), (10a)

expκ (z) ∼
κ→0

exp(z). (10b)

The most important feature of expκ (z) regards its power-law
asymptotic behavior [53,56], i.e.,

expκ (z) ∼
z→±∞

|2κz|±1/κ . (11)

We remark that the function expκ (−z) for z → 0 coincides
with the ordinary exponential, i.e., expκ (−z) ∼ exp(−z),
whereas for z → +∞ it exhibits heavy tails, i.e., expκ (−z) ∼
(2κz)−1/κ . Therefore the function expκ (−z) is particularly
suitable to define the survival probability [57,58]. Following
the change of variables κ = 1/n and z = (x/xs)m we obtain

Rκ (x) = expκ (−[x/xs]
m). (12)
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FIG. 1. (Color online) κ-Weibull pdfs for xs = 10, different values of κ , and (a) m = 0.7 and (b) m = 3.

The resulting κ-Weibull distribution exhibits a power-law tail
inherited by the κ exponential,

Fκ (x) = 1 − expκ (−[x/xs]
m), (13)

fκ (x) = m

xs

(
x

xs

)m−1 expκ (−[x/xs]m)√
1 + κ2(x/xs)2m

. (14)

Plots of the κ-Weibull pdf for xs = 10, different κ , and
two values of m (m < 1 and m > 1) are shown in Fig. 1. The
plots also include the Weibull pdf (κ = 0) for comparison. For
both m higher κ lead to a heavier right tail. For m = 3 the
mode of the pdf moves to the left of xs as κ increases. To
the right of the mode, lower κ correspond, at first, to higher
pdf values. This is reversed at a crossover point beyond which
the higher-κ pdfs exhibit slower power-law decay for x → ∞,
i.e., fκ (x) ∝ x−α , where α = 1 + m/κ . The crossover point
occurs at ≈1.5xs for m = 3, whereas for m = 0.7 at ≈5 xs .
For m = 0.7 the mode is at zero independently of κ , since the
distribution is zero modal for m � 1.

It is important to note that the κ Weibull admits explicit
expressions for all the important univariate probability func-
tions. The κ-Weibull hazard rate function is defined by means
of hκ (x) = fκ (x)/Rκ (x) = −d ln Rκ (x)/dx, leading to

hκ (x) = m

xs

(x/xs)m−1√
1 + κ2(x/xs)2m

. (15)

The κ-Weibull quantile function for a given survival probabil-
ity r is defined by

Tκ (r) = 1

xs

(
lnκ

1

r

)1/m

. (16)

In addition, if we define �′
κ (x) = ln lnκ (1/Rκ (x)) it follows

that �′
κ (x) = m ln( x

xs
). Hence, �′

κ (x) is independent of κ and
regains the logarithmic scaling of the double logarithm of the
inverse survival function.

B. RVE survival function

We define the RVE cdf at level x ∈ [0,∞) through the
equation

F1(x) = 1 + 1

n

(
x

xs

)m

−
√

1 + 1

n2

(
x

xs

)2m

. (17)

F1(x) is a well-defined cdf, because F1(x = 0) = 0, whereas
for x > 0 F1(x) is an increasing function of x, and
limx→∞ F1(x) = 1. This particular form of F1(x) is motivated
by arguments similar to those used in the Weibull case. In
Sec. II, the Weibull survival function Rn(x) was derived
from (1) assuming that the link survival function is R

(i)
1 (x) =

e−φ(x), where φ(x) = (x/xs)m. Another approach that does
not require the exponential dependence of the RVE survival
function is based on the following approximation:

Rn(x) = [1 − F1(x)]n

⇒ ln Rn(x) = n ln[1 − F1(x)] ≈ −nF1(x).

The above assumes that F1(x)  1 for the link cdfs if n is large.
Then, assuming that F1(x) ∝ (x/xs)m, the Weibull form is
obtained. The dependence of F1(x) for large x which becomes
relevant for finite n, however, is not specified. In contrast, (17)
generalizes the algebraic dependence so F1(x) ∼ (x/xs)m for
x → 0, whereas F1(x) is also well defined for x → ∞.

From (17) it follows that the respective survival function is

R1(x) =
√

1 + 1

n2

(
x

xs

)2m

− 1

n

(
x

xs

)m

. (18)

Application of the weakest-link scaling relation (2) to (18)
leads to the following system survival function:

Rn(x) =
[√

1 + 1

n2

(
x

xs

)2m

− 1

n

(
x

xs

)m ]n

. (19)

The definition (17) implies that F1(x) and R1(x) depend on
the number of RVEs, which destroys the weakest-link scaling
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relation (3). Based on (18) and using z = (x/xs)m it follows
that

∂R1(z)

∂n
= z

n2

(
1 − z√

z2 + n2

)
> 0, ∀z > 0.

