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Delay-induced transport in a rocking ratchet under feedback control

Sarah A. M. Loos,* Robert Gernert,† and Sabine H. L. Klapp‡

Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
(Received 25 March 2014; published 27 May 2014)

Based on the Fokker-Planck equation we investigate the transport of an overdamped colloidal particle in a
static, asymmetric periodic potential supplemented by a time-dependent, delayed feedback force, Ffc. For a given
time t , Ffc depends on the status of the system at a previous time t − τD, with τD being a delay time, specifically
on the delayed mean particle displacement (relative to some “switching position”). For nonzero delay times
Ffc(t) develops nearly regular oscillations, generating a net current in the system. Depending on the switching
position, this current is nearly as large or even larger than that in a conventional open-loop rocking ratchet. We
also investigate thermodynamic properties of the delayed nonequilibrium system and we suggest an underlying
Langevin equation which reproduces the Fokker-Planck results.
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I. INTRODUCTION

In recent years, feedback control of transport in small
nonequilibrium systems such as “stair-climbing” colloids [1]
and fluctuating photon states in quantum-optical systems [2]
has become a topic of active research [3]. By definition,
“feedback” (or closed-loop) control means that the system
evolves dynamically under a protocol which depends on an
internal variable containing information about the system [4].
It has been shown that feedback control can lead to pronounced
changes of the dynamics compared to purely external (“open-
loop”) control and can, in some cases, strongly improve trans-
port properties such as effective currents. A prime example
from the classical side are ratchet systems (or Brownian
motors) [5,6], specifically the so-called flashing ratchets that
operate by switching on and off a spatially periodic asymmetric
potential: Here it has been shown, both theoretically [7–9]
and experimentally [10], that the fluctuation-induced directed
transport can be strongly enhanced by switching not under
an externally defined protocol but “on demand”. Besides the
dynamics itself, another topic of intense research is the im-
pact of feedback control on nonequilibrium thermodynamics
[3,11,12], concerning particularly the entropy production and
fluctuation theorems in both classical [11,13] and quantum sys-
tems [14,15]. For example, for a classical ratchet model it has
been shown that the energy input (work) is smaller with closed-
than with open-loop control [3]. Exploring these ideas is fos-
tered by recent advancements of experimental techniques for
single-particle manipulation and electronic transport, which is
of major relevance in various areas such as microfluidics [16],
biomedical engineering [17], and quantum optics [2].

Whereas many earlier studies of feedback-controlled sys-
tems focused on instantaneous feedback (i.e., no time lag be-
tween measurement and control action) [7,18], there is increas-
ing interest in exploring systems with time delay [8,9,19–22].
The latter typically arises from a time lag between the detection
of a signal and the control action, an essentially omnipresent
situation in experimental setups. Traditionally, time delay was
often considered a perturbation; for example, in some ratchet
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systems it reduces the efficiency of transport [8]. However,
time delay can also have significant positive effects. For ex-
ample, it can stabilize desired stationary states in sheared liquid
crystals [23], it can optimize electron transport in quantum-dot
nanostructures [21], and it can generate new effects such as
current reversal [24,25] and spatiotemporal oscillations in ex-
tended systems [26,27]. Moreover, time delay can have a stabi-
lizing effect on chaotic orbits, a prime example being Pyragas’s
control scheme [28] of time-delayed feedback control [29].

In this spirit, we discuss in the present paper a classical
transport system with feedback, where it is the time delay,
which generates current. Specifically, we consider a so-called
rocking ratchet where an overdamped colloidal particle is
subject to a combination of a static, asymmetric potential and
a time-dependent driving force [6]. This contrasts flashing
ratchets, where there is only one type of potential, the
asymmetric potential which is either switched periodically
(open-loop control) or measurement dependent (closed-loop
control). In a previous study, Feito et al. [30] have considered
a feedback-controlled flashing ratchet with additional periodic
drive. Our feedback system is somewhat closer to the original
rocking ratchet model where the total conservative force is the
sum of a purely space-dependent and a purely time-dependent
force, the latter being typically an oscillation with an externally
fixed frequency. Contrary to that, the feedback force introduced
in Sec. II of this paper depends on the mean particle position,
i.e., an internal variable of the system, relative to some
reference position in the system. Moreover, we choose the
mean particle position at an earlier time t − τD as the control
target. We show that, due to the time delay τD, the feedback
force develops an oscillatory behavior which eventually leads
to a nonzero net current. We also demonstrate that, for
appropriate values of the reference position, transport is even
improved as compared to that in a corresponding open-loop
device. Finally, we briefly discuss the entropy production
in our system. Indeed, the interplay of (nonequilibrium)
thermodynamics [12] and feedback control is a topic attracting
strong interest [3], recently also for systems with time delay
[22,31,32].

Our study is based on a Fokker-Planck equation (FPE)
[33] where the delayed force enters ad hoc. We note that,
in the presence of time delay, the connection between the FPE
and the underlying Langevin equation is not straightforward
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(see, e.g., Refs. [34–36]). Still, since we consider the mean
particle position as the control target, the results become
consistent with those from a corresponding Langevin equation
(with delayed force) if the number of noise realizations goes
to infinity. In the appendix of the paper we demonstrate this
consistency numerically and present a justification.

