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Decay of a linear pendulum in a collisional gas: Spatially one-dimensional case
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An infinitely wide plate, subject to an external force in its normal direction obeying Hooke’s law, is placed in an
infinite expanse of a rarefied gas. When the plate is displaced from its equilibrium position and released, it starts
in general an oscillatory motion in its normal direction. This is the one-dimensional setting of a linear pendulum
considered previously for a collisionless gas and a special Lorentz gas by the present authors [T. Tsuji and K. Aoki,
J. Stat. Phys. 146, 620 (2012)]. The motion decays as time proceeds because of the drag force on the plate exerted
by the surrounding gas. The long-time behavior of the unsteady motion of the gas caused by the motion of the plate
is investigated numerically on the basis of the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation
with special interest in the rate of the decay of the oscillatory motion of the plate. The result provides numerical
evidence that the displacement of the plate decays in proportion to an inverse power of time for large time.
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I. INTRODUCTION

We consider a body in an infinite expanse of a gas. The
body is subject to an external force obeying Hooke’s law
(i.e., a restoring force in proportion to the displacement from
the equilibrium position) and is movable only along the line
parallel to the force. We call this system a linear pendulum.
If the body is displaced and released with an initial velocity,
then it starts an unsteady motion (in general, an oscillation
around the equilibrium position), but the motion decays as
time proceeds because of the drag force exerted on the body
by the surrounding gas. We focus our attention on the rate of
the decay of the motion of the body.

If we assume that the drag force is proportional to the speed
of the body, the motion of the body decays exponentially in
time. However, the drag force is not so simple, and we may
expect a different decay rate. This problem has been studied
mathematically [1] as well as numerically [2,3] when the
surrounding gas is a collisionless gas (a free-molecular gas or
the Knudsen gas), i.e., a gas that is so rarefied that collisions
between gas molecules can be neglected. These are extensions
of the earlier studies of the rate of approach to the final steady
motion of the body when it is subject to a constant external
force [1,4–7].

The mathematical study in [1] is for the case where the
body is a circular disk and the external force, obeying Hooke’s
law, acts perpendicularly on the disk. The gas molecules are
assumed to undergo specular reflection on the disk. Let us
denote by t∗ the time variable and by Xw(t∗) the displacement
(with sign) of the disk from the equilibrium position. Then,
the external force is expressed as −κXw(t∗) with a positive
constant κ . Initially, the disk is fixed with displacement Xw0,
and the gas is in a uniform equilibrium state at rest. At time
t∗ = 0, it is released with an initial velocity (parallel to the
external force). Then, the disk starts an unsteady motion, which
decays as time proceeds, i.e., Xw(t∗) → 0. In [1], it is proved
that there exist cases where Xw(t∗) decays monotonically
(without oscillation) and that in such cases the decay is slow
and algebraic, as described by

|Xw(t∗)| ≈ Cs/td+2
∗ , (1)

for sufficiently large t∗, where d (=1, 2, 3) is the dimension
of the problem and Cs is a positive constant. Subsequent
numerical studies [2,3] confirmed an algebraic decay even
in the case with many oscillations. However, since the
diffuse-reflection condition, rather than the specular-reflection
condition, was assumed in [2,3], the decay rate was different
and was proportional to 1/td+1

∗ , which is slower than Eq. (1).
These algebraically slow decays are attributed to a long-
memory effect peculiar to a collisionless gas [1,4]. In such a
gas, the molecules that are reflected by the disk at early times
may hit the disk again at later times. In contrast to a gas with
intermolecular collisions, such molecules transfer information
about the disk at an early stage directly to the disk at a later
stage and may affect the motion of the disk a long time later.
In other words, they give rise to a long-memory effect.

What happens when this long-memory effect is destroyed
is exemplified by the special Lorentz gas [3], where a special
type of interaction of gas molecules with a background is
introduced. It was shown numerically that, in this case, the
decay of the motion of the disk is faster than algebraic and more
or less exponential in time. This result suggests that a similar
fast decay is expected when there are collisions between gas
molecules because they also destroy the long-memory effect
peculiar to the collisionless gas.

The aim of the present paper is to investigate the same
problem, the decay of the linear pendulum, numerically when
the gas is collisional. Since this is a moving-boundary problem
in which the motion of the disk is coupled with that of the
gas, it is very hard to solve the Boltzmann equation with
the collision term numerically. Therefore, we simplify our
analysis (i) employing the Bhatnagar-Gross-Krook (BGK)
model [8,9] instead of the full Boltzmann equation and
(ii) restricting ourselves to the spatially one-dimensional case
(d = 1). In our recent paper [10], we discussed the singularities
(discontinuities and weaker singularities) in the solution of the
BGK equation produced by a moving boundary and proposed a
numerical method capable of describing the propagation of the
singularities. We also carried out a preliminary computation
of the decay of the linear pendulum in the spatially one-
dimensional case. In the present study, which is a continuation
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of [10], we adopt two different numerical methods: one is the
singularity-capturing method developed in [10] and the other
is the semi-Lagrangian method proposed in [11]. We will use
the latter method for long-time computation, confirming the
accuracy with the former method, which is more accurate but
computationally much more expensive.

II. FORMULATION OF THE PROBLEM

A. Problem, assumptions, and notations

Let us consider an infinitely wide plate without thickness
kept at a uniform and constant temperature T0∗ and immersed
in an infinite expanse of a rarefied ideal monatomic gas
at a uniform equilibrium state at rest with density ρ0∗ and
temperature T0∗. The plate is subject to an external restoring
force obeying Hooke’s law in its normal direction (Fig. 1) and
is movable in the same direction. Let t∗ be the time variable
and Xi be the Cartesian coordinates in space with the X1

axis taken perpendicular to the plate, and X1 = 0 indicates the
equilibrium position of the disk. Then, the restoring force F1

per unit area of the plate is expressed as

F1 = −M∗ω2
∗Xw(t∗), (2)

where Xw(t∗) is the position (X1 coordinate) of the plate at
time t∗, M∗ is the mass density of the plate (the mass of the
disk per unit surface), and ω∗ is the proper frequency of the
restoring force.

At time t∗ = 0, the plate is released from a position X1 =
Xw0 with an initial velocity Vw0 in the X1 direction. Then, it
starts an unsteady motion (in general, an oscillatory motion),
but the motion decays as time proceeds because of the drag
exerted on the plate by the surrounding gas. We investigate
the unsteady motion of the gas as well as that of the plate
numerically, with special interest in the long-time behavior
and the manner of the decay of the motion of the plate, under
the following assumptions:

(i) The behavior of the gas is described by the BGK model
of the Boltzmann equation [8,9,12–14].

(ii) The gas molecules undergo diffuse reflection on the
plate [12–14]. More specifically, the velocity of the molecules
reflected by the plate are distributed according to the (half-
range) Maxwellian distribution characterized by the velocity
and temperature of the plate and with the density determined
in such a way that there is no instantaneous net mass flow
across the plate.

(iii) Physical quantities do not depend on X2 and X3.

FIG. 1. A plate with a restoring force in a gas.

The present problem is a typical coupling problem of
unsteady motion of a rarefied gas and that of a body. Numerical
simulation of such types of problem, which may be called
coupled moving-boundary problems, are of current interest
in rarefied gas dynamics, and different approaches have been
attempted (see, e.g., [10,11,15–17]).