Hence, the survival probability of single RVEs at a given
threshold z increases with n.

We propose an ansatz which is consistent with the depen-
dence of R1(x) as given by (18). Assume that the system
comprises a number of units (e.g., faults) with interdependent
RVE survival probabilities, as expected in the presence of
correlations. Following a renormalization group (RG) pro-
cedure, the interacting units are replaced by noninteracting
“effective RVEs.” The RG procedure recovers the product
form (2) for the survival probability of independent RVEs,
while renormalizing the scale parameter x0 by the number of
effective RVEs. We can think of κ = 1/n as a measure of the
range of interactions versus the size of the system; κ = 0 yields
the classical Weibull pdf for infinite systems, whereas κ ↑
implies that the range of correlations increases thus reducing
the number of independent units; the case κ = 1 means that
the system cannot be reduced to smaller independent units.

IV. WEAKEST-LINK SCALING AND RETURN INTERVALS

Below we focus explicitly on earthquake return intervals;
thus, we replace x with τ . In earthquake analysis the spatial
support includes either a single fault or a system of several
faults. The notion of an RVE with respect to earthquakes is
neither theoretically developed nor experimentally validated.
Hence, herein we assume that the study domain involves
nindependent, identically distributed RVEs, where n is not
necessarily an integer.5

An earthquake catalog is a table of the marked point
process [59] C = {si ,ti ,Mi}i=1,...,N , where si is the loca-
tion, ti the time, and Mi the magnitude of the seismic
event. Given a threshold magnitude Mc, an ERI sequence
comprises the intervals {τj = tj+k − tj : (Mj,Mj+k > Mc) ∧
(Mj+1, . . . ,Mj+k−1 � Mc)}, where j = 1, . . . ,Nc − 1, Nc is
the number of events with magnitude exceeding Mc (Fig. 2),
and ∧ is the logical conjunction symbol. The random variable
T

(i)
Mc

(i = 1, . . . ,n) denotes the quiescent interval for the i-th
RVE during which no events of magnitude M > Mc occur. The
cdf F1(τ ; Mc) = Prob(T (i)

Mc
� τ ) represents the probability of

RVE “failure,” i.e., that an event with M > Mc occurs on the
RVE within time interval τ from the previous event. In the
following, we suppress the dependence on Mc for brevity.

A. Survival probability function

The survival probability R1(τ ) = 1 − F1(τ ) is the prob-
ability that no event with magnitude M > Mc occurs on
the RVE during the interval T

(i)
Mc

� τ . For τ → 0, it follows
from (18) that R1(τ ) ∼ 1 − τm/(n τm

s ). For τ � 1 and finite
n, it follows that R1(τ ) ∼ n τm

s /2τm, and thus Rn(τ ) shows the

5The number of RVEs n may also depend on the earthquake cutoff
magnitude.

FIG. 2. Schematic illustrating the definition of a return interval
τj as the time between two consecutive events with magnitudes Mj

and Mj+k that exceed the threshold Mc, i.e., the events occurring at
times tj and tj+k .

power-law dependence Rn(τ ) ∼ (n/2)n(τs/τ )mn, characteris-
tic of the Pareto distribution. In addition, limn→∞ Rn(τ ) =
exp[−(τ/τs)m], thus recovering the Weibull survival proba-
bility at the limit of an infinite system. The above equation
shows that the interval scale for large n saturates at τs , in
contrast with the classical τs ∝ n−1/m Weibull scaling. Based
on the Gutenberg-Richter law of seismicity, which predicts
exponential decay of earthquake events as Mc ↑, it follows
that τs ↑ as Mc ↑. In contrast, m is expected to vary more
slowly with Mc [9].

B. Median of return intervals

The median of the single RVE distribution is defined
by R1(τmed;1) = 0.5, and, based on (18), it is given by
τmed;1 = τs ( 3n

4 )1/m. The median of the κ-Weibull distribu-
tion [60] for a system of n = 1/κ RVEs is given by τmed;n =
(lnκ 2)1/m τs , whereas the median of the Weibull distribution is
limn→∞ τmed;n = (ln 2)1/mτs . Based on the above, the ratio of
the median return interval for a finite system over the median
return interval of an infinite system, both of which have the
same τs , is given by τmed;n/τmed;∞ = (lnκ 2/ ln 2)1/m. The ratio
is plotted in Fig. 3. For n fixed the ratio is reduced with
increasing m, whereas for m > 1 the median return interval
varies only slightly with m. Keeping m fixed, the median

246810
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1.2

1.4

1.6

1.8

2

nm

τ m
ed

;n
/τ

m
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;in
f

FIG. 3. (Color online) Median ratio τmed;n/τmed;∞ for the κ-
Weibull distribution versus the Weibull modulus m and the system
size n.
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return interval ratio declines with n toward 1. This means
that smaller systems have higher median return interval than
the infinite system—assuming that the characteristic interval
does not change with size. This result is related to the heavier
(i.e., power law) upper tail of the finite-size system.