II. DEFINITION OF THE MODEL

We consider the motion of an overdamped colloidal particle
at temperature T in a one-dimensional, periodic potential
V (z), where z is the particle’s position. In addition to thermal
fluctuations, the particle experiences a time-dependent force
F (t). The dynamics is investigated via the FPE [33] for the
probability density

∂tρ(z,t) = ∂z{γ −1[V ′(z) − F (t)]ρ(z,t) + D0∂zρ(z,t)}
= −∂zG(z,t), (1)

where D0 is the short-time diffusion coefficient, satisfying
the fluctuation-dissipation theorem [33] D0 = kBT /γ (with
kB and γ being the Boltzmann and the friction constant,
respectively), and G(z,t) is the probability current.

In the present paper we model V (z) by a periodic, piecewise
linear, “sawtooth” potential [10,37,38] defined by V (z + L) =
V (z) and

V (z) =
{
Uz/(aL), 0 < z � aL,

Uz/[(a − 1)L], (a − 1)L < z � 0,
(2)

where U is the potential height, L is the period, and a ∈ [0,1]
is the asymmetry parameter. Here we choose L = 8σ , where
σ is the diameter of the colloid, and a = 0.8. The potential
minimum is at z = zmin = 0. An illustration of V (z) is given
in Fig. 1.

In the absence of any further force beyond that arising from
V (z), the system approaches for t → ∞ an equilibrium state
and thus there is no transport (i.e., no net particle current).
It is well established, however, that by supplementing V (z)
by a time-dependent oscillatory force (yielding a “rocking
ratchet”), the system is permanently out of equilibrium and
macroscopic transport can be achieved [6,39,40]. This occurs
even when the time average of the oscillatory force is zero, a
characteristic feature of a true thermal ratchet.

Here we propose an alternative driving force, where the
time dependency arises only through the internal state of
the system. Thus, the force applies feedback control onto the
system. As a “control target” we consider the mean particle

z

V(z)

0 aLL)    ( 1-a L

FIG. 1. (Color online) Sketch of the static “sawtooth” potential
defined in Eq. (2). The central interval is defined by (a − 1)L �
z < aL.

position within the central interval S = [(a − 1)L,aL[,

z̄(t) =
∫

S

dz ρ(z,t) z, (3)

where ρ(z,t) is the probability density calculated with periodic
boundary conditions, that is, ρ(z + L,t) = ρ(z,t).

Our reasoning behind choosing the mean rather than the
true position as the control target is twofold: First, within the
FPE treatment we have no access to the particle’s position
for a given realization of noise, because the latter has already
been averaged out. This is in contrast to previous studies using
Langevin equations [10,19,30] where the dynamical variable
is the particle position itself. Second, the mean position is an
experimentally accessible quantity, which can be monitored,
e.g., by video microscopy [19].

Our ansatz for the force reads

Ffc(t) = −F sgn[z̄(t − τD) − z0], (4)

where F is the amplitude (chosen to be positive), z0 is a fixed
position within the range [0,aL] (where V increases with z),
and the sign function is defined by sgn(x) = +1 (−1) for
x > 0 (x < 0). From Eq. (4) one sees that the feedback force
changes its sign whenever the delayed mean particle position
z̄(t − τD) becomes smaller or larger than z0; we therefore call
z0 the “switching” position.

Our ansatz is partially motivated by an earlier (Langevin
equation based) study of Craig et al. [19] on feedback control
of a flashing ratchet via the so-called “maximum-displacement
strategy”. In that study, the fixed position z0 was identified
with the mean particle position of the uncontrolled system
[i.e., Ffc(t) = 0] at t → ∞, that is, the equilibrium position
z̄eq = ∫

dzzρeq(z), where ρeq(z) ∝ exp[−V (z)/kBT ]. Here we
rather regard z0 as a free parameter.

Another main feature of our driving mechanism (not
considered in Ref. [19]) is the presence of a time delay, τD. As
discussed in several studies (see, e.g., Refs. [8,9,19–22]), time
delay is a rather natural phenomenon which may arise, e.g.,
through the finite time required for measuring or processing
information from a measurement. In the present case, as we
will demonstrate below, the time delay is indeed crucial for
generating particle transport.

III. TRANSPORT MECHANISM

To better understand the impact of the force (4), let
us briefly consider the case τD = 0. For simplicity, we set
z0 = z̄eq ≈ 0.32σ . In Fig. 2(a) we illustrate a situation, where

(a) (b)

FIG. 2. (Color online) Sketch of the static potential and the
direction of the force Ffc(t) (a) in the absence of time delay (τD = 0)
and (b) with time delay. The vertical lines indicate the switching
position (set to z0 = 0.32σ ), as well as z̄(t) [and z̄(t − τD) in (b)].
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the mean particle position at time t is on the right-hand
side of z0. In this case Ffc = −F , meaning that the force
tends to push the particle towards z0. In an analogous
manner, we find that Ffc = +F if the particle is left from
z0. As time is progressing the mean particle position thus
becomes “trapped” at z0. Clearly, this excludes any net
transport.

