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2Departamento de Biofı́sica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil

(Received 3 March 2014; published 20 May 2014)

The Bose-Einstein condensation of noninteracting particles restricted to move on the sites of hierarchical
diamond lattices is investigated. Using a tight-binding single-particle Hamiltonian with properly rescaled hopping
amplitudes, we are able to employ an orthogonal basis transformation to exactly map it on a set of decoupled
linear chains with sizes and degeneracies written in terms of the network branching parameter q and generation
number n. The integrated density of states is shown to have a fractal structure of gaps and degeneracies with a
power-law decay at the band bottom. The spectral dimension ds coincides with the network topological dimension
df = ln (2q)/ ln (2). We perform a finite-size scaling analysis of the fraction of condensed particles and specific
heat to characterize the critical behavior of the BEC transition that occurs for q > 2 (ds > 2). The critical
exponents are shown to follow those for lattices with a pure power-law spectral density, with non-mean-field
values for q < 8 (ds < 4). The transition temperature is shown to grow monotonically with the branching
parameter, obeying the relation 1/Tc = a + b/(q − 2).
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I. INTRODUCTION

The thermodynamic behavior of model systems embedded
in complex networks has attracted the interest of the scientific
community over the past three decades [1–25], due to the
possibility of using powerful analytical techniques to provide
exact results for the thermodynamic properties of interacting
particles systems in lattices with discrete scale invariance.
A prominent example is the use of exact Migdal-Kadanoff
renormalization-group approach in hierarchical diamond lat-
tices [1–4], where it was demonstrated that many models
of interacting spins with nearest neighbor couplings are
exactly solvable [2]. In particular, reported in detail was the
topological properties of the diamond hierarchical lattice and
its thermodynamic signatures, with the free energy exhibiting
a well-defined thermodynamic limit for a large class of discrete
spin models [2]. Moreover, it was also shown that these lattice
models provide numerous examples of phase coexistence
and critical points at finite temperatures, including cases of
continuously varying critical exponents [3].

A historical question concerns whether calculations on hier-
archical lattices provide genuine insights into phase transitions
for the corresponding models on Bravais lattices. Previous
reports pointed out the similarities and differences between
the thermodynamic properties of hierarchical lattices and
their corresponding Bravais-lattice models [4]. Further, it was
demonstrated that the phase diagram for the polymerization
problem on the diamond hierarchical lattice is the same as that
expected for regular lattices [5]. In this context, the properties
of the phase transitions and their universality classes have been
investigated in a family of diamond-type hierarchical lattices
on which the Ising model is exactly solved [7]. Considering
both regular and fractal lattices, general criteria for the
classification of the universality classes were proposed in
which certain geometric factors were introduced to distinguish
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the critical behavior in regular and fractal lattices [7]. By using
a refined transfer-matrix procedure to investigate a disordered
short-range Ising model on the diamond hierarchical lattice,
the thermodynamic functions and the phase diagram were
obtained on the basis of the behavior of the correlation
length [14]. The critical behavior was also investigated in
the random q-state Potts model in the large-q limit on a
diamond hierarchical lattice, where it was observed that the
ferromagnetic-paramagnetic phase transition is controlled by
four different fixed points [10]. Moreover, it was reported
that a spin-glass condensation transition takes place in a non-
mean-field model, consisting in a hierarchical lattice where the
interaction strength between variables is a decreasing function
of their mutual hierarchical distance [13].