C. Hazard rate function

A significant question for seismic risk assessment is
whether the probability of an earthquake of given magnitude
grows or declines as the waiting time increases [61,62]. An
answer to this question involves the hazard rate function of the
return intervals. The latter is the conditional probability that an
earthquake will occur at time τ ∗ within the infinitesimal time
window τ < τ ∗ � τ + dτ , given that there are no earthquakes
in the interval [0,τ ]. Hence [61],

hτ (τ ) = Prob[τ < τ ∗ � τ + dτ |τ ∗ > τ ]

dτ
= fτ (τ )

R(τ )
.

If earthquakes were random (memoryless) processes, dis-
tributed in time according to the Poisson law, the ERI would
follow the exponential distribution leading to a constant hτ (τ ).
If the ERI follows the Weibull distribution with cdf (4), the
hazard rate is given by

hτ (τ ) =
(

m

τs

) (
τ

τs

)m−1

. (20)

According to (20), the hazard rate for m > 1 increases as τ →
∞. This is believed to apply to characteristic earthquakes that
occur on faults located near plate boundaries. In contrast, the
Weibull distribution with m < 1 as well as the lognormal and
the power-law distributions exhibit the opposite trend [61].
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FIG. 4. (Color online) Log-log plot of hazard rates h(τ ) versus
τ for different models. (K) κ-Weibull hazard rate based on (15) for
n = 100 with m = 0.5 (magenta solid line and diamonds), m = 1
(black solid line), m = 2 (purple solid line with squares), and m = 5
(cyan line with circles). (W) Weibull hazard rate obtained from (20)
with m = 0.5 (magenta dashed line with diamonds), m = 2 (purple
dashed line with squares), and m = 5 (cyan dashed line with circles).
(Exponential) Exponential hazard rate obtained from (20) with m = 1
(black dash-dot line).

Since Bak proposed a connection between earthquakes and
self-organized criticality [12], universal or locally modified
power-law expressions and the gamma probability density
function—which is a power law with an exponential cutoff
for large times—have been proposed as models of the ERI
pdf [18,20,37,63]. The behavior of the gamma distribution
depends on the value of the power-law exponent in the same
way as the Weibull model. An analysis of two earthquake
catalogs based on the gamma distribution concludes that the
hazard rate decreases with time (corresponding to an exponent
between 0 and 1) [62].

The hazard rate of the κ Weibull is given by (15). For
finite n and for τ � τs n1/m, hτ (τ ) ∼ 1/τ . If we take the
limit n → ∞ before τ → ∞, the Weibull hazard rate (20)
is obtained. For a fixed RVE size, even if n � 1, the Weibull
scaling holds for τ < τs n1/m, whereas for τ � τs n1/m the τ−1

scaling dominates. This behavior of h(τ ) is demonstrated in
Fig. 4: For m < 1 the dependence is not severely affected by
size effects; for m = 1 there is a constant plateau followed by
an 1/τ decay, whereas for m > 1 the initial increase of h(τ )
turns into an 1/τ decay after a turning point which occurs for
τc ≈ τs n1/m.

V. ANALYSIS OF EARTHQUAKE RETURN
INTERVAL DATA

The estimation of the ERI distribution from the data is
complicated by the fact that the κ-Weibull distribution and
the Weibull distribution are close over the range 0 � τ � τw,
where τw is a parameter that depends on n and m. Differences
in the tail of ERI distributions are best visualized in terms of
�n(τ ), as shown in the Weibull plots of Figs. 5 and 6. On these
diagrams, the deviation of the κ-Weibull distribution from
the straight line diminishes with increasing n. The gamma
distribution is also included for comparison purposes.
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FIG. 5. (Color online) �n(τ ) versus ln(τ/τs) for the Weibull
distribution with m = 0.7 (green solid line), the κ Weibull with
m = 0.7 and n = 1 (blue dashed line), n = 10 (red dashed and dotted
line), n = 100 (black dotted line), and the gamma distribution with
α = 0.7 (magenta dashed line with small circles).
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FIG. 6. (Color online) �n(τ ) versus ln(τ/τs) for the Weibull
distribution with m = 3 (green solid line); the κ Weibull with m = 3
and n = 1 (blue dashed line), n = 10 (red dashed and dotted line),
and n = 100 (black dotted line); and the gamma distribution with
α = 3 (magenta dashed line with small circles).

The gamma probability model with pdf f (τ ) =
τα−1 exp(−τ/b)/bα�(α) is often used in studies of earthquake
return intervals, e.g., Refs. [13,62]. For m < 1 the Weibull plot
of the gamma probability distribution is a convex function,
whereas for m > 1 it becomes concave. In contrast, the
κ-Weibull distribution is concave for all m.