Prior to the formulation of the problem, the notations used
in the paper are summarized. First, we introduce (and repeat)
dimensional variables: t∗ is the time variable, Xi the Cartesian
coordinate system in space (cf. Fig. 1), ξi the molecular
velocity, Xw the position of the plate (X1 coordinate), and
Vw the velocity of the plate (X1 direction); ρ∗ is the density
of the gas, u1∗ the flow velocity of the gas in the X1 direction
(the other two components u2∗ and u3∗ are assumed to be
zero), T∗ the temperature of the gas, and f∗ the velocity
distribution function of gas molecules; ω∗ is the proper
frequency contained in the coefficient of Hooke’s law, M∗
the mass of the plate per unit area, G∗ the drag force (in the
X1 direction) acting on the plate per unit area, Xw0 the initial
position of the plate, and Vw0 the initial velocity of the plate.

We choose the reference time t0∗ and length L0∗ as

t0∗ = 1/ω∗, L0∗ = c0∗/ω∗, (3)

where c0∗ = √
2RT0∗ with R the gas constant per unit mass

(R = kB/mg with the Boltzmann constant kB and the mass
of a gas molecule mg). Then, we introduce the dimensionless
counterparts t , xi , ζi , xw, vw, ρ, u1, T , f , M, G, xw0, and vw0

as follows:

t = t∗/t0∗, xi = Xi/L0∗, ζi = ξi/c0∗, xw = Xw/L0∗,

vw = Vw/c0∗, ρ = ρ∗/ρ0∗, u1 = u1∗/c0∗, T = T∗/T0∗,

f = f∗/
(
ρ0∗/c3

0∗
)
, M = M∗/(ρ0∗L0∗),

G = G∗/
(
ρ0∗c2

0∗
)
, xw0 = Xw0/L0∗, vw0 = Vw0/c0∗. (4)

B. Basic equations

In the present problem, in which u2∗ = u3∗ = 0 and the
physical quantities are independent of x2 and x3, we can
eliminate the second and third components ζ2 and ζ3 of the
molecular velocity by considering the following marginal
velocity distribution functions g and h [18]:

[
g(x1, ζ1, t)

h(x1, ζ1, t)

]
=

∫∫ ∞

−∞

[
1

ζ 2
2 + ζ 2

3

]

× f (x1, ζ1, ζ2, ζ3, t)dζ2dζ3. (5)

More specifically, multiplying the original BGK equation and
its initial and boundary conditions by 1 and ζ 2

2 + ζ 2
3 and

integrating the results with respect to ζ2 and ζ3 from −∞ to ∞,
we obtain the equations and initial and boundary conditions
for g and h. That is, the equations are

∂

∂t

[
g

h

]
+ ζ1

∂

∂x1

[
g

h

]
= 1

K
ρ

([
1

T

]
M −

[
g

h

])
, (6a)

M = ρ

(πT )1/2
exp

(
− (ζ1 − u1)2

T

)
, (6b)
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⎡
⎢⎣

ρ

ρu1

3ρT/2

⎤
⎥⎦ =

∫ ∞

−∞

⎡
⎢⎣

g

ζ1g

(ζ1 − u1)2g + h

⎤
⎥⎦dζ1, (6c)

where M is the one-dimensional local Maxwellian at density
ρ, flow velocity u1 (in the x1 direction), and temperature T ;
K = (

√
π/2)l0∗/L0∗ is a parameter of the order of the Knudsen

number Kn = l0∗/L0∗, l0∗ = (2/
√

π )(c0∗/Acρ0∗) is the mean
free path of gas molecules at the equilibrium stat at rest at
temperature T0∗ and density ρ0∗, and Ac is a positive constant
contained in the original BGK model (Acρ∗ is the collision
frequency of a gas molecule) and is related to the viscosity μ0

at temperature T0∗ as μ0 = RT0∗/Ac. The initial conditions,
which correspond to the uniform equilibrium state at rest at
temperature T0∗ and density ρ0∗, are

g(x1, ζ1, 0) = E(ζ1), h(x1, ζ1, 0) = E(ζ1), (7)

where

E(ζ1) = π−1/2 exp
(−ζ 2

1

)
. (8)

The boundary conditions on the plate (diffuse reflection) are
given by

g(x1, ζ1, t) = σw±(t)E(ζ1 − vw(t)),

h(x1, ζ1, t) = σw±(t)E(ζ1 − vw(t)), (9)

for ζ1 − vw(t) ≷ 0 at x1 = xw(t) ± 0,

where

σw±(t) = ∓2
√

π

∫
ζ1−vw(t)≶0

[ζ1 − vw(t)]

× g(xw(t) ± 0, ζ1, t)dζ1. (10)

In Eqs. (9) and (10), the upper signs indicate the conditions on
the right surface of the plate, and the lower signs those on the
left surface (see Fig. 1).

The above initial- and boundary-value problem for the gas
should be completed by the equation of motion of the plate
and its initial condition, that is,

dxw

dt
= vw(t),

dvw

dt
= −xw(t) − G

M , (11a)

xw(0) = xw0, vw(0) = vw0. (11b)

Here, the dimensionless drag force G acting on the plate is
expressed in terms of the marginal g as

G = G+ + G−,
(12)

G± = ±
∫ ∞

−∞
[ζ1 − vw(t)]2g(xw(t) ± 0,ζ1,t)dζ1,

where the upper (lower) signs go together.
It should be noted that the problem for the gas,

Eqs. (6)–(10), and the problem for the plate, Eqs. (11)
and (12), are coupled through the boundary conditions (9)
and (10) and the drag (12). We solve these coupled problems
numerically by two different methods: One is the method
of characteristics proposed in [10] and the other is the
semi-Lagrangian method proposed in [11]. As discussed
in [10], the oscillating plate continuously produces different
types of singularities, such as discontinuities, in the velocity

distribution function in the gas. When the Knudsen number
is large, the singularities concentrate in a narrow range of
the molecular velocity component ζ1 and make the shape of
the velocity distribution functions g and h very complex. The
method of characteristics in [10] is designed in such a way
that it can describe the propagation and the localization of
the discontinuities and other weaker singularities accurately.
In fact, for a collisionless gas, the correct decay rate of the
displacement xw(t) can be obtained only when such a complex
shape is captured correctly [3]. However, since the method is
computationally expensive, it is not suitable for obtaining the
long-time behavior. The second method, the semi-Lagrangian
method, has no such difficulties though it cannot describe
the propagation of singularities and the complex shape of
the velocity distribution function correctly. As the first step,
we confirm the accuracy of the displacement xw(t) obtained
by the semi-Lagrangian method for a relatively long time
interval (0 < t � 102) by comparing it with an accurate
result based on the method of characteristics. This means
that we also confirm that the localization of the singularities
and the resulting complex shape of the velocity distribution
function do not affect the long-time behavior of Xw(t). Then,
we only use the semi-Lagrangian method to obtain longer-
time behavior (up to t ≈ 104), which is not obtainable by
the method of characteristics. This strategy is reasonable
because the singularities produced continuously by the os-
cillating plate decay rather quickly with time for a collisional
gas [10], so that they are expected to be harmless for the
computation of the very-long-time behavior. Since the method
of characteristics is explained in detail in [10], we will omit
it in the present paper and focus on the analysis based on the
semi-Lagrangian method.

III. PRELIMINARIES

In this section, we carry out some preliminary transforma-
tions of the basic system in order to make them more suitable
for the computation using the semi-Lagrangian method.