Recently, several works have been devoted to the investi-
gation of the thermodynamic behavior of ideal quantum gases
on complex networks [16–20,22,23,25,26]. In particular, it was
observed that the network topology plays a predominant role
in the thermodynamic properties of ideal quantum gases, espe-
cially in the Bose-Einstein condensation phenomenon (BEC).
The ideal Bose gas on star and comb graphs has been shown to
display a condensation transition due to the presence of hidden
states in the bottom of the energy spectrum [18–20,22,23]. By
using a tight-binding approach for noninteracting bosons, the
topology-induced Bose-Einstein condensation has also been
demonstrated to take place in the deterministic scale-free
Apollonian network [17], with the transition temperature and
the gap between the ground and first excited states exhibiting
the same diverging finite-size scaling law. Such a diverging
scaling behavior is associated with the enhancement in the
number of connections as new generations are included at
the Apollonian network, thus leading to a diverging energy
bandwidth and an ill-defined thermodynamic limit. However,
a proper rescaling of the tight-binding parameters regularizes
the energy spectrum [25,26], providing the characterization of
the critical behavior of the condensed fraction, correlation size,
and specific heat. More specifically, the critical exponents and
the power-law behavior of the density of states near the band
bottom indicated that the BEC condensation in the Apollonian
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network belongs to the universality class of the ideal BEC
in lattices with spectral dimension ds ≈ 3.74. Therefore,
hierarchical scale-free networks appear as prototype lattice
geometries on which analytical and numerical techniques can
be employed to explore the critical behavior of the BEC
transition.

In this work, we provide the exact solution for the
thermodynamic behavior of the ideal Bose gas in a family of
hierarchical diamond lattices with varying fractal dimensions.
After a proper change of the orthonormal basis, we show that
the single-particle tight-binding Hamiltonian on diamondlike
lattices can be written as a set of noninteracting Hamiltonians
on linear chains with distinct sizes and degeneracies. In
particular, we show that the resulting energy spectrum exhibits
a fractal distribution of minibands and gaps, with the overall
spectral dimension coinciding with the underlying fractal
dimension of the lattice. From the exact single-particle energy
spectrum, we determine the thermodynamic properties of
the ideal Bose gas on such family of hierarchical networks
whose critical behavior can be tuned from non-mean-field
to mean-field-like by changing the geometric aspect of the
elementary lattice cell.

II. DIAMOND HIERARCHICAL LATTICES

In this work, we will consider a gas of noninteracting bosons
occupying the sites of a diamond hierarchical lattice. Such
lattice is constructed recursively starting from a single link
corresponding to the generation n = 0. The generation n = 1
consists of q branches in parallel, each one containing two
bonds in series (see Fig. 1). The next generation n = 2 is
obtained by applying the same transformation to each bond of
the generation n = 1. At generation n, the length Ln measured
by the number of bonds between the two extreme sites is
Ln = 2n, and the total number of bonds is Un = (Ln)df where
df = ln (2q)/ ln (2) represents the effective dimensionality.

A. Some numbers

At generation n = 0 the diamond has two nodes and one
bond. Here we will consider diamond fractals with q legs. At
each new generation, a bond gives rise to q new nodes and it
is replaced by 2q new bonds. Therefore, if Nn is the number
of nodes at generation n and Un is the number of bonds,

FIG. 1. (Color online) Schematic representation of the construc-
tion of the first generation of the diamond hierarchical lattice with
q = 5 branches from the generation 0 lattice.

one has

Nn+1 = Nn + q Un, Un+1 = 2q Un (1)

with initial conditions N0 = 2 and U0 = 1. At generation n,
the solution is

Nn = q (2 q)n + 3 q − 2

2 q − 1
, Un = (2 q)n (2)

for large q the number of nodes is proportional to the number
of bonds (Nn � q

2q−1 Un).
The connectivity of the two initial nodes of generation

n = 0 equals 1, furthermore, the connectivity of each existing
node is updated by a factor q at any new generation and the
connectivity of each new created node equals 2. Therefore,
connectivities can take only the values 2 qm with 0 � m �
n − 1 and qn (for the two initial nodes). More precisely, the
number Nn(k) of nodes with connectivity k is 2 if k = qn,
Nn(k) = q (2 q)n−m−1 if k = 2 qm and 0 otherwise. Obviously,

∞∑
k=0

Nn(k) = 2 +
n−1∑
m=0

q (2 q)n−m−1 = Nn. (3)

The average connectivity is k̄ is given by

k̄ = 1

Nn

∞∑
k=0

Nn(k) k = 1

Nn

[2 qn + n q (2 q)n−1] (4)

which, given Nn � q

2q−1 (2q)n, implies k̄ � cq n for large n.
Notice that cq = (2q − 1)/2q slowly increases with q and it
is always smaller than unity.