A. Microseismic sequence from Crete

We consider the return intervals for an earthquake sequence
from the island of Crete (Greece) which involves over
1821 microearthquake events with magnitudes up to 4.5
(ML) (Richter local magnitude scale) [9]. The sequence was
recorded between July 2003 and June 2004 [9]. The return
intervals between successive earthquake events range from 1
(s) to 19.5 (days). The spatial domain covered is approximately
between 24.5◦–27◦ (east longitude) and 34◦–35.5◦ (north
latitude). The magnitude of completeness for this data set is
around 2.2–2.3 (ML), which means that all events exceeding
this magnitude are registered by the measurement network.

We use the method of maximum likelihood to estimate
the parameters of test probability distributions for the return
intervals. The optimal κ-Weibull distribution for events above
Mc = 2.3 (ML) is compared with the optimal Weibull distribu-
tion in Fig. 7.6 Note that the empirical distribution of the return
intervals has m < 1 and a concave tail, in contrast with the

6We use the MATLAB fmincon constrained minimization function
with a trust region reflective algorithm and explicit gradient in-
formation to minimize the negative log-likelihood. The method is
applied iteratively (i.e., fmincon is called with the last estimate as
initial guess) for 50 times. The optimization parameters used are
as follows: maximum number of objective function evaluation =
2 × 104, maximum number of iterations = 2 × 104, and objective
function error tolerance = 1 × 10−5. Tests with the data sequences
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FIG. 7. (Color online) �(τ ) versus ln(τ ) for earthquake return
intervals of the Cretan earthquake sequence (CES). The return
intervals refer to 628 events with magnitudes exceeding 2.3 (ML).
The magnitude of completeness is ≈2.2 (ML). The maximum
likelihood estimates of the κ-Weibull parameters are τ̂0 ≈ 3.19 × 104

(s), m̂ ≈ 0.78, κ̂ ≈ 0.33. The estimate of �(τ ) using the empirical
(data-based) cdf is shown with the solid blue line. The optimal
κ-Weibull fit is shown with the red dashed line, whereas the optimal
Weibull fit is shown with the green dashed and dotted line. The left
vertical axis measures �(τ ), whereas the right vertical axis marks the
corresponding cdf values.

gamma density model (cf. Fig. 5). The κ-Weibull distribution
approximates better the upper tail of the return intervals than
the Weibull distribution. Both the Weibull distribution and the
κ-Weibull distribution have a lighter lower tail than the data.
These trends persist as Mc ↑, but the differences between the
distributions progressively decrease. Figure 8 compares the
quantiles of the data distribution with those of the optimal
κ-Weibull model.

We investigate different hypotheses for the ERI distribution
using the Kolmogorov-Smirnov test following the method-
ology described in Ref. [64]. The Kolmogorov-Smirnov
distance between the empirical (data) distribution, Femp(τ ),
and the estimated (model) distribution, F̂ (τ ), is given by
D = supτ∈R |Femp(τ ) − F̂ (τ )|, where supA f (τ ) denotes the
supremum of f (τ ) for τ ∈ A. The parameters of F̂ (τ ) are
also estimated using the method of maximum likelihood as
described above. The null hypothesis is that F̂ (τ ) represents
the probability distribution of the data. We apply the test
to the Poisson, normal (Gaussian), lognormal, Weibull, κ-
Weibull, gamma, and generalized gamma distributions. The
generalized gamma distribution [65], with pdf given by
f (x) = (d/xs)m xd−1 e−(x/xs )m

/
�(d/m), incorporates both the

gamma distribution (for m = 1) and the Weibull distribution
(for m = d).

showed that this number of iterations is sufficient for the parameter
estimates to converge. The accuracy and precision of the estimates
were also tested using synthetic sequences of κ-Weibull random
numbers generated by means of the inversion method.
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FIG. 8. (Color online) Sample quantiles versus the correspond-
ing quantiles of the optimal κ-Weibull distribution for the Cretan
earthquake sequence return intervals (CES ERI)—�(τ ) of the data
shown in Fig. 7. The κ-Weibull quantiles are obtained from (16) using
the maximum likelihood estimates of the κ-Weibull parameters (see
the caption of Fig. 7).