A. Relative coordinate systems

Following Appendix B in [10], we introduce the space
coordinate x̌1 relative to xw(t), the molecular velocity ζ̌1

relative to vw(t), and the new time variable ť , which is the
same as t , as

x̌1 = x1 − xw(t), ζ̌1 = ζ1 − vw(t), ť = t. (13)

Then, we define the functions ǧ, ȟ, ρ̌, ǔ1, and Ť for the new
variables as follows:

F̌(x̌1, ζ̌1, ť) = F(x̌1 + xw(ť), ζ̌1 + vw(ť), ť)

−E(ζ̌1 + vw(ť)) (F = g,h), (14a)

Ȟ(x̌1, ť) = H(x̌1 + xw(ť), ť) (H = ρ,T ),

ǔ1(x̌1, ť) = u1(x̌1 + xw(ť), ť) − vw(ť). (14b)

With these new independent and dependent variables, Eqs. (6)–
(10) are transformed into the following form: The BGK
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equation becomes(
∂

∂ť
+ ζ̌1

∂

∂x̌1
− v̇w(ť)

∂

∂ζ̌1

)[
ǧ

ȟ

]
= 1

K

[
Qg

Qh

]
, (15a)

[
Qg

Qh

]
= ρ̌

([
1

Ť

]
M̌ −

[
1

1

]
E(ζ̌1 + vw(ť)) −

[
ǧ

ȟ

])
, (15b)

M̌ = ρ̌

(πŤ )1/2
exp

(
− (ζ̌1 − ǔ1)2

Ť

)
, (15c)

⎡
⎢⎣

ρ̌

ρ̌ǔ1

3
2 ρ̌Ť

⎤
⎥⎦ =

⎡
⎢⎣

1

−vw(ť)
3
2 + v2

w(ť) − ρ̌ǔ2
1

⎤
⎥⎦ +

∫ ∞

−∞

⎡
⎢⎣

ǧ

ζ̌1ǧ

ζ̌ 2
1 ǧ + ȟ

⎤
⎥⎦dζ̌1,

(15d)

the initial condition is

ǧ(x̌1,ζ̌1,0) = 0, ȟ(x̌1,ζ̌1,0) = 0, (16)

and the boundary condition is[
ǧ

ȟ

]
(x̌1, ζ̌1, ť) = [σ̌w±(ť)E(ζ̌1) − E(ζ̌1 + vw(ť))]

[
1
1

]
,

for ζ̌1 ≷ 0 at x̌1 = ±0, (17a)

σ̌w±(ť) = σ̌eq±(vw(ť)) ∓ 2
√

π

∫
ζ̌1≶0

ζ̌1ǧ(±0,ζ̌1,ť)dζ̌1,

(17b)

σ̌eq±(x) = e−x2 ± x
√

π erfc (∓x). (17c)

The drag force (12) is transformed to

G(ť) =
∫ ∞

−∞
ζ̌ 2

1 ǧ(+0, ζ̌1, ť)dζ̌1 −
∫ ∞

−∞
ζ̌ 2

1 ǧ(−0, ζ̌1, ť)dζ̌1.

(18)

The initial- and boundary-value problem, Eqs. (15)–(18)
together with Eq. (11), is that for the plate at rest, and the effect
of its unsteady motion appears as an external force acting on
the gas molecules, i.e., the third term on the left-hand side of
Eq. (15a). In the long-time limit ť → ∞, each physical quan-
tity approaches its equilibrium value, e.g., limť→∞ xw(ť) = 0,
limť→∞ vw(ť) = 0, and limť→∞ g(x̌1,ζ̌1,ť) = E(ζ̌1 + vw(ť)) =
E(ζ̌1). Therefore, handling the deviations ǧ and ȟ from the
equilibrium has more advantage for accurate computation for
large t .

B. Integration along characteristics

Now we integrate Eq. (15) along its characteristics from ť0
to ť (>ť0) to obtain the following form (cf. Fig. 2):[
ǧ

ȟ

]
(x̌1, ζ̌1, ť)

=
[
ǧ

ȟ

]
(W (ť0; x̌1, ζ̌1, ť), Z(ť0; x̌1, ζ̌1, ť), ť0)

+ 1

K

∫ ť

ť0

[
Qg

Qh

]
(W (s; x̌1, ζ̌1, ť), Z(s; x̌1,ζ̌1,ť), s)ds, (19a)

Characteristic curve of 
the BGK equation in 
relative coordinate system

Position of the 
plate in relative 
coordinate system

FIG. 2. Schematic figure for integration along characteristics in
the x̌1 ť plane. For a given set of (x̌1,ζ̌1,ť), Eq. (19b) describes the
trajectory of a molecule in the x̌1 ť plane with s as a parameter. The
slope of the arrow in the figure corresponds to the molecular velocity
at the origin of the arrow.

W (s; x̌1, ζ̌1, ť) = x̌1 − [ζ̌1 + vw(ť)](ť − s) + xw(ť) − xw(s),

(19b)

Z(s; x̌1, ζ̌1, ť) = ζ̌1 + vw(ť) − vw(s). (19c)

Concerning Eq. (19a), if we integrate, respectively, (the
upper line), (the upper line)×ζ̌1, and (the upper line)×ζ̌ 2

1 +
(the lower line) and note that there is no contribution from
Qg and Qh, then we obtain the conservation laws in the form
corresponding to Eq. (19a). That is,

M0 =
∫ ∞

−∞
ǧ(W (ť0; x̌1,ζ̌1,ť), Z(ť0; x̌1,ζ̌1,ť), ť0)dζ̌1, (20a)

M1 =
∫ ∞

−∞
ζ̌1ǧ(W (ť0; x̌1, ζ̌1, ť), Z(ť0; x̌1, ζ̌1, ť), ť0)dζ̌1,

(20b)

M2 =
∫ ∞

−∞
ζ̌ 2

1 ǧ(W (ť0; x̌1, ζ̌1, ť), Z(ť0; x̌1, ζ̌1, ť), ť0)dζ̌1

+
∫ ∞

−∞
ȟ(W (ť0; x̌1, ζ̌1, ť), Z(ť0; x̌1, ζ̌1, ť), ť0)dζ̌1,

(20c)

where we have put

M0 = ρ̌ − 1, M1 = ρ̌ǔ1 + vw(ť),
(21)

M2 = 3
2 ρ̌Ť − (

3
2 + v2

w(ť) − ρ̌ǔ2
1

)
.

The conservation laws of this form are useful for the numerical
computation of the collision term [the terms containing Qg and
Qh on the right-hand side of Eq. (19a); see the last paragraph
of procedure (C) in the Appendix, subsection 3].

We solve the initial- and boundary-value problem,
Eqs. (15)–(18) with Eq. (11), numerically by the semi-
Lagrangian method using the form (19) rather than Eq. (15).
Since the detailed description of the numerical method is
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tedious, we put its outline in the Appendix and move on to
the results of computation.

IV. RESULTS OF NUMERICAL ANALYSIS

In this section, the numerical results obtained by the two
methods are presented. The results are shown in the original
coordinate system (x1, ζ1, t) rather than the relative coordinate
system (x̌1, ζ̌1, ť) [see Eqs. (13) and (14)]. First, the method
of characteristics [10] is used to investigate the singularities
produced by the moving plate, which are inherent to moving-
boundary problems (Sec. IV A). Then, we compare the results
by the two methods (Sec. IV B) for relatively large times t >

102 to confirm the accuracy of the semi-Lagrangian method.
Finally, the semi-Lagrangian method is used to investigate the
very-long-time behavior (up to t = 104) of the displacement
|xw(t)| of the plate (Sec. IV C).

Here we note that the parameters characterizing the present
problem are the dimensionless initial displacement xw0 and
velocity vw0 of the plate, the dimensionless density M of the
plate, and the effective Knudsen number K. In the present
paper, we only consider the case where the initial velocity of
the plate is zero (vw0 = 0).