However, transport can be generated in the presence of a
nonzero time delay, τD > 0. Figure 2(b) shows as an example
a situation where the mean particle position at time t is at the
right side of z0, while it has been on the left side at time t − τD.
In this situation the force Ffc(t) points away from z0 (i.e.,
Ffc > 0), contrary to the case τD = 0 considered in Fig. 2(a).
Thus, the particle experiences a driving force towards the next
potential valley, which changes only when the delayed position
becomes larger than z0. The force then points to the left until
the delayed position crosses z0 again. This oscillation of the
force (see also Sec. IV A), together with the asymmetry of
V (z), creates a ratchet effect.

We note that the feedback-controlled ratchet introduced
here strongly differs from previous models of such systems. In
particular, Feito et al. [30] have considered a rocking ratchet
composed of a static potential similar to ours plus an oscillatory
drive. Feedback-control (based on the average particle force)
is then introduced as a prefactor in front of the static potential;
i.e., the latter is switched on only if the force satisfies certain
requirements. In the present model, the control force acts
in addition to the static potential, and there is no additional
oscillating force.

Another, somewhat subtle aspect of the present model is
that we introduce feedback on the level of the Fokker-Planck
equation describing the evolution of the probability density.
This differs from earlier studies based on the Langevin
equation (see, e.g., Refs. [10,19,30]), where the feedback is
applied directly to the position of one particle, χi(t), or to the
average of N particle positions N−1 ∑N

i=1 χi(t). Introducing
feedback control in such systems implies to introduce effective
interactions between the particles. As a consequence, the
transport properties in these particle-based models depend
explicitly on the number of particles, N . Typically it turns
out that the current becomes small or even vanishes when the
particle number increases, the reason being that fluctuations
(which are essential for the ratchet effect) disappear [7]. From
the perspective of these Langevin-based models, the present
model corresponds to the “mean-field” limit N → ∞. This
connection to a Langevin model is further discussed in the
appendix. Given that we are in the “mean-field” limit, it is
even more interesting that we do observe a nonvanishing
current which can be even larger than in an open-loop
system [7]. This is because our model involves a time
delay.

IV. NUMERICAL RESULTS

A. Dynamics of the control target

In this section we present numerical results for the
feedback-controlled transport based on numerical solution of
the FPE Eq. (1). The height of the static potential is set to
U = 15kBT . In fact, similar values are found in experiments of
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FIG. 3. (a) Mean particle position and (b) control force as
functions of time for τD = 2τ , z0 = 2σ , and F ∗ ∈ {3,6}. In (c) and
(d) the oscillation is divided into segments by the times at which Ffc

changes (left border of the shaded regions) and the times the mean
particle position crosses z0 (right border).

colloids in structured light fields [10,41,42]. Time is measured
in units of the Brownian time scale, τ = σ 2/D0, which is of
the order of 100 s to 102 s for typical colloids [10,41–44]. In all
calculations, the initial condition for the probability density is a
δ function localized at the minimum of V (z), zmin = 0. Further,
to initialize the control force, we set a history function, i.e.,
z̄(t) = zmin = 0 for t ∈ [−τ,0]. In fact, we have performed
various test calculations involving other (than δ-like) initial
densities and other history functions. However, the effect of the
initial conditions was found to be only of transient character.
The data presented in the following correspond to time ranges
after an initial (yet very short) “equilibration” period, after
which the dynamic quantities considered display a regular
dynamical behavior.

We start by considering the time evolution of the mean
particle position, z̄(t), which determines the control force.
Exemplary data for two amplitudes F ∗ = Fσ/kBT are shown
in Fig. 3(a), where the parameter z0 has been set to 2σ ,
and τD = 2τ . It is seen that z̄(t) displays regular oscillations
between values above and below z0 for both force amplitudes
considered. The period of these oscillations, T̄ , is roughly
twice the delay time. We will come back to this point later
in this paragraph. We also note that the precise value of the
period as well as the shape of the oscillations depend on the
values of F ∗ and z0 (see also Sec. IV B).

Due to the oscillatory behavior of z̄(t), the delayed position
z̄(t − τD) oscillates around z0 as well. It follows from our
definition of the feedback force [see Eq. (4)] that the latter
switches periodically between +F and −F with the same
period as that observed in z̄(t). This is clearly seen in Fig. 3(b),
where we plotted Ffc(t) for the case F ∗ = 6.

A closer view on the dynamic behavior within one cycle
is given in Fig. 4, where we focus on the case τD = 2τ

and z0 = 2σ . Figure 4(a) depicts one cycle of the function
z̄(t) together with its time-delayed counterpart, z̄(t − τD). The
remaining parts of Fig. 4 then plot the probability density ρ
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FIG. 4. (Color online) (a) One cycle of the function z̄(t) at τD =
2τ and F ∗ = 6, with the filled circles indicating specific times. The
switching position is set to z0 = 2σ . Also shown is the corresponding
function z̄(t − τD). [(b)–(f)] Density distribution as function of space
at the times indicated in (a). The thick arrows show the direction of
the control force. The filled (red) circles indicate the values of z̄(t).

as function of z for specific times indicated by filled circles in
Fig. 4(a).