The Kolmogorov-Smirnov test for a probability model with
estimated parameters should be applied using a Monte Carlo
simulation to generate synthetic data from the estimated proba-
bility model. We generate random numbers from the Poisson,
normal, lognormal, Weibull, and gamma distributions with
the respective MATLAB random number generators. For the
κ-Weibull (κ > 0) and for the generalized gamma distribution
we implemented the inverse transform sampling method (see
Appendix). For each realization of return intervals, we estimate
the parameters of the optimal distribution model, F̂ (j )(τ ),j =
1, . . . ,Nsim. The Kolmogorov-Smirnov distance between the
empirical distribution of the specific realization, F

(j )
emp(τ ), and

the estimated model distributions for the j th realization are
given by D(j ) = supτ∈R |F (j )

emp(τ ) − F̂ (j )(τ )|, j = 1, . . . ,Nsim.
The p value of the Kolmogorov-Smirnov distance is defined
as p = 1

Nsim

∑Nsim
i=j 1D(j )>D(D(j )), where 1A(τ ) = 1, if τ ∈ A,

and 1A(τ ) = 0, if τ /∈ A, is the indicator function of the set
A. The p value is the probability the Kolmogorov-Smirnov
distance will exceed D purely by chance if the null hypothesis

is true. If p > pcrit, the null hypothesis is accepted, otherwise
it is rejected.

If we focus on the return intervals between earthquakes
with magnitudes exceeding 2.3, the Kolmogorov-Smirnov test
(based on 1000 simulations) rejects the normal, gamma, and
lognormal and Poisson distributions at the 5% significance
level. In contrast, the Weibull and κ-Weibull distributions are
accepted with p ≈ 0.09 and p ≈ 0.75, respectively, whereas
the generalized gamma at p ≈ 0.10. For 3.5 � Mc � 2.3 (ML)
the calculated p values are shown in Table I. The following
remarks summarize the tabulated results: (i) The κ-Weibull and
the Weibull distributions are accepted for all Mc except for 2.7
and 3.5. (ii) The gamma distribution is accepted for Mc � 2.5,
whereas the generalized gamma is accepted for all Mc except
for Mc = 2.7. (iii) The lognormal is marginally accepted
for Mc = 3.5. (iv) The Poisson distribution is accepted for
Mc = 3.7,3.9. (v) The normal and Poisson models are rejected
for all Mc � 3.7. (vi) For Mc � 3.3 the Weibull, the gamma,
generalized gamma, and the κ-Weibull models have the highest
p values but their relative ranking changes with Mc. Note that
for Mc > 3.3 the sample size is quite small (45 � Nc � 18),
thus prohibiting the observation of long tails.

Since for most Mc more than one model hypotheses pass
the Kolmogorov-Smirnov test, it is desirable to somehow
compare the different probability models. For this purpose
we use the Akaike information criterion (AIC) [66]. The AIC
is defined by AIC = 2 NLL + 2k, where NLL is the negative
log-likelihood of the data for the given model, and k is the
number of model parameters (k = 1 for the Poisson, k = 2 for
the normal, lognormal, Weibull, and gamma, whereas k = 3
for the κ Weibull and the generalized gamma). The term 2k

in AIC penalizes models with more parameters. In general, a
model with lower AIC is preferable to one with higher AIC.
We present AIC results for the Crete earthquake sequence
in Table II. The tabulated values correspond to AIC/Nc.
The following conclusions can be reached from this table:
(i) The gamma, generalized gamma, and κ-Weibull distribu-
tions have similar AIC values which are lower than the normal,
lognormal, and Poisson models. (ii) The AIC values of the
four top ranking distributions are quite close to each other.
(iii) The κ Weibull has the lowest AIC for the larger samples
(i.e., those with Mc = 2.3,2.5). The observation (i) also
explains the somewhat unexpected outcome of Table I, namely
that the p values of the generalized gamma and the κ Weibull
are not—for all magnitude cutoffs—equal or higher than the

TABLE I. p values of the Kolmogorov-Smirnov test for the fit between different probability models and the Crete earthquake sequence.
Results are based on 1000 simulations. The sample size (number of return intervals) is shown within parentheses next to the cutoff magnitudes.

Gamma Weibull κ Weibull Gen. Gamma Normal Lognormal Poisson

ML,c = 2.3 (628) 0.00 0.09 0.75 0.10 0.00 0.00 0.00
ML,c = 2.5 (414) 0.07 0.40 0.14 0.35 0.00 0.00 0.00
ML,c = 2.7 (273) 0.38 0.01 0.00 0.04 0.00 0.00 0.00
ML,c = 2.9 (176) 0.14 0.23 0.20 0.25 0.00 0.00 0.00
ML,c = 3.1 (103) 0.28 0.27 0.20 0.40 0.00 0.00 0.00
ML,c = 3.3 (69) 0.28 0.11 0.10 0.19 0.00 0.01 0.00
ML,c = 3.5 (45) 0.15 0.03 0.03 0.08 0.00 0.05 0.00
ML,c = 3.7 (28) 0.16 0.10 0.08 0.07 0.00 0.00 0.14
ML,c = 3.9 (18) 0.20 0.19 0.17 0.09 0.27 0.02 0.25
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TABLE II. Akaike information criterion (AIC) values per sample point for different probability models. The model parameters used
maximize the likelihood of the Crete earthquake sequence given the respective model. The sample size (number of return intervals) is shown
within parentheses next to the cutoff magnitudes.