A. Velocity distribution function

In our previous paper [10], we considered two problems:
One is the present problem where the oscillation of the
plate decays (Problem II there), and the other is the problem
where the plate undergoes a forced (not decaying) oscillation
(Problem I there). The latter is the problem of nonlinear
acoustic wave propagation in a half space (see also [19]). For
this problem, we explained the mechanism of the production
of the singularities in the solution by the oscillating plate and

their localization. We also demonstrated the resulting complex
shape of the velocity distribution function. Therefore, we avoid
repeating similar behavior for the decaying oscillation in the
present problem, showing only a few examples.

In Fig. 3, we show the marginal velocity distribution
function g(x1, ζ1, t) on the right side of the plate [x1 =
xw(t) + 0] as a function of ζ1 at t = 10 [Figs. 3(a)–3(d)] and
t = 20 [Figs. 3(e)–3(h)] for xw0 = 0.1, vw0 = 0, M = 2, and
K = 10 and 1. The solid line indicates the result for K = 10
and the bold dashed line that for K = 1; thin vertical dashed
line represents discontinuities. Panels (b), (c), and (d) are the
closeups of panels (a), (b), and (c) around ζ1 = 0, respectively,
and panels (f), (g), and (h) are the closeups of panels (e), (f),
and (g), respectively.

According to [10], the velocity distribution function in the
gas (including that on the plate) in the problems where the
plate is oscillating in its normal direction has the following
properties:

P1 The velocity distribution function may have several
discontinuities (and also the discontinuities of its derivative
with respect to ζ1) depending on the time and position under
consideration and on the trajectory of the plate.

P2 These discontinuities accumulate around ζ1 = 0 as
time goes on (localization).

P3 The derivative of the velocity distribution function
with respect to ζ1 may become large (i.e., |∂g/∂ζ1| � 1) at
the discontinuities.

P4 The discontinuity decays as time goes on in such a
manner that

Magnitude of discontinuity � C exp(−ρmint/K), (22)

where C is a positive constant, and ρmin is the minimum of ρ

along the molecular trajectory.

FIG. 3. Snapshot of the velocity distribution function g(x1, ζ1, t) versus ζ1 on the right side of the plate [x1 = xw(t) + 0] for xw0 = 0.1,
vw0 = 0, M = 2, and K = 10 and 1. The solid line indicates the result for K = 10 and the bold dashed line that for K = 1; the thin vertical
dashed line represents discontinuities. Panels (a)–(d) are at t = 10, and panels (e)–(h) at t = 20. Panels (b), (c), and (d) are the closeups of
panels (a), (b), and (c) around ζ1 = 0, respectively, and panels (f), (g), and (h) are the closeups of panels (e), (f), and (g), respectively.
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As one can see from Figs. 3(b)–3(d) and 3(f)–3(h), the
velocity distribution function for K = 10 is discontinuous. In
particular, Fig. 3(h) shows that there are some discontinuities
(property P1) at two different molecular velocities near ζ1 = 0
(property P2). The gradient |∂g/∂ζ1| is steep at some points
for K = 10, e.g., ζ1 ≈ −0.001 in panel (d), ζ1 ≈ −0.005
in panel (g), and ζ1 ≈ −0.000 16 in panel (h) (property
P3). These steep gradients actually diverge when K → ∞
(weak singularities; see [10]). In contrast, for an intermediate
Knudsen number, K = 1, we hardly see the discontinuities
because more frequent collisions between gas molecules tend
to attenuate the discontinuities (property P4). The decay of
the discontinuities with time (property P4) can be seen by
comparing panels (b) (t = 10) and (f) (t = 20). Even for
K = 1, we still observe a steep gradient in Fig. 3(h) though
the variation in g across this steep gradient is quite small (it is
about 2 × 10−4).

B. Comparison between the two methods

In [10], in addition to the accurate method of characteristics,
we also tried a finite-difference method with the essentially
nonoscillatory (ENO) scheme. For the problem of a forced
oscillation (Problem I in [10]), we demonstrated that the
latter method was not able to capture the complex shape of
the velocity distribution function for large and intermediate
Knudsen numbers. Nevertheless, concerning macroscopic
quantities, it could give surprisingly good results even for large
Knudsen numbers. Therefore, we also applied this method
to the present problem of decaying oscillation in [10] and
found that it was not able to reproduce the algebraic decay rate
xw(t) ≈ const × t−2 [see the paragraph containing Eq. (1)] for
a collisionless gas (Kn = ∞). However, for a collisional gas
with finite Kn, it could give good results for the time evolution
of the displacement xw(t).

These facts gave us hope to tackle the problem of finding the
decay rate of the plate using, in place of the computationally
expensive method of characteristics, a convenient method that
cannot describe the singularities in the velocity distribution
function accurately but is expected to give good results for
macroscopic quantities and time evolution of the displacement
xw(t). We have chosen the semi-Lagrangian method for this
purpose. This method has several advantages compared with
the finite-difference method with the ENO scheme attempted
in [10]. For instance, since the ENO scheme is basically an
explicit method, we have severe restrictions on the grid size
and time step. In contrast, the semi-Lagrangian method is much
more tolerant, so that we can use very fine grids near the plate
and coarse grids in the far field and very small time steps at
the initial stages and larger time steps at later times. Thus, we
can carry out an accurate long-time computation.

As one can see from Fig. 3, the magnitude of discontinuities
decreases for larger t or for smaller K (property P4). Therefore,
we expect that the macroscopic quantities, such as the drag
G, may not suffer from the complex shape of the velocity
distribution function with discontinuities for larger t or for
smaller K. This also supports the use of the semi-Lagrangian
method for the long-time computation to find out the decay
rate of the displacement xw(t).

In this subsection, we validate the semi-Lagrangian method
by the comparison of the results based on it with those obtained

FIG. 4. Comparison between the results by the method of
characteristics and those by the semi-Lagrangian method: Snapshot
of the velocity distribution function g(x1, ζ1, t) versus ζ1 near ζ1 = 0
on the right side of the plate [x1 = xw(t) + 0] for xw0 = 0.1, vw0 = 0,
M = 2, and K = 10. Panels (a) and (b) are at t = 10, and panels (c)
and (d) at t = 40. Panels (b) and (d) are the closeups of panels (a)
and (c) around ζ1 = 0, respectively. The bold solid line indicates the
results based on the method of characteristics and the small circles
with the bold dashed line those based on the semi-Lagrangian method;
the thin vertical dashed line represents discontinuities.

by the method of characteristics, which is summarized in
Figs. 4–6 and Table I. Figure 4 shows the comparison for
the snapshots of the velocity distribution function g(x1,ζ1,t)
versus ζ1 near ζ1 = 0 on the right side of the plate [x1 =
xw(t) + 0] for xw0 = 0.1, vw0 = 0, M = 2, and K = 10.
Panels (a) and (b) are at t = 10, and panels (c) and (d)
at t = 40. Panels (b) and (d) are the closeups of panels
(a) and (c) around ζ1 = 0, respectively. The bold solid line
indicates the results based on the method of characteristics
and the small circles connected by the bold dashed straight
line those based on the semi-Lagrangian method. Obviously,
the semi-Lagrangian method cannot describe the steep change
occurring near ζ1 = 0. However, the discrepancy takes place
only in the narrow range of ζ1, so that we can expect that this
discrepancy does not show up in the macroscopic quantities
(note that this discrepancy affects the results qualitatively in
the case of a collisionless gas [10]).