The mean particle position starts from z̄ = 0 (i.e., localiza-
tion in the potential minimum) at t0 = 0. The chosen amplitude
F ∗ is large enough (F ∗ = 6) so that the total systematic
force −V ′(z) + Ffc at t = 0 is positive for every z. Hence,
at t = 0.4τ [Fig. 4(b)], the density distribution has broadened
by diffusion and z̄(t) has moved to the right. We also see
from Fig. 4(b) that the probability density is still very small
at the boundary. This changes at t = 1.1τ when probability
“flows” over the boundary, indicating transport [see Fig. 4(c)].
The function z̄(t) is now in its maximum. At t = 1.1τ the
mean particle position has already crossed z0; however, the
time-delayed mean particle position is still below z0, and thus
Ffc(t) > 0. Note that due to the periodicity of the system an
inward probability flow occurs at the lower boundary. With
progressing time this eventually leads to a shift of the mean
particle position towards smaller values, as seen in Fig. 4(d)
for the case t = 2.4τ . When z̄(t − τD) crosses z0 the feedback
control force is reversed. The total systematic force is now
positive for z < 0 and negative for z > 0. The confining effect
of this force to the particle can be seen in Fig. 4(e) where
a peak in the probability density evolves. As a consequence,
the mean particle position moves towards values around the
potential minimum. When the same happens to the delayed
position z̄(t − τD), the cycle starts again.

From the above considerations it follows that [as illustrated
in Figs. 3(c) and 3(d)], each cycle consists of two intervals of
duration τD which are separated by smaller time intervals r1

and r2. The latter correspond to the times which the control
target needs to reach z0 after the control force has switched.
Thus the duration of the total period is T̄ = 2τD + r1 + r2 �
2τD. We note that this finding is independent of the chosen
initial conditions.

We also remark that in order to see persistent oscillations
of the control target, and thus the control force, it is crucial
that the function contained in Ffc is very sensitive to even

tiny differences between z̄(t − τD) and z0. Indeed, besides the
sign function we have also tested continuous functions such as
sin(x) [or cos(x)], which tend to zero when z̄(t − τD) − z0 →
0 [or π/2]. In these cases, the oscillations just dampen out and
thus there is no ratchet effect.

B. Effective current

So far we have focused on the mean particle position
z̄(t) within one interval [see Eq. (3)], i.e., the quantity
determining our feedback force. However, to visualize the
particle transport, it is more convenient to consider the distance
z̃(t) the particle has actually traveled at time t (in the ensemble
average) relative to its value at t = t0. Contrary to z̄(t), the
traveled distance z̃(t) takes into account that the particle
actually moves from one potential valley to the next.

To this end we first introduce the particle current

j (t) =
∫

S

dz G(z,t) , (5)

with the probability current G(z,t) calculated from the FPE
(1) with periodic boundary conditions. As shown in Ref. [6],
this current can also be expressed as

j (t) = d

dt

[∫ zref+L

zref

dz z ρ(z,t)

]
+ LG(zref,t)

= d

dt
z̄(t) + LG(zref,t) , (6)

where zref is an arbitrary reference position within the central
interval. Here we choose zref equal to (a − 1)L, that is, the
lower boundary of the central interval. Equation (6) expresses
the fact that the particle current is composed of the motion
of the “center of mass” plus L times the probability current
(evaluated for the periodic system) at the reference point. We
now define z̃(t) as the time integral of j (t), yielding

z̃(t) =
∫ t

t0

dt ′ j (t ′) = z̄(t) + L

∫ t

t0

dt ′ G(zref,t
′) , (7)

where we have used that z̃(t0) = z̄(t0).
Numerical results for z̃(t) and j (t) are plotted in Fig. 5 for

different values of the control force parameters F ∗ and z0. The
delay time is kept fixed. In all cases considered, z̃(t) displays
a regular “back-and-forth” rocking motion, but with a net drift
to the right. The latter indicates that there is indeed particle
transport. Also shown in Fig. 5 is the space-averaged current
defined in Eq. (5). It is seen that j (t) reflects the rocking-like
behavior of z̃(t) by oscillations around zero. The fact that the
positive values in j (t) dominate signals the presence of net
transport.

Not surprisingly, both the current and the strength of the
drift visible in z̃(t) depend on the amplitude of the control
force, as one can clearly see by comparing the dashed and
solid curves in Fig. 5. However, we also observe a significant
influence of the position z0: The larger z0, the longer are
the times in which the traveled distance increases in each
cycle and in which the current is positive. We understand this
behavior such that the larger z0, the longer the time in which
the mean particle position in the central interval S is below
z0 (yielding Ffc > 0). The period T̄ of the oscillations of z̃(t)
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FIG. 5. (Color online) [(a) and (b)] Space-averaged current den-
sity j as function of time for (a) F ∗ = 6 and (b) F ∗ = 3 (and different
switching positions). (c) Traveled distance z̃ as function of time. In
all parts the delay time is set to τD = 2τ .

and j (t) slightly increases with z0 as well. An overview of
the dependence of T̄ on z0 and F ∗ is given in Fig. 6. In all
cases, T̄ is roughly given by twice the delay time; however, its
actual value depends on the precise choice of the control force
parameters.

Having understood the time dependence of the control
target and the current density we now turn to the overall
(time-averaged) transport. The latter is measured by the net
particle current defined as

J = T̄ −1
∫ t1+T̄

t1

dt ′ j (t ′) , (8)

where j (t) is defined in Eq. (5), and t1 is an arbitrary time
after the “equilibration” period. Numerical results for J in
dependence of the delay time τD and force amplitude F ∗ are
plotted in Fig. 7, where we consider two switching positions.