Gamma Weibull κ-Weibull Gen. Gamma Normal Lognormal Poisson

ML,c = 2.3 (628) 23.23 23.16 23.12 23.15 25.95 23.21 23.46
ML,c = 2.5 (414) 24.05 24.02 24.00 24.02 26.40 24.12 24.29
ML,c = 2.7 (273) 24.91 24.90 24.90 24.90 26.89 25.07 25.12
ML,c = 2.9 (176) 25.79 25.78 25.79 25.79 27.59 25.91 26.00
ML,c = 3.1 (103) 26.81 26.80 26.82 26.82 28.56 26.92 27.08
ML,c = 3.3 (69) 27.58 27.59 27.62 27.62 29.23 27.76 27.86
ML,c = 3.5 (45) 28.17 28.20 28.24 28.23 30.22 28.38 28.57
ML,c = 3.7 (28) 29.30 29.36 29.43 29.41 30.67 29.79 29.46
ML,c = 3.9 (18) 30.37 30.43 30.54 30.50 31.08 30.92 30.38

p values of the respective subordinated distributions, i.e., the
gamma and the Weibull, respectively: The estimates of the
probability model parameters are based on the minimization
of the negative log-likelihood, which provides a different
measure of the fit between the data and the model distribution
than the Kolmogorov-Smirnov distance. We checked that
the incongruence remains even if the likelihood optimization
algorithm for the generalized gamma and the κ Weibull is
initialized by the respective optimal parameters of the gamma
and Weibull distributions for the same data set.

B. Southern California data

We also analyze an earthquake sequence which contains
2446 events in Southern California (114◦–122◦ W longitude
and 32◦–37◦ N latitude) down to depths of �20 (km) with
magnitudes from 1 (except for 3 events at 0.5) to 6.5 (ML);
2444 of these events have magnitudes less than 5.0 (ML),
whereas the two main shocks have 6.0 (ML) and 6.5 (ML).
The events occurred during the period from January 1, 2000,
to March 27, 2012.7

7The facilities of the Southern Californian Earthquake Data Center
(SCEDC) and the Southern California Seismic Network (SCSN)
were used for access to waveforms, parametric data, and metadata
required in this study. The SCEDC and SCSN are funded through U.S.
Geological Survey Grant G10AP00091, and the Southern Californian
Earthquake Center, which is funded by NSF Cooperative Agreement
EAR-0529922 and USGS Cooperative Agreement 07HQAG0008.

The p values of the Kolmogorov-Smirnov test are listed
in Table III. The Weibull and κ-Weibull distributions have
practically the same p values. The gamma and generalized
gamma models, however, show overall better agreement with
the observed return intervals than the Weibull or the κ

Weibull. Most of the p values obtained for this data set
are considerably lower than their counterparts for the Cretan
data set. To ensure that this difference is not caused by an
insufficient number of Monte Carlo simulations, we repeated
the numerical experiment with 5000 Monte Carlo simulations,
which confirmed the results of Table III with minor changes
in the p values. On the other hand, as shown in Table IV,
the gamma, generalized gamma, Weibull, and κ-Weibull
distributions have similar AIC values. The low p values are
an indication that none of the models tested match the data
very well in terms of the Kolomogorov-Smirnov distance. The
gamma, generalized gamma, Weibull, and κ Weibull, however,
are not rejected at the 1% level for most thresholds. It should
be noted that recent arguments based on Bayesian analysis of
hypothesis testing suggest that the significance level 0.05 used
to reject the null hypothesis is overly conservative and should
be shifted to 0.005 [67].

VI. FIBER BUNDLE MODELS

Fiber bundle models (FBM) are simple statistical models
that were introduced to study the fracture of fibrous mate-
rials [44]. To date they are used in many research fields,
including fracture of composite materials [68], landslides [69],
glacier avalanches [70], and earthquake dynamics [29,40,42].

TABLE III. p values of Kolmogorov-Smirnov test for the fit between different probability models and the Southern California sequence.
Results are based on 5000 simulations. The sample size (number of return intervals) is shown within parentheses next to the cutoff magnitudes.

Gamma Weibull κ Weibull Gen. Gamma Normal Lognormal Poisson

ML,c = 2.3 (1341) 0.0296 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ML,c = 2.5 (964) 0.0368 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ML,c = 2.7 (687) 0.0348 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ML,c = 2.9 (457) 0.0908 0.0002 0.0004 0.0000 0.0000 0.0000 0.0000
ML,c = 3.1 (309) 0.5036 0.0638 0.0556 0.0440 0.0000 0.0000 0.0000
ML,c = 3.3 (206) 0.0254 0.0158 0.0150 0.0270 0.0000 0.0000 0.0000
ML,c = 3.5 (121) 0.1836 0.0110 0.0086 0.0152 0.0000 0.0000 0.0000
ML,c = 3.7 (77) 0.0798 0.0304 0.0258 0.0412 0.0000 0.0002 0.0000
ML,c = 3.9 (44) 0.0150 0.0450 0.0378 0.0580 0.0000 0.0964 0.0000
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TABLE IV. Akaike information criterion (AIC) values per sample point for the best-fit models of the Southern California sequence. The
model parameters used maximize the likelihood of the Southern California sequence given the respective model. The sample size (number of
return intervals) is shown within parentheses next to the cutoff magnitudes.