Figure 5 shows the comparison for the profiles (with
respect to the original space coordinate x1) of the macroscopic
quantities ρ, u1, and T at different times for xw0 = 0.1,
vw0 = 0, M = 2, and K = 1. Panels (a) and (d) are for ρ − 1,
panels (b) and (e) are for u1, and panels (c) and (f) are for
T − 1. Panels (a)–(c) show the results at t = 5, 10, 15, and
panels (d)–(f) those at t = 25, 50, 100. In the figure, the bold
dashed line indicates the results based on the method of charac-
teristics and the solid line those based on the semi-Lagrangian
method. The two results agree very well at each time t . This
supports our expectation mentioned at the end of the preceding
paragraph.
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FIG. 5. Comparison between the results by the method of characteristics and those by the semi-Lagrangian method: profiles of the
macroscopic quantities at different times for xw0 = 0.1, vw0 = 0, M = 2, and K = 1. (a) and (d) ρ − 1, (b) and (e) u1, (c) and (f) T − 1. Panels
(a)–(c) show the results at t = 5, 10, 15, and panels (d)–(f) those at t = 25, 50, 100. The bold dashed line indicates the results based on the
method of characteristics, and the solid line those based on the semi-Lagrangian method; the thin vertical dashed line indicates the position of
the plate. In panels (a)–(c), the closeups around x1 = 0 are also shown.

Figure 6 shows the comparison of the time evolution of the
amplitude |xw(t)| and the speed |vw(t)| of the plate for the
following four cases:

case 1: xw0 = 0.1, vw0 = 0, M = 2, and K = 1,

case 2: xw0 = 0.01, vw0 = 0, M = 2, and K = 1,

case 3: xw0 = 0.1, vw0 = 0, M = 2, and K = 10,

case 4: xw0 = 0.01, vw0 = 0, M = 2, and K = 10.

(23)

FIG. 6. Comparison between the results by the method of charac-
teristics and those by the semi-Lagrangian method: Time evolution of
the amplitude |xw(t)| and the speed |vw(t)| of the plate for cases 1–4
[cf. Eq. (23)]. (a) |xw(t)|, (b) |vw(t)|. log10|xw(t)| and log10|vw(t)|
are plotted versus log10t . Here, the bold dashed line indicates the
result by the method of characteristics and the solid line that by the
semi-Lagrangian method.

In the figure, log10|xw(t)| and log10|vw(t)| are plotted versus
log10t ; the bold dashed line indicates the result by the method
of characteristics and the solid line that by the semi-Lagrangian
method. The two lines agree very well.

Let us denote by x(s)
w the displacement xw(t) obtained by

the semi-Lagrangian method and by x(c)
w that by the method of

characteristics, and let us define the relative difference between
two methods as

Edif =
∣∣∣∣∣ log10

∣∣x(s)
w

∣∣ − log10

∣∣x(c)
w

∣∣
log10

∣∣x(s)
w

∣∣
∣∣∣∣∣ . (24)

In Table I, we show Edif at five different t for cases 1–4 of
Eq. (23).

TABLE I. Relative difference Edif(t) between |xw| obtained by
two methods.

Edif(t)

t log10t case 1 case 2 case 3 case 4

1 0 2.03(−5)a 1.13(−5) 1.15(−5) 6.22(−6)
5 0.698 6.13(−5) 4.29(−5) 1.41(−5) 8.49(−6)
10 1 6.11(−4) 5.03(−4) 1.37(−4) 8.93(−5)
50 1.698 1.67(−4) 1.28(−4) 1.54(−3) 1.30(−3)
100 2 7.29(−5) 4.33(−5) 2.37(−4) 1.74(−4)

aRead as 2.03 × 10−5.
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FIG. 7. log10|xw| versus log10t for long times at several K for xw0 = 0.1, vw0 = 0. (a) M = 2, (b) M = 1, (c) M = 0.5. Panels (d), (e),
and (f) show, respectively, the gradient of the curves in panels (a), (b), and (c) [cf. Eq. (25)].

From the observations given above, we may conclude that
the semi-Lagrangian method is reliable for the long-time
computation to find the decay rate of |xw(t)|. This also confirms
the following important fact. As pointed out in [3,10], in the
case of a collisionless gas, the complex shape of the velocity
distribution function caused by the localized discontinuities,
which arises in a very small range of the molecular velocity
ζ1 that shrinks as time proceeds, has a crucial effect on
the decay rate of the amplitude |xw(t)| as t → ∞. In fact,
the finite-difference method that was not able to describe the
complex shape failed to give the correct decay rate |xw(t)| ≈
const × t−2 [10]. In contrast, in the case of a collisional gas,
the localized discontinuities do not affect the decay rate of
|xw(t)| even when the Knudsen number is relatively high (e.g.,
K = 10).

C. Long-time behavior and decay rate of amplitude

Finally, in this subsection, we discuss the long-time
behavior of the displacement xw(t) of the plate and its decay
rate. The results that will be presented here are all obtained
by the semi-Lagrangian method. Let us denote by α(xw) the
gradient of log10|xw(t)| with respect to log10t , i.e.,

α(xw) = d log10 |xw|
d log10 t

, (25)

which corresponds to an exponent of |xw|, namely, if |xw| ∝
t−n, then we have α(xw) = −n. Figures 7(a), 7(b), and 7(c)
show log10|xw| versus log10t for long times at several K for
xw0 = 0.1, vw0 = 0 and for M = 2 (a), 1 (b), and 0.5 (c).
Figures 7(d), 7(e), and 7(f) demonstrate the time evolution
of the gradients of the curves, i.e., α(xw) versus log10t , in

Figs. 7(a), 7(b), and 7(c), respectively. Figures 8(a), 8(b),
and 8(c) show log10|xw| versus log10t at several K for M = 1,
vw0 = 0 and for xw0 = 0.2 (a), 0.01 (b), and 0.001 (c).
Figures 8(d), 8(e), and 8(f) demonstrate α(xw) versus log10t

for the curves in Figs. 8(a), 8(b), and 7(c), respectively. The
values of α(xw) at log10t = 4 (t = 104) in the cases presented
in Figs. 7(d)–7(f) and Figs. 8(d)–8(f) are shown in Tables II
and III, respectively.

It is seen from Figs. 7 and 8 that for all the cases except
K = 0.4, α(xw) tends, on the whole, to approach −3/2. This
means that the amplitude |xw| is likely to decrease in proportion
to an inverse power of time as

|xw| ≈ Ct−3/2 for t � 1, (26)

where C is a positive constant. On the other hand, for K = 0.4,
the curves of α(xw) exhibit fluctuations for log10t � 3.2. In ad-
dition, these curves, except in Fig. 7(f), cross the line of −3/2
from above and stay below the line (overshoot) (in this context,
we consider the curves averaged out over the fluctuations when

TABLE II. Values of α(xw) at log10t = 4 (t = 104) for the cases
presented in Fig. 7 (xw0 = 0.1 and vw0 = 0).

−α(xw)

K M = 2 M = 1 M = 0.5

5 1.493 1.493 1.493
2 1.500 1.499 1.499
1 1.509 1.506 1.504
0.4 1.541 1.521 1.513
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FIG. 8. log10|xw| versus log10t for long times at several K for M = 1, vw0 = 0. (a) xw0 = 0.2, (b) xw0 = 0.01, and (c) xw0 = 0.001. Panels
(d), (e), and (f) show, respectively, the gradient of the curves in panels (a), (b), and (c) [cf. Eq. (25)].

they fluctuate). In the present computation up to log10t = 4, it
is not clear whether or not the curves that have crossed the line
of −3/2 from above approach the line from below. If we give
a closer look at Figs. 7(d)–7(f) and 8(d) and refer to Tables II
and III, we notice that some curves for K = 1 and 2 also show
slight overshoot. The overshoot tends to disappear for larger
K, smaller M, or smaller xw0. The fluctuations of the curves
for K = 0.4 at large times (log10t � 3.2) may be attributed to
numerical inaccuracy caused by the fact that |xw(t)| becomes
very small when log10t approaches 4. We have also checked
that, with coarser grid systems, the approach of α(xw) to −3/2
for larger K becomes worse and less clear. We must say that
the values ofM chosen in Figs. 7 and 8 are slightly unrealistic,
since the area density of the plate is more or less the same as
the density of the gas. This is because realistic large values of
M lead to many oscillations before the manner of decay can
be seen, so that an extremely long time computation, which
is practically impossible, is required to find the correct decay
rate. However, at least for the values of M used in Figs. 7

TABLE III. Values of α(xw) at log10t = 4 (t = 104) for the cases
presented in Fig. 8 (M = 1 and vw0 = 0).