We first discuss the behavior at finite delay times in the
range τD � 5τ . In this range the current generally increases
with τD, with the increase being the more pronounced the
larger the force amplitude and the switching position is. This
is consistent with our earlier findings regarding the particle’s
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FIG. 6. (Color online) Mean period of the oscillations of the
control target in dependence on z0 and F ∗ (for τD ∈ {1.1τ,5τ }).
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FIG. 7. (Color online) Net particle current J as function of the
delay time for several values of F ∗ and z0. The curve termed
“stationary” is discussed below Eq. (9).

traveled distance and the time-dependent current [see Fig. 5].
We also see from Fig. 7 that all curves saturate in the limit
τD → ∞ at some finite value of J which solely depends
on F ∗.

At small delay times (τD � 5τ ) the behavior of the function
J (τD) strongly depends on both, F ∗ and z0. For z0 = 0.32σ ,
the net current vanishes at τD → 0 regardless of the strength
of the drive, consistent with our previous considerations that
the ratchet effect in our model is essentially driven by the
time delay. Upon increasing τD the current then deviates
from zero. Interestingly, for large force amplitudes (F ∗ = 6,
8), J may even become negative before finally increasing
towards positive values. Note that negative values imply
transport opposite to the direction supported by the asymmetric
potential.

Considering now the larger switching position z0 = 2σ ,
we observe again a strong decrease of the current when
we decrease the delay times from large values. However,
contrary to the situation at z0 = 0.32σ , J (τD) stays finite in
the limit τD → 0. We can understand this behavior, as well
as the negative currents arising at z0 = 0.32σ and F ∗ = 8, by
considering the time average of the control force,

F̄fc = T̄ −1
∫ t1+T̄

t1

dt ′ Ffc(t ′) . (9)

Figure 8(a) plots the averaged control force as function
of τD. Considering first the case z0 = 0.32σ , we see that
F̄fc(τD) approaches zero in the limit of vanishing delay time.
In other words, there is no average drive, which justifies
the consideration of the present transport mechanism as a
true (delay-induced) ratchet effect. For small τD, however,
there is a minimum in the function, which becomes the more
pronounced the larger F is. The negative values of F̄fc(τD)
are responsible for the negative net current J arising in
the same range of delay times (see Fig. 7). Therefore, the
appearance of negative J here has a different origin than in the
open-loop controlled case [39].

At z0 = 2σ the average force is nonzero and positive
throughout the entire range of delay times, becoming largest
in the limit τD → 0. We note, however, that at any finite delay
time the absolute value of F̄fc is quite small. To check the
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FIG. 8. (Color online) Time-averaged control force F̄fc(t) as
function of (a) the delay time (with F ∗ = 6 and two values of z0)
and (b) the switching position z0. In (b), the dotted lines indicate
the boundaries of the range of switching positions considered in this
paper.

influence of this remaining force we have calculated the current
j defined in Eq. (5) for a system under the time-constant force
F (t) = F̄fc, taking the case F ∗ = 6, z0 =2σ as an example. It
turns out that this current, which is shown in Fig. 7 by the curve
termed “stationary”, is indeed negligible except at τD → 0.
Thus, we can conclude that even with this larger switching
position the ratchet effect is essentially delay induced. A more
systematic view of the dependence of F̄fc on z0 is given
in Fig. 8(b), where we focus on specific, finite values of
τD. It is seen that, outside the range 0.32σ � z0 � 2σ [see
vertical dotted lines in Fig. 8(b)], the average force deviates
significantly from zero. In these cases, it becomes questionable
to which extent the current is really induced by time delay.
Therefore we have restricted z0 to values inside the interval
defined above.

At this point it is worth it to compare the current generated
by our feedback-controlled ratchet with that of an ordinary,
“open-loop” rocking ratchet. To this end we supplement the
static periodic potential given in Eq. (2) by a time-periodic
drive characterized by a fixed period T with vanishing time
average. To be as close as possible to our feedback model [see
Eq. (4)], we choose a rectangular oscillatory drive,

Fosc(t) = −F sgn

[
cos

(
2π

T
t

)]
. (10)

For a discussion of the deterministic version of this model we
refer to Ref. [45]. In the present, noisy system we calculate
the resulting net current via Eq. (8) after replacing T̄ by T .
In Fig. 9 we show numerical results for J as function of the
oscillation period, together with the corresponding functions
J (T̄ ) for a feedback-controlled ratchet with two values of z0.

While the general behavior of the current (that is, small
values of J for small periods, saturation at large values for large
periods) is similar for both open-loop and closed-loop systems,
the actual values of J for a given period strongly depend on
the type of control. This is seen already at very small periods
where, e.g., the current of the closed-loop system with z0 =

0.32σ can become negative, while that of the open-loop system
is still zero. The most interesting differences, however, occur at
finite periods which are still below those corresponding to the
saturation regime: Comparing curves with the same value of
F ∗ we find that the net current in the open-loop system is larger
than in the closed-loop system with small switching position
(z0 = 0.32σ ) but smaller than in the closed-loop system with
z0 = 2σ . In other words, the net current, which is the measure
for transport, can be larger in the feedback-controlled system
than that in the open-loop case, provided that the switching
position is sufficiently large. At very large periods, however,
the currents corresponding to a given value of F approach
the same values. The latter correspond to the “adiabatic limit”
(T → ∞), where the drive changes so slowly so the system
can be assumed to be in a steady state at every time t [6]. This
allows us to calculate the current analytically, yielding

J = D0L

T

∫ T

0
dt

[
1 − e

− LF (t)
kBT

]/
N (t), (11)

where

N (t) =
∫

S

dz e
− V (z)−zF (t)

kBT

∫ z+L

z

dz′ e
V (z′ )−z′F (t)

kBT

and F (t) = Fosc(t) and F (t) = Ffc(t) for the open- and closed-
loop case, respectively.