B. Tight-binding Hamiltonian and its energy spectrum

The tight-binding model is defined assuming that the
single-particle Hamiltonian on the diamond network of
generation n is

Hn =
∑
i,j

2t√
ki kj

(|i〉〈j | + |j 〉〈i|), (5)

where 2t is the hopping energy and ki , kj indicate the
connectivity of nodes i and j respectively. Such rescaling of
the hopping amplitudes is essential to regularize the energy
spectrum in the thermodynamic limit [25,26]. The sum goes
on all bond-connected pairs of nodes (therefore, the sum goes
on all Un possible bonds). The number of eigenvalues of the
Hamiltonian must equal the number of states |i〉 which, in turn,
equals the number Nn of nodes i.

An analytical approach based on a change of basis can
decouple the Hamiltonian into several uncoupled, noninter-
acting parts. Such scheme has been previously used to reveal
the possibility of an insulator-metal crossover in a class of
disordered systems in quasi-one dimension as well as in two
dimensions [27–29]. We show (see the Appendix) that after a
proper change of the orthonormal basis, the Hamiltonian can
be rewritten as

Hn =
n−1∑
m=1

g(m)∑
r=1

�r,m +
q−2∑
r=1

�r,n + �n+1, (6)

where g(m) = (q − 1) (2q)n−m and the system is decomposed
in noninteracting parts, each of them associated to one of
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the different �r,m or to �n+1. The auxiliary Hamiltonians
�r,m correspond to open chains of length 2m − 1 and hopping
energies t , i.e.,

�r,m = t

2m−2∑
l=1

(|m,r,l〉〈m,r,l + 1| + |m,r,l + 1〉〈m,r,l|), (7)

where different pairs of r,m corresponds to different chains.
Notice that the �r,1 are vanishing Hamiltonians corresponding
to isolated points. Furthermore, the auxiliary Hamiltonian
�n+1 corresponds to a closed chain of length 2n+1 and hopping
energies t , i.e.,

�n+1 = t

2n+1∑
l=1

|n + 1,1,l〉〈n + 1,1,l + 1|

+
2n+1∑
l=1

|n + 1,1,l + 1〉〈n + 1,1,l| (8)

with the periodic condition |n + 1,1,l〉 = |n + 1,1,l + 2n+1〉.
The noninteractivity of the various parts of the Hamiltonian is
assured by the orthonormality conditions 〈a,b,c|a′,b′,c′〉 =
δa,a′δb,b′δc,c′ where δ indicates the Kronecker δ and
a,b,c,a′,b′,c′ can take all possible values corresponding to
(7) and (8).

Since the �r,m have 2m − 1 eigenvalues and �n+1

has 2n+1 eigenvalue, the total number of eigenvalues is∑n−1
m=1 g(m)(2m − 1) + (q − 2)(2n − 1) + 2n+1 = Nn as it

must be.
The full spectrum of eigenenergies can be directly obtained

by recalling that, for an open chain of length L, they are
given by

En = 2t cos
2πn

L + 1
, n = 1,2, . . . ,L, (9)

while the eigenenergies for a closed chain are

En = 2t cos
2πn

L
, n = 0,1, . . . ,L − 1. (10)

As a consequence, the energy spectrum ranges from −2t <

E < 2t with distinct degrees of degeneracies. The integrated
density of states (IDOS) near the bottom of the energy
band is shown in Fig. 2 for a set of representative diamond
lattices with distinct values of q. The reported results were
obtained from lattices with n = 14 generations. The vertical
segments signal degenerated energies. The regularity of the
jumps in the double logarithmic scale shown, which are
bounded by an overall power-law growth (dashed lines),
reflects the power-law scaling behavior of the degeneracy
degree as one approaches the band bottom. Such fractal aspect
of the single-particle energy spectrum is commonly obtained in
tight-binding quasiperiodic and hierarchical lattices [30–34].
The vanishing of the IDOS at the bottom of the energy
band scales as (E − E0)ds/2, on which the spectral dimension
ds coincides with the fractal dimension df of the lattice
[ds = df = ln (2q)/ ln (2)].
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FIG. 2. (Color online) Integrated density of states (IDOS) of the
single-particle tight-binding Hamiltonian on hierarchical diamond
lattices with distinct number of branches (q = 2, 3, 4, and 6 from
bottom to top). Data were obtained from lattices with n = 14
generations. Only the behavior near the band bottom is represented.
The stepwise form signals the different scales of level degeneracy.
The IDOS presents an overall power law, vanishing near the band
bottom proportional to (E − E0)ds /2, with ds = df = ln (2q)/ ln (2).