−α(xw)

K xw0 = 0.2 xw0 = 0.01 xw0 = 0.001

5 1.494 1.492 1.492
2 1.504 1.497 1.498
1 1.518 1.501 1.500
0.4 1.567 1.497 1.507

and 8 and for intermediate and large values of K, we were able
to provide numerical evidence supporting Eq. (26).

The manner of the decay given by Eq. (26) for a collisional
gas is different either from that for a collisionless gas
(|xw(t)| ≈ const × t−2) [3] or from the almost exponential
decay for a special Lorentz gas [3]. Since the collisions
between gas molecules destroy the long-tail memory peculiar
to a collisionless gas in a way similar to the case of the special
Lorentz gas, which was indeed a toy model of the collisional
gas, we expected a faster decay in the case of a collisional gas.
On the contrary, the obtained decay rate (26) is even slower
than that for a collisionless gas.

V. CONCLUDING REMARKS

In the present study, we considered the one-dimensional
case of the linear pendulum in a rarefied collisional gas, that
is, unsteady motion of an infinitely wide plate in an infinite
expanse of a rarefied gas under the action of an external force
in the direction normal to the plate obeying Hooke’s law. On
the basis of the BGK model of the Boltzmann equation, we
have investigated the long-time behavior of the motion of the
gas as well as that of the plate numerically with special interest
in the manner of decay of the motion of the plate caused by
the drag force exerted on it by the surrounding gas.

As discussed in detail in [10], the oscillatory motion of the
plate produces discontinuities and other weaker singularities
in the velocity distribution function, which are localized as
time proceeds and make the shape of the velocity distribution
function complex. In the same paper, we developed a numerical
method (method of characteristics) that is able to describe the
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complex shape as well as the propagation of singularities. In
the present paper, we first demonstrated the complex shape of
the velocity distribution function on the plate with decaying
oscillation using the method of characteristics (Sec. IV A). The
method is accurate, but it is computationally expensive and is
not suitable for long-time computation that is required to see
the decay rate. For this purpose, we adopt the semi-Lagrangian
method proposed in [11]. The method cannot describe the
velocity distribution function of complex shape precisely but
was hoped to give the correct long-time behavior of the motion
of the plate. In fact, we have confirmed its accuracy by
comparing its result with the result obtained by the method
of characteristics for relatively long time (Sec. IV B). Finally,
we carried out computation using the semi-Lagrangian method
for a very long time interval, up to t = 104 (Sec. IV C). As the
result, we obtain numerical evidence showing the decay of
the displacement as given by Eq. (26). This decay rate is much
slower than the case of a special Lorentz gas that is a toy model
for a collisional gas and even slower than the slow decay in
the case of a collisionless gas [10].

It should be mentioned that a three-dimensional linear
pendulum with a sphere as the body subject to an external
restoring force placed in a Stokes fluid was investigated
analytically in [20]. In this case, it was proved that the
displacement of the sphere xw decays as |xw| ≈ const × t−3/2

as t → ∞. Therefore, the study of the present problem in
the fluid-dynamic limit, perhaps using the Navier-Stokes
equations for a compressible fluid, would be an interesting
problem.

Finally, we should mention that the present problem has
some relevance to the piston problem, a fundamental problem
in statistical physics (see e.g., [21–23] and the references
therein). In [21–23], a movable piston placed in a gas
occupying a finite domain is considered, and unsteady motion
of the piston caused by the difference in the initial state of the
gas in both sides of the piston is investigated. In contrast, in
the present problem, the plate is placed in an infinite expanse
of a gas in an equilibrium state at rest, and its unsteady motion
is caused by the initial displacement and the restoring force
acting on the plate.
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APPENDIX: OUTLINE OF NUMERICAL ANALYSIS

In this Appendix, we describe the outline of the numerical
analysis based on the semi-Lagrangian method [11]. It utilizes
the integrated form (19) for the time increment ť − ť0 smaller
than a certain value, say, the discrete time step. Therefore, it
is nothing else than the method of characteristics applied to
each time step. Since the upper and lower lines of Eq. (19a)
have essentially the same structure, we will explain the method
using the upper line.

1. Discretized variables

We restrict the space variable x̌1 and molecular velocity ζ̌1

to finite intervals |x̌1| � Dmax and |ζ̌1| � Zmax, respectively,
where Dmax and Zmax are chosen in such a way that their choice
does not affect the final numerical result, and we introduce
the discrete time, space, and molecular-velocity variables
(t (n), x(±i), ζ (j )) for the transformed variables (ť , x̌1, ζ̌1) [not
for the original variables (t, x1, ζ1)] as follows:

t (n)(n = 0,1, . . . ) with t (0) = 0, (A1a)

x(±i)(i = 0,1, . . . ,Nx) with x(±0) = ±0,

x(±Nx ) = ±Dmax, (A1b)

ζ (j )(j = −Nζ , . . . ,Nζ ) with ζ (0) = 0,

ζ (±Nζ ) = ±Zmax. (A1c)

Then, we define the discretized velocity distribution functions
g(i,j,n) and h(i,j,n) and the macroscopic quantities ρ(i,n), u

(i,n)
1 ,

T (i,n), M(i,n)
0 , M(i,n)

1 , and M(i,n)
2 by

g(i,j,n) = ǧ(x(i),ζ (j ),t (n)), (A2a)

h(i,j,n) = ȟ(x(i),ζ (j ),t (n)), (A2b)

U (i,n) = Ǔ (x(i),t (n)), where Ǔ = ρ̌, ǔ1, Ť , M0, M1, M2.

(A2c)

In addition, we denote

x(n)
w = xw(t (n)), v(n)

w = vw(t (n)),
(A3)

G(n) = G(t (n)), σ
(n)
w± = σ̌w±(t (n)).

2. Grid systems

Let us denote by �t (n−1) the time step between t (n−1) and
t (n), i.e., �t (n−1) = t (n) − t (n−1). The �t (n−1) is not necessarily
a constant and can be taken large for large n, since the time
variation of physical quantities such as xw and ǧ becomes
small for large time. In the present paper, we let �t (n) be 0.01
for the initial stage and increasing gradually until 0.1 as time
proceeds.

As for x(i) and ζ (j ), we use nonuniform grid systems that
are designed in such a way that the grid size is small when |i|
(or |j |) is small and approach a certain value when |i| (or |j |)
becomes large. The grid points x(i) for the space variable are
defined by

x(0) = 0, x(i) = i

|i|ax

(
|i| − bx + b2

x

|i| + bx

)
(i 
= 0),

(A4)

with appropriate positive constants ax and bx . The grid points
ζ (j ) for the velocity variable are defined by

ζ (0) = 0, ζ (j ) =
⎧⎨
⎩

j

|j |aζ

(|j | − bζ + b2
ζ

|j |+bζ

)
for even j,

1
2 (ζ (j+1) + ζ (j−1)) for odd j,

(A5)
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with appropriate positive constants aζ and bζ . If we do
not limit the range of i (or j ), ax (or aζ ) is the limiting
grid size when |i| → ∞ (or |j | → ∞), and bx (or bζ )
determines the ratio of ax (or bx) to the minimum grid
size (e.g., x(1) − x(0)). Our reference grid systems are based
on the following choices: ax = 1, bx = 9999, aζ = 0.2, and
bζ = 1998. The numerical results presented in the main text
are obtained with this reference grid system unless otherwise
stated.