Gamma Weibull κ Weibull Gen. Gamma Normal Lognormal Poisson

ML,c = 2.3 (1341) 26.45 26.45 26.45 26.44 29.19 26.68 27.14
ML,c = 2.5 (964) 26.98 27.01 27.01 27.01 29.73 27.26 27.79
ML,c = 2.7 (687) 27.55 27.59 27.59 27.60 30.33 27.85 28.47
ML,c = 2.9 (457) 28.36 28.41 28.42 28.40 30.92 28.65 29.29
ML,c = 3.1 (309) 28.99 29.02 29.03 29.02 31.82 29.22 30.06
ML,c = 3.3 (206) 29.28 29.30 29.31 29.31 32.69 29.43 30.88
ML,c = 3.5 (121) 30.03 30.07 30.08 30.08 33.84 30.22 31.84
ML,c = 3.7 (77) 30.64 30.72 30.81 30.72 34.65 30.89 32.74
ML,c = 3.9 (44) 30.70 30.67 30.72 30.72 35.68 30.67 33.46

In spite of their conceptual simplicity, FBMs exhibit surpris-
ingly rich behavior.

An FBM consists of an arrangement of parallel fibers
subject to an external load F (Fig. 9). The fibers have random
strength thresholds that represent the heterogeneity of the
medium. Due to the applied loading, each fiber is deformed and
subject to stress. If the stress applied to a specific fiber exceeds
its failure threshold, the fiber ruptures and the excess load is
redistributed either globally or locally between the remaining
fibers. The ensuing redistribution of the load to the surviving
fibers may trigger an avalanche of breaks. Each fiber break
releases the elastic energy accumulated in the fiber.

A. FBM return interval statistics

We assume that the strain ε of the fiber bundle increases
linearly with time t , i.e., ε ∝ t . Without loss of generality we
set the elastic modulus, the initial length L, and the strain
rate equal to unity, and we use the elongation x instead of
ε to measure the loading. The individual fibers have random
failure thresholds xc with pdf fxc

(x). Failed fibers are removed,
and the stress is then redistributed between the surviving
fibers using the equal load sharing rule. The energy of each

FIG. 9. Schematic of a fiber bundle of initial length L elongated
by x due to the loading force F . Broken fibers do not contribute to
the strength of the bundle.

avalanche is equal to the sum of the Hookean energies of
the broken fibers [71]. Only events that exceed an energy
threshold Ec are counted. The return intervals are measured as
the time difference between two events with energy E > Ec.
Avalanches are considered to occur instantaneously. Figure 10
illustrates the evolution of the avalanche events in time. The
plots are obtained by loading a single bundle of 107 fibers, the
strength of which follows the Weibull pdf with m = 5,xs = 1.
The avalanche sequences correspond to energy thresholds
given by log10 Ec = 1,2, where log10 is the logarithm with
base 10.

Figure 11 compares the quantiles of the return interval
distribution obtained from a single bundle with those of the
optimal κ-Weibull distribution for different energy thresholds.
The optimal κ-Weibull parameters for each threshold are
shown in Table V. The estimated κ values based on maximum
likelihood are κ̂ ≈ 2. This result suggests that κ > 1 values
indicate a highly correlated system that cannot be decomposed
into RVEs. As stated in Sec. III A, the κ-Weibull pdf exhibits
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FIG. 10. (Color online) Evolution of avalanche events in time for
a bundle of 107 fibers with Weibull-distributed strength thresholds
(m = 5,xs = 1). The most energetic avalanche (log10 Ef ≈ 7.31) is
generated when the bundle fails (during the last event of the breaking
sequence) at time tf ≈ 0.725.
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FIG. 11. (Color online) Quantile-quantile plots of FBM return
intervals (dimensionless) versus the best-fit κ-Weibull distribution.
Data are based on a bundle of 5 × 107 fibers with strength thresholds
drawn from the Weibull distribution with m = 5, xs = 1, unit elastic
constant, and unit strain rate.

a power-law upper tail with exponent α = 1 + m/κ . For the
FBM investigated above, the exponent of the return interval
pdf is α̂ ≈ [2.13,2.20].