III. BOSE-EINSTEIN CONDENSATION IN
DIAMOND LATTICES

The possibility of tuning the power-law behavior at the band
bottom by changing the branching parameter q of hierarchical
diamond lattices opens the possibility to explore distinct
thermodynamical regimes of the ideal Bose gas having a finite
density of particles distributed on the lattice sites. It is well
known that the occurrence of a condensation transition and its
critical properties of the ideal Bose gas is strongly dependent
of the space dimensionality in homogeneous media [35–37].
In these systems, the spectral dimension ds coincides with the
space dimensionality d. No Bose-Einstein condensation takes
place for d � 2, while a mean-field-like transition occurs for
d > 4 with the specific heat at the transition temperature Tc

developing a jump discontinuity and the typical correlation
length diverging as ξ ∝ |T − Tc|−ν with ν = 1/2. For in-
termediate dimensions, one has a non-mean-field transition
with specific-heat critical exponent α = −(4 − d)/(d − 2)
and ν = 1/(d − 2). In both mean-field and non-mean-field
regimes, the order parameter (measured as the fraction of
particles occupying the ground state) vanishes linearly as the
transition temperature is approached from below.

Here, we will consider an ideal Bose gas of unitary density
having, in average, one particle per lattice site. Without any
loss of generality, all eigenenergies will be shifted so that
the ground state energy will be set to E0 = 0. The average
number of particles occupying a given state 〈ni〉 obeys the
Bose-Einstein statistics

〈ni〉 = 1

z−1 exp βEi − 1
, (i = 0,1, . . . N − 1), (11)

where z = exp (βμ) is the fugacity, β = 1/kBT , and N is the
number of lattice sites. The fugacity can be obtaining by im-
posing the constraint Nb = ∑N−1

i=0 〈ni〉, where Nb is the number
of bosons present in the network (we consider Np = N in the
following numerical study). The extension of the following
results for ideal Bose gases with distinct particle densities is
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FIG. 3. (a) Condensed fraction N0/N and (b) Specific heat
Cv/NkB as a function of temperature for diamond networks with
branching parameter q = 3 (ds = ln 6/ ln 2 = 2.585; circles), q = 4
(ds = ln 8/ ln 2 = 3; squares), and q = 10 (ds = ln 20/ ln 2 = 4.322;
triangles). Data were obtained from networks with n = 10 gen-
erations. The condensed fraction vanishes linearly irrespective to
the value of the spectral dimension. The specific heat becomes
discontinuous for ds > 4 (q > 8).

straightforward. Although the transition temperature at which
Bose-Einstein condensation occurs monotonically increases
with the particle density, the qualitative features associated
with the critical behavior of the condensation transition
remains the same.

The average number of particles occupying the ground state
is given by N0 = 1/(z−1 − 1). We will use the fraction of
particles occupying the ground state ρ = N0/N as the order
parameter of the BEC transition. The specific heat Cv can be
directly obtained as Cv = ∂U/∂T |N where U is the internal
energy of the gas given by U = ∑N−1

i=0 Ei〈ni〉. After a short
algebra, it can be put in the form

4kBT 2Cv =
[∑

i

E2
i sinh−2 (yi) −

[∑
i Ei sinh−2 (yi)

]2∑
i sinh−2 (yi)

]
,

(12)

with yi = (Ei − μ)/2kBT .
In Fig. 3 we plot the condensed fraction and specific heat

as a function of temperature for some representative values
of the branching parameter q = 3, 4, and 10 of the diamond
network. These q values correspond, respectively, to spectral
dimensions ds = 2.585, 4, and 4.322. Numerical data were
obtained from networks with n = 10 generations and a unitary
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FIG. 4. Transition temperature kBT /t as a function of the
branching parameter q. It saturates at a finite value as q → ∞ while
it vanishes as q → 2. Inset: The inverse of the transition temperature
as a function of 1/(q − 2). The linear fit represents the proposed
relation t/kBTc = a + b/(q − 2) with a = (1/