In addition, in the present paper, we let Nx = 16 500 and
Nζ = 262, so that we have Dmax = 10 273 and Zmax = 6.074.
In this case, the smallest grid sizes are x(1) − x(0) = 1 ×
10−4 and ζ (1) − ζ (0) = 2 × 10−4, and the largest grid sizes
are x(Nx ) − x(Nx−1) = 8.576 × 10−1 and ζ (Nζ ) − ζ (Nζ −1) =
4.354 × 10−2.

3. Flow of the numerical analysis

Suppose that everything has been obtained up to time t (n−1).
We will explain the procedure to obtain the quantities at
t (n) = t (n−1) + �t (n−1), i.e., x(n)

w , v(n)
w , σ

(n)
w±, G(n), g(i,j,n), ρ(i,n),

u
(i,n)
1 , and T (i,n). Our method is the so-called predictor corrector

method. That is, we first compute the predicted quantities
by a lower-order method and extrapolation [see Eqs. (A6)
and (A8) below] and then compute the corrected values,
without extrapolation, by a suitable higher-order method using
the predicted values. Predicted quantities are expressed with a
ˆ(hat).

(A) Prediction of the trajectory of the plate. Using
Eq. (11a), compute x̂(n)

w and v̂(n)
w by the Euler forward

method:

x̂(n)
w = x(n−1)

w + �t (n−1)v(n−1)
w ,

(A6)

v̂(n)
w = v(n−1)

w + �t (n−1)

[
−x(n−1)

w − G(n−1)

M

]
,

and construct the cubic polynomial ψ̂ (n−1)(ť) that interpolates
xw(ť) in ť ∈ [t (n−1),t (n)]:

ψ̂ (n−1)(ť) =
3∑

l=0

ân−1,l(ť − t (n−1))l ,

ân−1,0 = x(n−1)
w , ân−1,1 = v(n−1)

w ,

ân−1,2 = 3

[�t (n−1)]2

(
x̂(n)

w − x(n−1)
w

)
(A7)

− 1

�t (n−1)

(
v̂(n)

w + 2v(n−1)
w

)
,

ân−1,3 = 2

[�t (n−1)]3

(
x(n−1)

w − x̂(n)
w

)
+ 1

[�t (n−1)]2

(
v̂(n)

w + v(n−1)
w

)
.

Here, the four coefficients ân−1,0, ân−1,1, ân−1,2, and ân−1,3

have been determined in such a way that ψ̂ (n−1)(ť) and
dψ̂ (n−1)(ť)/dť coincide with x(n−1)

w and v(n−1)
w at ť = t (n−1) and

with x(n)
w and v(n)

w at ť = t (n).
(B) Some other predictions. Approximate the values on the

boundary σ̂
(n)
w±, ρ̂(±0,n), and T̂ (±0,n) as

σ̂
(n)
w± = σ̌eq±

(
v̂(n)

w

) − σ̌eq±
(
v(n−1)

w

) + σ
(n−1)
w± ,

(A8)
ρ̂(±0,n) = ρ(±0,n−1), T̂ (±0,n) = T (±0,n−1).

(C) Prediction of the velocity distribution function. In this
step, we compute the prediction of the velocity distribution
function ĝ(i,j,n) (and ĥ(i,j,n)) by the use of Eq. (19a) and the
macroscopic quantities ρ(i,n), u

(i,n)
1 , and T (i,n).

First we describe the procedure to obtain the
value at the “foot” of characteristic curve, i.e.,
ǧ(W (ť0; x̌1,ζ̌1,ť),Z(ť0; x̌1,ζ̌1,ť),ť0). For all i = ±0, . . . , ± Nx

and j = 0, . . . , ± Nζ except for (i,j ) such that x(i) = ±0
and ζ (j ) ≷ 0 [that is, (i,j ) for which the boundary condition
is applied], trace back the corresponding characteristic curve
[Eq. (19b)] to the past and define ť0 as follows:

ť0 =
⎧⎨
⎩

τ := largest s

(if s ∈ [t (n−1),t (n)) such that W (s; x(i),ζ (j ),t (n)) = ±0 exists for x(i) ≷ 0),
t (n−1) (otherwise).

(A9)

That is, we let ť0 = τ if the characteristic curve hits the
plate during the time interval [t (n−1),t (n)) [see Fig. 9(a)] and
ť0 = t (n−1) otherwise [see Fig. 9(b)]. For (i,j ) for which
the boundary condition is applied, we simply put ť0 = t (n).
Note that, although ť0 depends on i, j , and n, the cor-
responding superscripts are omitted. The major difference
between the semi-Lagrangian method and the method of
characteristics [10] lies here: In the latter method, we trace
back the characteristic curve until it either hits the plate or
reaches the initial time, whereas in the former method we
trace back the characteristic curve until ť = t (n−1) at most.
The equation W (s; x(i),ζ (j ),t (n)) = ±0 in Eq. (A9) becomes
a cubic equation if we use the approximation (A7), which
can be solved numerically by the Durand-Kerner method [24].

This method is more stable than the Newton method. Then,
from (19b) and (19c), we have the position x

(j )
� of the foot

of the characteristic curve and the corresponding molecular
velocity ζ

(j )
� , i.e.,

x
(j )
� = W (ť0; x(i), ζ (j ), t (n)) and

(A10)
ζ

(j )
� = Z(ť0; x(i), ζ (j ), t (n)).

Note that, although x
(j )
� and ζ

(j )
� depend also on i and n, the

corresponding superscripts are omitted. We now let

U
(j )
� = Ǔ (x(j )

� , ť0), g
(j )
� = ǧ(x(j )

� , ζ
(j )
� , ť0),

(A11)
h

(j )
� = ȟ(x(j )

� , ζ
(j )
� , ť0),

and compute U
(j )
� , g

(j )
� , and h

(j )
� by the following procedure.
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case a. If |ζ (j )
� | > Zmax or |x(j )

� | > Dmax, that is, if x
(j )
� and

ζ
(j )
� are outside the respective computational domains, use the

values at the reference state for ρ
(j )
� , u

(j )
1� , T

(j )
� , and g

(j )
� :

ρ
(j )
� = 1, u

(j )
1� = −vw(ť0), T

(j )
� = 1, g

(j )
� = h

(j )
� = 0.