VII. DISCUSSION AND CONCLUSIONS

We investigated the statistics of return intervals in systems
that obey weakest-link scaling. We propose that the κ-Weibull
distribution is suitable for finite-size systems (where the size
is measured in terms of RVE size) and that the parameter κ is
determined by the size of the system. A characteristic property
of the κ-Weibull distribution is the transition from Weibull to
power-law scaling in the upper tail of the pdf. This leads to an
upper tail which decays slower than the tail of the respective
Weibull distribution—a feature useful for describing the
statistics of earthquake return intervals. The transition point
depends on the system size and the Weibull modulus.

Recent studies have identified a slope change in logarith-
mic plots of the ERI pdf, attributed to spatial (for earth-
quakes) or temporal (for laboratory fracturing experiments)
nonstationarity of the background productivity rate [37]. We

TABLE V. Maximum likelihood estimates of κ-Weibull distribu-
tion parameters for the return intervals of Fig. 11.

log10 Ec N τ̂s m̂ κ̂

0.5 44 094 1.2 × 10−6 2.4 2.1
1 8449 3.7 × 10−6 2.4 2.0
1.5 1686 1.0 × 10−5 2.6 2.2
2 311 3.1 × 10−5 2.6 2.3

demonstrated that finite-size effects have a similar impact
on the ERI pdf. Hence, finite size can explain deviations of
earthquake return intervals from Weibull scaling without in-
voking nonstationarity (spatial or temporal) in the background
earthquake productivity rate.

In addition, we show that a distinct feature of the κ-Weibull
distribution is the dependence of its hazard rate function: For
m > 1 it increases with increasing time interval up to a certain
threshold, followed by a ∝1/τ drop. This is in contrast with
the Weibull hazard rate for m > 1 which increases indefinitely.
Therefore, the κ-Weibull distribution allows for temporal
clustering of earthquakes independently of the value of the
Weibull modulus.

The application of the κ-Weibull distribution to ERI
assumes the following:

(i) statistical stationarity, i.e., uniform ERI distribution
parameters over the spatial and temporal observation window;

(ii) renormalizability of the interacting fault system into an
ensemble comprising a finite number of independent effective
RVEs with identical interval scale; and

(iii) specific but simple functional form for the RVE
survival probability given by (18).

We believe that the κ-Weibull distribution is also potentially
useful for modeling the fracture strength of heterogeneous
quasibrittle structures. The latter involve a finite number of
RVEs and their fracture strength obeys weakest-link scal-
ing [35,43]. The connection between ERI power-law scaling
and fracture mechanics pursued herein and in Ref. [9] also
requires further research. Finally, we have used statistical
methods (Kolmogorov-Smirnov test and Akaike information
criterion) to compare different hypotheses for ERI distribu-
tions. For example, using the Kolmogorov-Smirnov test we
showed that for one sequence of earthquakes the κ-Weibull,
Weibull, gamma, and generalized gamma probability models
are acceptable at the 5% level.
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APPENDIX: INVERSE TRANSFORM
SAMPLING METHOD

We generate random numbers from the κ-Weibull and the
generalized gamma distributions using the inverse transform
sampling method. We first illustrate the algorithm for the κ-
Weibull random numbers as follows:

(1) We generate uniform random numbers uτ
d= U (0,1).

(2) We employ the conservation of probability under the

variable transformation τ
g(τ )→ uτ , i.e.,

Fn(τ ) = FU (uτ ) = uτ ⇒ τ = F−1
n (uτ ), (A1)

where Fn(τ ) = (
√

1 + a2τ 2m/n2 − aτm/n)n and a = τ−m
s .
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(3) The above in light of (A1) leads to

τ = F−1
n (uτ ) =

(n

2

)1/m

τs

(
u−1/n

τ − u1/n
τ

)1/m

= τs [− lnκ (uτ )]1/m, κ = n−1. (A2)

In the case of the generalized gamma, the cumulative
probability distribution is given by

Fn(τ ) = γ

(
k

m
,(τ/τs)

m

)
, (A3)

where γ (α,x) is the incomplete gamma function defined
by

γ (α,x) = 1

�(α)

∫ x

0
dy

yα−1

τα
s

e−y/τs .

The random numbers τ are then given by inverting
γ (α,x(τ )) = uτ , that is, by

τ = τs

[
γ −1

n (α; uτ )
]1/m

.
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[2] W. Weibull, J. Appl. Mech. 18, 293 (1951).
[3] D. Sornette, Critical Phenomena in Natural Sciences

(Springer, Berlin, 2004).
[4] I. Eliazar and J. Klafter, Physica A 367, 106 (2006).
[5] C. Franzke, Phys. Rev. E 85, 031134 (2012).
[6] C. Nicolis and G. Nicolis, Phys. Rev. E 85, 056217 (2012).
[7] H. L. D. de S. Cavalcante, M. Oriá, D. Sornette, E. Ott, and
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