√
6 − 1/6e) = 0.347

and b = 1/e = 0.368.

average number of bosons per site. For q = 2 there is no
condensed phase. The transition temperature continuously
increases with q. The condensed fraction vanishes linearly
as the transition is approached, irrespective to the value of
q. This result is in agreement with the theoretical prediction
that the order parameter critical exponent β = 1 for the BEC
transition. The specific heat depicts distinct trends in the
vicinity of the transition. For q > 8 (ds > 4) it develops a
jump discontinuity at the transition. It becomes continuous
at the transition but with a discontinuous first derivative for
4 � q � 8 (3 � ds � 4). Finally, for 2 < q < 4 (2 < ds < 3)
its first derivative remains continuous at the transition, with
singularities being only present at higher orders. The above
regimes are also in agreement with the behavior expected for
the specific heat singularity in lattices with power-law spectral
density: α = 0 (meaning a discontinuity) for ds > 4; −1 <

α < 0 for 3 < ds < 4; and α < −1 for 2 < ds < 3) [35,36].
The dependence of the transition temperature on the branch-

ing parameter q is reported in Fig. 4. It grows monotonically
before saturating in the q → ∞ limit. It is interesting to
notice that at the onset of the mean-field critical behavior
q = 8, the transition temperature kBTc/t = √

6 within our
numerical accuracy. In the inset, we plot the inverse of the
transition temperature versus 1/(q − 2). It displays a linear
relationship that holds in the entire range of q values. We
found that the numerical values of the transition temperature
quite closely follow the analytical relation t/kBTc = (1/

√
6 −

e−1/6) + e−1/(q − 2).
Finally, we performed a finite-size scaling analysis to

accurately compute some relevant critical exponents. At the
transition temperature, the fraction of condensed particles
shall vanish as N0/Nb = ρ ∝ N−β/ν̃ . Here ν̃ = dsν. Further,
the shift in the specific heat at the transition obeys �Cv =
|Cv(N ) − Cv(N → ∞)| ∝ Nα/ν̃ . The correlation length crit-
ical exponent can be estimated from the scaling behavior
d ln ρ(T ,N)

dT
|c ∝ N1/ν̃ . In Fig. 5, we show the above scaling

analysis for the particular case of q = 3. All three quantities
follow straight power-law behaviors for over six decades, thus
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FIG. 5. Scaling behavior at criticality of the order parameter ρ =
N0/N (circles), the inverse of its logarithmic derivative d ln ρ/dT

(squares), and the specific heat shift �Cv = Cv(N ) − Cv(N →
∞) (triangles). Data are from diamond networks with branching
parameter q = 3. The finite-size scaling exponents are consistent
with the expected values for the BEC transition in lattices with
spectral dimension ds = ln 6/ ln 3 = 2.585, namely β/ν̃ = 1/ν̃ =
(ds − 2)/ds = 0.226 and α/ν̃ = −(ds − 4)/ds = −0.547.

evidencing that corrections to scaling are very small for the
system sizes considered. The slopes give the estimates of the
critical exponents. The spectral density is ds = 2.585 < 4 for
this particular network and, therefore, the critical behavior is
non-mean-field like. According to the general theory for the
BEC transition of ideal gases, these exponents are expected
to be given by β/ν̃ = 1/ν̃ = (ds − 2)/ds = 0.226 and α/ν̃ =
−(4 − ds)/ds = −0.547 [35,36]. The straight lines plotted in
Fig. 5 correspond to power laws with these specific exponents
and nicely fit the numerical data. We have performed a similar
scaling analysis for other values of q and the estimated
exponents were always in agreement with the above relations.