V. ENTROPY PRODUCTION AND WORK

In view of our results for the net current in the feedback-
controlled ratchet, on the one hand, and the open-loop
controlled rocking ratchet, on the other hand (see Fig. 9),
it is interesting to further explore the impact of the control
scheme in terms of (nonequilibrium) thermodynamics. In
particular, we are interested in the total entropy production,
which measures how far the system is away from equilibrium,
and in the work that is performed on the particle. We calculate
these quantities on the basis of stochastic thermodynamics.
For systems with instantaneous feedback control this is a
well-established field [3,12]. This is generally not the case for
systems with time delay, in which the underlying (Langevin

0
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0 10 20 30
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τ
/σ

T̄ /τ

open-loop control
closed-loop control z0 =2σ

closed-loop control z0 =0.32σ

F ∗ 3 6 8

FIG. 9. (Color online) Net particle current J for the open-loop
rocking ratchet and the feedback-controlled ratchet in dependency
of the (mean) oscillation period of the driving force. The horizontal
lines pertain to the adiabatic limit [see Eq. (11)].
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appendix).

or Master) equations of motion become non-Markovian such
that concepts of standard stochastic thermodynamics (which
assumes Markovian dynamics) are not immediately applicable
[22,32].

In the present case the situation is somewhat easier because
we are working in a mean-field limit. As discussed in the
appendix, this limit allows us to establish a connection between
our FPE and an underlying Langevin equation; it also allows
us to consider our delayed feedback control force just as
a special type of time-dependent force. In the following
we stress this argument further and use various FPE-based
standard formula for thermodynamic quantities. To test the
FPE results we compare with those obtained from trajectory-
based expressions via Brownian dynamics (BD) simulations.

We start by considering the averaged total entropy pro-
duction, Ṡ tot. Within stochastic thermodynamics, the total
entropy s tot(t), for a single trajectory χ (t), consists of two
contributions [12], i.e., s tot(t) = s(t) + sm(t). Here, s(t) =
−kB ln ρ(χ (t),t)σ is the trajectory-dependent entropy of the
“system” (i.e., the particle), and sm(t) = q[χ (t)]/T is the
medium entropy related to the heat q[χ (t)] dissipated into
the medium. Upon averaging over the ensemble of trajectories
[12], one finds the following compact expression for the time
derivative (production rate) of the total entropy

Ṡ tot(t) = kB

∫
S

dz
G(z,t)2

D0 ρ(z,t)
, (12)

where G(z,t) is the probability current [see Eq. (1)].
Numerical results for Ṡ tot are shown in Fig. 10 where we

focus on a situation where the net current in our closed-loop
scheme is larger than in the open-loop system. Included are
results for the corresponding open-loop system (in which
T := T̄ ). For both the closed-loop and the open-loop system,
Ṡ tot(t) displays periodic behavior with similar features. First,
the beginning of a new cycle is indicated by a very large
and narrow peak. After the peak Ṡ tot(t) decreases to a small,
yet nonzero, value and then rises towards a second, broader,
maximum, followed by a further sharp peak. The latter is
related to the change of the feedback force from positive to

negative values. For the open-loop system this happens exactly
in the middle of the cycle [see Eq. (10)]. In the closed-loop
system, the change is somewhat shifted. This deviation is
indeed the main difference between the closed-loop- and the
open-loop-controlled system.

We have also calculated the total entropy produc-
tion by BD simulations based on Eq. (A1). On that
level, the rate of change of the system entropy is given
as Ṡ(t) = −d/dt〈ln ρ(χ (t),t)σ 〉, with 〈. . .〉 being a noise
average. In practice, we have evaluated Ṡ using the relation
〈ln ρ(χ (t),t)σ 〉 = ∫

S
dz ρ(z,t) ln ρ(z,t)σ , where the probabil-

ity density is calculated as ρ(z,t) = 〈δ(z − χ (t))〉. Further, the
medium entropy is calculated from [12]

Ṡm(t) = 〈(−V ′(χ (t)) + FN
fc (t))χ̇(t)/T 〉 . (13)

To evaluate this expression we have used the Stratonovich
interpretation. It is seen that the BD data (which have been
obtained with N = 105) are fully consistent with those from
the FPE approach.