(A12)

case b. If |ζ (j )
� | � Zmax and |x(j )

� | � Dmax, and if x
(j )
� =

±0 (or equivalently ť0 = τ ), that is, if the foot of the
characteristic curve is on the plate [see Fig. 9(a)], we use
the following linear interpolation to obtain the macroscopic
quantities ρ

(j )
� , u

(j )
1� , and T

(j )
� :

H(j )
� = Ĥ(±0,n) τ − t (n−1)

�t (n−1)
− H(±0,n−1) τ − t (n)

�t (n−1)
(H = ρ,T ),

u
(j )
1� = 0. (A13)

[Note that Eq. (A13), which is prepared for process (F) below,
becomes trivial in the present process of prediction because of
Eq. (A8).] As for the velocity distribution function g

(j )
� , we use

boundary condition (17) with the following linear interpolation
[see Eq. (17)]:

g
(j )
� = h

(j )
� = σ �

w�±E(ζ (j )
� ) − E(ζ (j )

� + vw(τ )), (A14a)

σ �
w�± = σ̂

(n)
w±

τ − t (n−1)

�t (n−1)
− σ

(n−1)
w±

τ − t (n)

�t (n−1)
. (A14b)

case c. If otherwise, that is, if x
(j )
� and ζ

(j )
� are in the

respective computational domains [see Fig. 9(b)], we can
obtain the following values at the foot of the characteristic
curve:

ρ
(j )
� = ρ̌(x(j )

� , t (n−1)), u
(j )
1� = ǔ1(x(j )

� , t (n−1)),

T
(j )
� = Ť

(
x

(j )
� , t (n−1)

)
, (A15a)

g
(j )
� = ǧ(x(j )

� , ζ
(j )
� , t (n−1)), h

(j )
� = ȟ(x(j )

� , ζ
(j )
� , t (n−1)),

(A15b)

by interpolation using the known quantities in the previous
step t = t (n−1):

ρ(i,n−1), u
(i,n−1)
1 , T (i,n−1), g(i,j,n−1), h(i,j,n−1),

for i = ±0, . . . , ± Nx, j = 0, . . . ,±Nζ . (A16)

Here, the third-order ENO interpolation [25] is employed.

FIG. 9. Schematic figure for the definition of ť0. (a) The case
where the characteristic curve hits the plate during the time interval
[t (n−1),t (n)); (b) the case other than (a).

Before working on Eq. (19a), we compute the macroscopic
quantities at ť = t (n) using the conservation laws (20), which
can be written in the following discretized form:

M(i,n)
0 =

Nζ∑
j=−Nζ

g
(j )
� w(j ), M(i,n)

1 =
Nζ∑

j=−Nζ

ζ (j )g
(j )
� w(j ),

M(i,n)
2 =

Nζ∑
j=−Nζ

[ζ (j )]2g
(j )
� w(j ) +

Nζ∑
j=−Nζ

h
(j )
� w(j ),

(A17)

where w(j ) is the weight determined by the quadrature
(Simpson’s rule is used for the actual computation). Then,
Eq. (21) gives

ρ(i,n) = 1 + M(i,n)
0 , u

(i,n)
1 = 1

ρ(i,n)

(
M(i,n)

1 − v̂(n)
w

)
,

T (i,n) = 2

3ρ(i,n)

(
M(i,n)

2 + 3

2
+ [

v̂(n)
w

]2 − ρ(i,n)
[
u

(i,n)
1

]2
)

.

(A18)

In this way, we can obtain the macroscopic quantities at ť = t (n)

before computing the velocity distribution functions ǧ and ȟ

at ť = t (n) [11,26,27].
Then, we discretize (19a) using the trapezoidal rule (second

order in time):

ĝ(i,j,n) = g
(j )
� + γ [Qg(x(j )

� ,ζ
(j )
� ,ť0) + Qg(x(i),ζ (j ),t (n))] = g

(j )
� + γ {ρ(j )

� [M (j )
� − E(ζ̃ (j )

� ) − g
(j )
� ]

+ ρ(i,n)[M (i,j,n) − E(ζ̃ (j )) − ĝ(i,j,n)]}, (A19a)

γ = 1

K
t (n) − ť0

2
, ζ̃

(j )
� = ζ

(j )
� + vw(ť0), ζ̃ (j ) = ζ (j ) + v̂(n)

w , (A19b)

M
(j )
� = M̌(x(j )

� ,ζ
(j )
� ,ť0), M (i,j,n) = M̌(x(i),ζ (j ),t (n)), (A19c)

to obtain the predicted value ĝ(i,j,n) as

ĝ(i,j,n) = (1 − ρ
(j )
� γ )g(j )

� + γ {ρ(j )
� [M (j )

� − E(ζ̃ (j )
� )] + ρ(i,n)[M (i,j,n) − E(ζ̃ (j ))]}

1 + ρ(i,n)γ
. (A20)

The predicted value ĥ(i,j,n) is obtained similarly.
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(D) Prediction of the boundary condition and the drag
force. We compute the prediction σ̂

(n)
w± of σ̌w± in the boundary

condition and the prediction Ĝ(n) of the drag force using the
discretized versions of Eqs. (17b) and (18):

σ̂
(n)
w± = σ̌eq±(v̂(n)

w ) ∓ 2
√

πA1±,
(A21)

Ĝ(n) = A2+ + A3+ − A2− − A3−,

where

A1± =
∑

j=0,∓1,...,∓Nζ

ζ (j )ĝ(±0,j,n)w
(j )
±

(
�

∫
ζ̌1≶0

ζ̌1ǧ(±0,ζ̌1,ť)dζ̌1

)
, (A22a)

A2± =
∑

j=0,∓1,...,∓Nζ

[ζ (j )]2ĝ(±0,j,n)w
(j )
±

(
�

∫
ζ̌1≶0

ζ̌ 2
1 ǧ(±0,ζ̌1,ť)dζ̌1

)
, (A22b)

A3± = 1

4

[
σ̂

(n)
w± − 1 ± erf

(
v̂(n)

w

)] ± v̂(n)
w

2
√

π
exp

(−[
v̂(n)

w

]2)

−
[
v̂(n)

w

]2

2
erfc

(±v̂(n)
w

)(�
∫

ζ̌1≷0
ζ̌ 2

1 ǧ(±0,ζ̌1,ť)dζ̌1

=
∫

ζ̌1≷0
ζ̌ 2

1 [σ̌w±(ť)E(ζ̌1) − E(ζ̌1 + vw(ť))]dζ̌1

)
,

(A22c)

where w
(j )
± is the weight determined by the quadrature

(Simpson’s rule is used for the actual computation). In the
parentheses in Eq. (A22c), use is made of Eq. (17). Note that
σ̂ (n)

w is updated by the first equation in Eq. (A21).
(E) Correction of the trajectory of the plate. Once Ĝ(n) is

obtained, we can compute the corrected values of x(n)
w and v(n)

w

by using the trapezoidal rule in Eq. (11a):

x(n)
w = x(n−1)

w + �t (n−1) v̂
(n)
w + v(n−1)

w

2
, (A23a)

v(n)
w = v(n−1)

w + �t (n−1) 1

2

[
−x̂(n)

w − Ĝ(n)

M − x(n−1)
w − G(n−1)

M

]
.

(A23b)

Then, we construct the cubic polynomial ψ (n−1) (for cor-
rected values) that interpolates xw(ť) for ť ∈ [t (n−1),t (n)] as in
process (A).

(F) Correction of the velocity distribution function. Repeat
process (C) with suitable changes from the predicted values to
the corrected ones. To be more specific, the cubic polynomial
ψ (n−1) constructed in process (E) is used in place of ψ̂ (n−1) in
solving W (s; x(i), ζ (j ), t (n)) = ±0 (this change affects all the
quantities with � [e.g., Eq. (A10)] and quantities computed
from them [e.g., Eq. (A17)]); σ̂

(n)
w± updated in Eq. (A21)

is used in Eq. (A14b); Ĥ(±0,n) is replaced with H(±0,n) in
Eq. (A13); g(i,j,n), the corrected value to be obtained, replaces
ĝ(i,j,n) in Eqs. (A19a) and (A20), and v(n)

w replaces v̂(n)
w in

Eq. (A19b).
(G) Correction of the boundary condition and the drag force.

Repeat process (D) with suitable changes from the predicted
values to the corrected ones as in process (F) to obtain the
corrected values σ

(n)
w± and G(n).
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