IV. SUMMARY AND CONCLUSIONS

In summary, we have characterized the Bose-Einstein
condensation transition of noninteracting particles in hierar-
chical diamond networks. The single-particle Hamiltonian was
written within the tight-binding framework, with the hopping
amplitude between two neighboring sites of the diamond
network being normalized by the geometric average of the
respective site connectivities. This procedure was used to
keep the bandwidth of the energy eigenvalues finite in the
thermodynamic limit.

We demonstrated analytically that, after a proper change
of the orthonormal basis set, the single-particle tight-binding
Hamiltonian in a hierarchical diamond network with n gen-
erations and branching parameter q can be exactly written
as a set of decoupled linear chains with a single hopping
amplitude t . The sizes and degeneracies of each effective
linear chain has been put in terms of the network pair of
parameters (q,n), ranging from (q − 1)(2q)n−1 single point
Hamiltonians up to a single closed chain with 2n+1 sites. The
proposed transformation allowed us to compute analytically
the full spectrum of energy eigenvalues for very large network
sizes. In particular, we unveiled that the spectrum has a
fractal-like distribution of minibands and gaps. The integrated

density of states (IDOS) has an overall power-law behavior
[IDOS ∝ (E − E0)ds/2], with the spectral fractal dimension
coinciding with the topological fractal dimension of the
underlying diamond network ds = df = ln (2q)/ ln (2).

The thermodynamics of the ideal gas on diamond networks
with distinct branching parameters q was explored, with
particular emphasis on the occurrence of a Bose-Einstein
condensation (BEC) transition. For networks with q > 8
(ds > 4), the BEC transition was shown to be mean-field like,
with the specific heat Cv depicting a discontinuity jump at Tc.
In the non-mean-field regime, the specific heat is continuous
at the transition. Its first derivative remains discontinuous for
4 � q < 8 (3 � ds < 4), while only higher order singularities
at Cv are present for 2 < q � 4 (2 < ds � 3). There is no
transition for q = 2. The transition temperature was shown
to monotonically increase with q. We found the numerically
estimated values for Tc to closely follow the relation t/kBTc =
a + b/(q − 2).

A finite-size scaling analysis was employed to estimate
the order parameter, correlation length, and specific heat
critical exponents. We found that these exponents are, within
our numerical accuracy, identical to those on lattices with
pure power-law spectral density, namely β/dsν = 1/dsν =
(ds − 2)/ds , α/dsν = −(4 − ds)/ds for ds � 4 (q � 8), while
they assume mean-field values for ds > 4 (q > 8). Therefore,
hierarchical diamond networks appear as a simple framework
to investigate the critical behavior of the BEC transition in
distinct dimensionalities through an exact map onto a set of
decoupled linear chains. Future studies of the BEC transition in
complex hierarchical networks can bring new insights on how
new ingredients such as interparticle interactions and disorder
affect the critical behavior in different dimensional regimes.
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APPENDIX

We start our proof by illustrating the basic change process
in Fig. 6. Suppose that one has a structure as in the left
side of Fig. 6. The tight-binding partial Hamiltonian of this
subsystem is

Hp = t

q∑
h=1

2m−2∑
l=1

|h,l〉〈h,l + 1| + s|up〉
q∑

h=1

〈h,2m − 1|

+ s|down〉
q∑

h=1

〈h,1| + c.c., (A1)

where c.c. is the complex conjugate. Notice that we use here a
different notation with respect to Sec. II: |up〉 and |down〉 are
the two local states corresponding to the up and down nodes
in the figure while the other states are numbered according to
their horizontal position h and the vertical position l of the
corresponding nodes. The up and down nodes are eventually
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FIG. 6. (Color online) In the figure q = 3 and m = 3 (therefore,
2m − 1 = 7). Notice that m can range from 1 to n. The case m = 1
corresponds to the first step of the iteration which allows for the first
decomposition of the Hamiltonian which creates q − 1 isolated points
for any of the (2q)n−1 corresponding structures in the diamond.

connected with other parts of the system. We assume orthonor-
mality 〈r,l|r ′,l′〉 = δr,r ′δl,l′ , 〈up|up〉 = 〈down|down〉 = 1 and
〈up|r,l〉 =〈down|r,l〉 =〈up|down〉 = 0.