To calculate the work performed on the particle we note
that, contrary to the dissipated heat, the work involves only
changes of the total systematic force at fixed particle position
[12] which is, in our case, Ffc(t). On the level of a single
trajectory χ (t) the work therefore reads

w[χ (t)] =
∫ t

0
dt ′ Ffc(t ′) χ̇ (t ′) . (14)

To achieve a description in terms of the FPE we make use
of the formula 〈a(z)ż〉 = ∫

S
dz G(z,t) a(z) [12] (implicitly

assuming again that the time delayed feedback control force
enters the FPE just like a special time-dependent force). The
noise-averaged work is then given by

W (t) =
∫ t

0
dt ′ Ffc(t ′)

∫
S

dz G(z,t ′) . (15)

In Fig. 11 we compare the time dependence of the work for
the closed-loop system with two different switching positions
with the corresponding open-loop system. It is seen that
the work increases in each cycle, with the strongest ascent
taking place in those portions of the cycle where the force
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FIG. 11. (Color online) Work performed on the particle as func-
tion of time for F ∗ = 8, τD = 1.1τ , and two switching positions z0.
Included are results for the corresponding system under open-loop
control.
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is positive. Furthermore, comparing the two systems with
feedback control, we find that the amount of work needed
to transport the particle is larger for the system with z0 = 2σ

than for the one at z0 = 0.32σ . We recall that the net current
is larger at z0 = 2σ , too (see Fig. 9). Figure 11 also shows that
the work pertaining to the system under open-loop control has
qualitatively a similar time dependence, with the numerical
values being in between those of the two feedback-control
ratchets. In other words, in our system feedback control does
not necessarily imply that the energy input is smaller than that
in a comparable open-loop device.

VI. CONCLUSION

In this paper we have presented a novel type of a
rocking ratchet system, where the particle is subject to a
space-dependent, asymmetric potential and a time-dependent,
homogeneous feedback control force. The control target is the
time-delayed mean particle position relative to a switching
position, z0. The dynamical properties are mainly studied with
a Fokker-Planck equation, where the time-delayed feedback
force is introduced ad hoc. In addition, we have established
a connection to a corresponding Langevin equation with
mean-field coupling.

To explore the transport properties of our system we have
investigated the net current in dependence of the parameters of
the control force, that is, delay time, amplitude, and switching
position. Our results clearly show that the time delay involved
in the feedback protocol is essential for the creation of a ratchet
effect and, thus, for a nonzero net current. A further important
ingredient is the discontinuous dependence of the feedback
force on the control target.

An important question for every feedback-controlled sys-
tem is its efficiency relative to a comparable system under
open-loop control. We have found, indeed, that for a certain
range of switching positions (and not too large delay times),
the net current is enhanced relative to the open-loop system.
At the same time, however, the work performed on the particle
is larger in the feedback-controlled system. This finding is
somehow in contrast to a recent result for another ratchet
system [3] where, at the same time, the current was enhanced
and the work was reduced by feedback control. Given these
subtleties, it seems worthwhile to investigate in more detail
the thermodynamic properties of our model system, including
fluctuation theorems and the Jarzynski relation [3,12]. Another
interesting question is to which extent the present feedback
scheme, which relies on the (time-delayed) mean particle
position as a control target, could be improved to realize, e.g.,
a larger net current. In fact, as indicated in Fig. 7, the current
J does not exceed its value pertaining to the adiabatic limit,
at least not for the range of switching positions considered
here (recall that this range has been chosen such that the time-
averaged force is close to zero). Therefore, it would be interest-
ing to see whether larger values of J are achievable by choosing
another control target (involving, e.g., the force rather than the
mean position) or by an otherwise modified control protocol.

So far, there exists no direct experimental realization
of the system proposed here, but the main ingredients are
already well established. Indeed, ratchet potentials acting on
colloids can be easily realized by using laser beams [10,43,46]

(optical line trap), and the position of a colloidal particle
(or the mean position of many particles) is accessible, e.g.,
by video microscopy. Moreover, feedback control based on
the particle position (or mean position) has already been
realized experimentally, e.g., in the context of a feedback-
controlled flashing ratchet [10] and a Maxwell demon [1].
Another ingredient, which is indeed crucial in our system,
is the presence of a time delay. Experimentally, delay arises
from various factors [9], including the time for numerical
determination of particle positions via the camera and the time
for the decision whether to switch the force. In experiments this
delay time is about 5–10 ms [9,10] for systems with very few
particles and about 60 ms for a large system containing many
particles (N ≈ 102–103), where larger images are required.
To judge the impact on transport properties such as J , these
experimental data for τD have to be compared with the intrinsic
(“Brownian”) time scale τ = σ 2/D0 of a colloidal system.
The latter time is about 1 s � τ � 100s (for particle sizes of
1 μm � σ � 10 μm and diffusion constants D0 ≈ 10−13m2/s
for colloids in an aqueous solution [10,41–44]); therefore, one
typically has τ > τD. According to the results presented in
Fig. 7, this is just the regime of ratios τD/τ , where the current
strongly deviates from the adiabatic limit and, in particular,
can be larger than in the open-loop protocol. Therefore, we
hope that our study will stimulate not only further theoretical
work but also experiments.
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APPENDIX

In this appendix we discuss the connection of the FPE (1)
and the Langevin equation,

γ χ̇i(t) = −V ′(χi) + FN
fc (mN (t − τD)) +

√
2γ kBT ξi(t) ,

(A1)

where V (χi) is given by Eq. (2), ξi(t) represents Gaussian
white noise, i ∈ {1, . . . ,N}, and

FN
fc (t) = −F sgn[mN (t − τD) − z0] (A2)

with

mN (t) = 1

N

N∑
i=1

χi(t) . (A3)