It is always possible to transform the orthonormal basis |r,l〉
in a new orthonormal basis |�r,l〉 according to

|�r,l〉 =
q∑

h=1

Ar,h|h,l〉 (A2)

for 1 � r � q, where the Ar,h are independent on l, which
means that the same transformation is performed at any vertical
position in Fig. 6. The Ar,h can be always chosen in order that
〈r,l�|�r ′,l′〉 = δr,r ′δl,l′ (orthonormality) and AL,h = 1/

√
q.

With this choice

|�q,l〉 = 1√
q

q∑
h=1

|h,l〉 (A3)

FIG. 7. (Color online) In the figure q = 3 and n = 3 (therefore,
2n − 1 = 7). The up and down nodes only connect to the shown
nodes. The transformation is made once involving all q columns and
then backward involving only the first two columns.

and the partial Hamiltonian (13) rewrites as

Hp = t

q∑
h=1

2m−2∑
l=1

(|�h,l〉〈h,l + 1�| + s
√

q |up〉 〈q,2m − 1�|

+ s
√

q |down〉 〈q,1�|) + c.c., (A4)

which corresponds exactly to the system in the right-hand side
of Fig. 6 since the up and down nodes are only connected
to a single spin in the subsystem (while eventually remaining
connected to other parts of the system).

Now we observe that the diamond network of generation
n has initially (2q)n−1 structures as in the left-hand side of
Fig. 6 corresponding to m = 1. Therefore, the first step of the
iteration creates g(1) = (q − 1) (2q)n−1 isolated points.

Since the connectivity of each node is updated by a factor
q at any new generation and the connectivity of each new
created node equals 2, we immediately observe that, after the
first iteration, the new network has (2q)n−2 structures as in the
right-hand side of Fig. 6 correspondingly to m = 2. Therefore,
the second step of the iteration creates g(2) = (q − 1) (2q)n−2

open chains of length 22 − 1 = 3.
The procedure can be iterated until one remains with g(m)

open chains of length m for any 1 � m � n − 1 plus the
structure which is shown in the left-hand side of Fig. 7. This
structure is analogous to the structure shown in Fig. 6 with
the difference that now up and down nodes correspond to the
two initial nodes and they have only connections shown in the
figure. Also notice that now the vertical length is 2n − 1 where

FIG. 8. (Color online) In the figure q = 3 and n = 2. The hop-
ping energies of the diamond have two possible values: t

√
2/9 (bonds

connecting the two initial nodes) and t
√

1/3 (other bonds). After the
first step g(1) = (q − 1) (2q)n−1 = 12 isolated nodes are created and
a structure with hopping energies with two possible values: t

√
2/3

(bonds connecting the two initial nodes) and t (other bonds). After
the third step, the structure is replaced by two open chains of length
2n − 1 with all having hopping energies t and one open chain of
length 2n + 1 with hopping energies with two possible values: t

√
2

(bonds connecting the two initial nodes) and t (other bonds). After
the final step, one open chain of length 2n − 1 and the open chain
of length 2n + 1 are replaced by a single periodic chain of length
2n+1 and hopping energies t . The final result is a collection of
various chains of different sizes, all of them having a single hopping
energy t .
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n is the generation number of the network. Their hopping
energy is t

√
2/q with each of their q connected nodes.

At this point, one can proceed as in (A1)–(A4) and show
that the system is equivalent to the system shown in the central
part of Fig. 7.

The final step of our proof is now very simple since one
can consider the first two open chains of lengths 2n + 1 and
2n − 1 respectively and perform backward the transformation
(A1)–(A4) only on these two chains. The final result, shown

at the right hand side of Fig. 7, consists in q − 2 open chains
of length 2n − 1 and a single periodic chain of length 2n+1.

Finally the result is that the (q legs, generation n) diamond
Hamiltonian is equivalent to the Hamiltonian of a system
composed by g(m) = (q − 1) (2q)n−m open chains of length
m for any 1 � m � n − 1, q − 2 open chains of length 2n − 1
and a single periodic chain of length 2n+1. The complete
procedure is illustrated in Fig. 8 in the case q = 3 and
n = 2.
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