Thus, mN is the average of the positions of the N particles.
For the special case N = 1, one has obviously m1(t) =

χ1(t) and thus FN=1
fc (t) = −F sgn[χ1(t − τD) − z0]. Then

Eq. (A1) has the form discussed in earlier studies on delayed
Langevin equations, see, e.g., Refs. [34–36]. For such systems,
the problem in going from the Langevin equation to the FPE is
that the feedback control force depends on the full microscopic
(stochastic) trajectory of the particle in phase space up to
time t. Therefore, the resulting FPE involves the conditional
probability that the particle was at position z′ at time t − τD

given that it is at position z at time t . An FPE which is
formally similar to the usual one [involving only ρ(z,t)] can
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then be obtained by introducing a “delay-averaged force”, that
is, the integral over space of FN=1

fc (t) times the conditional
probability [32,34].

Now we consider the “mean-field” limit N → ∞. For
each time t , averaging over an infinite number of particles is
equivalent to averaging over the infinite number of realizations
of the stochastic force. Therefore, the quantity mN in Eq. (A3)
becomes identical to the ensemble-averaged particle position,
i.e., limN→∞ mN (t) = z̄(t). As a consequence, the force FN

fc (t)
does no longer depend on a stochastic quantity, in other words,
the information about the individual stochastic trajectories at
time t − τ is no longer required. In the “mean-field” limit,
we can thus consider the feedback force as a conventional
time-dependent force entering the “mean field” version of
Eq. (A1), that is,

γ χ̇ (t) = −V ′(χ ) + Ffc(z̄(t − τD)) +
√

2γ kBT ξ (t) . (A4)

From Eq. (A4), we can derive the FPE in the standard way,
i.e., by using the Kramers-Moyal (KM) expansion [33]. The
calculations are, in principle, straightforward; in particular,

there is no problem with multiplicative noise in the mean-field
limit. The only uncommon issue arises through the fact that
our feedback force changes its sign abruptly when z̄(t − τD)
crosses z0. We thus consider in more detail the first (“drift”)
KM coefficient,

D(1)(z,t) = lim
τ→0

1

τ
〈(χ (t + τ ) − z)χ(t)=z〉 . (A5)

The expression in brackets is evaluated through

χ (t + τ ) − χ (t) =
∫ t+τ

t

dt ′ χ̇ (t ′), (A6)

which can be treated by inserting Eq. (A4) for χ̇ into Eq. (A6)
iteratively (see Ref. [33]). Due to the limit τ → 0 and the noise
average incorporated in D(1) [see Eq. (A5)], all terms O(τ 2)
as well as terms involving 〈ξ (t)〉 vanish. The remaining task is
to evaluate the term

I (t) = lim
τ→0

1

τ

∫ t+τ

t

dt ′ Ffc(z̄(t ′ − τD)) . (A7)

The problem with Eq. (A7) is that if Ffc(z̄(t ′ − τD)) changes
its sign in the interval [t,t + τ ], the limit τ → 0 of I (t) does
not exist. Therefore, we make the assumption that the time
between two switching events has a lower bound, t∗. Further,
we define that at the switching times ts [when z̄(ts − τD)=z0]
the force Ffc(ts) is already set to the new value. For all τ in
the interval τ ∈ [0,t∗[ we then have Ffc(t + τ ) = Ffc(t). As
a consequence, Eq. (A7) yields I (t) = Ffc(z̄(t − τD)) and the
first KM coefficient becomes

D(1)(z,t) = 1

γ
[−V ′(z) + Ffc(z̄(t − τD))] . (A8)

With this expression (and the usual result D(2) = kBT /γ ), one
arrives directly at Eq. (1).

In order to check our argumentation, we have performed
Brownian dynamics simulations of Eq. (A1) for different
values of N . Representative results for the quantity mN (t)
are plotted in Fig. 12, where we have included corresponding
results for z̄(t) from the FPE. We see that the results become
fully consistent if N is sufficiently large.
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[29] E. Schöll and H. G. Schuster (Eds.), Handbook of Chaos Control

(Wiley, New York, 2007).
[30] M. Feito, J. P. Baltanás, and F. J. Cao, Phys. Rev. E 80, 031128

(2009).
[31] T. Munakata, S. Iwama, and M. Kimizuka, Phys. Rev. E 79,

031104 (2009).
[32] H. Jiang, T. Xiao, and Z. Hou, Phys. Rev. E 83, 061144 (2011).
[33] H. Risken, The Fokker-Planck Equation (Springer, Berlin,

1984).

[34] S. Guillouzic, I. L’Heureux, and A. Longtin, Phys. Rev. E 59,
3970 (1999).

[35] T. D. Frank, P. J. Beek, and R. Friedrich, Phys. Rev. E 68, 021912
(2003).

[36] C. Zeng and H. Wang, Chem. Phys. 402, 1 (2012).
[37] H. Kamegawa, T. Hondou, and F. Takagi, Phys. Rev. Lett. 80,

5251 (1998).
[38] C. Marquet, A. Buguin, L. Talini, and P. Silberzan, Phys. Rev.

Lett. 88, 168301 (2002).
[39] R. Bartussek, P. Hänggi, and J. G. Kissner, Europhys. Lett. 28,

459 (1994).
[40] M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993).
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