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As quantum systems become more experimentally accessible, we are forced to reconsider the notions of control
and work to fully account for quantum effects. To this end, we identify the work injected into a quantum system
during a general quantum-mechanical driving protocol and quantify the relevant heat flows. The known results
that are applicable in the limit of a classical drive are shown to emerge from our equations as a special case. Using
the established framework, we show that the Bochkov-Kuzovlev identity for the exclusive work distribution
is modified in a nontrivial way by the accumulation of system-drive correlations resulting from quantum back
action. Our results accentuate the conceptual and discernible differences between a fully quantum-mechanical
and classical driving protocols of quantum systems.
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I. INTRODUCTION

The past decade has witnessed great developments in the
measurement precision and degree of control of nanoscale
physical systems. Such major milestones have been achieved,
for example, in the frameworks of quantum information
processing [1–4] and fluctuation relations in steered evolu-
tion [5–7]. This progress calls for a detailed and highly accurate
theory for driven systems.

In the typical approach to driving a quantum system, the
closed-system dynamics are influenced by a time-dependent
Hamiltonian stemming from the action of an external driving
force [5,8]. The action defines the driving protocol and, hence,
quantifies temporal changes related to it. Despite its usefulness,
the approach entails the underlying assumption that the time-
dependent control is carried out by an external classical entity
and, consequently, it is potentially omitting important physical
phenomena governed by the ubiquitous quantum-mechanical
back action. Including driving as a fully quantum process
would not only provide fundamental understanding of the
physics but would also open a new path in treating and
designing driven quantum systems.

Classical thermodynamics [9,10] motivates a long-standing
question related to driving: how does one identify the work
performed on a quantum system during a driving protocol and,
subsequently, calculate possible energy flow to a coupled heat
bath? Even within the typical approach to driving, answering
this question has proven a formidable task as work relates
to a process rather than a time-local quantum observable
[11–22]. This problem is made even more interesting by the
close connection it shares with nonequilibrium work relations
where sampling over the stochastic ensemble generated by
realizations of the dynamics provides information about
the equilibrium properties of the system [5,8,11,12]. High-
precision measurements of such relations would necessarily
have to account for the system-drive back action.

In this paper, we treat the driving on an equal footing
with the rest of the quantum dynamics by dividing the total
system into its constituent parts and assigning the driving
protocol to a specific subsystem. This composite framework
facilitates quantum back action between the system and the

drive allowing us to study driving in much greater detail
than with the assumption of external classical drive. We
propose a natural definition for the injected work and show
how the intracomposite energy transfer including heat flows
can be evaluated. Taking the total system to the classical
driving limit reestablishes the previously employed driving
framework and we retrieve the known result for the injected
work [22]. In addition, we employ a stochastic approach
and show that using the full composite picture modifies the
Bochkov-Kuzovlev identity [5,23] due to the accumulation of
system-drive correlations resulting from the back action. In the
classical driving limit, such correlations vanish and we recover
the usual Bochkov-Kuzovlev identity.

II. QUANTUM DRIVING AND WORK INJECTION

To specify the process of driving, we divide the total
quantum system into its constituent interacting parts: the
subsystem of interest S, the drive D, and the environment
E. The total Hamiltonian is expressed as

Ĥ = ÎD ⊗ ĤS ⊗ ÎE + ĤD ⊗ ÎS ⊗ ÎE + ÎD ⊗ ÎS

⊗ ĤE + ĤSD ⊗ ÎE + ÎD ⊗ ĤSE + ĤDE, (1)

where Îi is the identity operator in the Hilbert space of the
ith subsystem, Ĥi is the corresponding Hamiltonian, and Ĥij

is the interaction Hamiltonian between the ith and the j th
subsystems. Figure 1 provides a schematic representation of
the subsystem division of the composite. We do not employ
external, time-dependent parameters on any of the Hamiltoni-
ans but assume that the full information of the driving protocol
is encoded in the internal interactions of the composite and the
initial state of D. To this end, we define the driving done to
S as the dynamics induced by the interaction with the desired
drive degrees of freedom. The environment accounts for all
interactions with the system and the drive that do not facilitate
such ideal reduced system dynamics.

Within this line of thinking, we propose a natural definition
for the average work WQ injected into the system during the
driving protocol: the change in the internal energy of the
system and its interaction energy with the drive combined
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FIG. 1. Schematic representation of the total composite system
implementing quantum driving. S denotes the subsystem of interest,
D denotes the drive subsystem, and E denotes the environment.
Furthermore, SD, SE, and DE denote the interactions between the
subsystems.

with the energy dissipated directly from the system to
the environment. This approach extends the notion of the
dynamical work agent [24] related to the work source in
classical Hamiltonian dynamics [25] to a fully consistent
quantum description. Importantly, the drive does not have
to be rapidly self-equilibrating and quantum back action is
allowed. The instantaneous injected power corresponding to
the definition is explicitly derived in Appendix A and takes the
form

d

dt
WQ = − i

�
TrS+D{ρ̂SD[ĤSD,ĤD ⊗ ÎS]}, (2)

where ρ̂SD = TrE{ρ̂}, ρ̂ is the total density operator, TrE is
the trace over the environment, and TrS+D is the combined
trace over the system and the drive. Importantly, Eq. (2) has
a trace over S and D instead of the total composite space
and the information on the heat dissipation is confined within
the reduced density operator ρ̂SD . In addition, we can write
the average power dissipated directly from the system as [see
Appendix A]

d

dt
QS = − i

�
TrS+E{ρ̂SE[ĤSE,ĤS ⊗ ÎE]}

− i

�
Tr{ρ̂[ÎD ⊗ ĤSE + ĤDE,ĤSD ⊗ ÎE]}, (3)

where QS is the corresponding dissipated heat and Tr is the
trace over the total composite Hilbert space. In general, there
can also be energy transfer caused by the direct interaction
between D and E, QD , that must be accounted for to calculate
the total dissipated heat Qtot = QS + QD . The corresponding
heating power assumes the form [see Appendix A]

d

dt
QD = − i

�
Tr{ρ̂[ĤDE,ĤD ⊗ ÎS ⊗ ÎE]}. (4)

Conservation of energy dictates that −� 〈ĤD〉 = WQ + QD ,
implying that the injected work describes the beneficial energy
transfer in the driving process and is not necessarily equivalent

to the total energy extracted from the drive. Note that WQ

defined in Eq. (2) includes the change in the system-drive
interaction energy and, hence, corresponds to the average
inclusive work in the typical notation [5,8].

For practical applications, the reduced system dynamics
are typically accessed in the form of a general master
equation ˙̂ρSD = −(i/�)[Ĥ ′

SD,ρ̂SD] + D̂, where Ĥ ′
SD = ÎD ⊗

ĤS + ĤD ⊗ ÎS + ĤSD and the dissipator D̂ accounts for
the effect of the environment on the system-drive dynam-
ics [26,27]. Using this representation and applying the general
definition of operator current [28] to Eqs. (3) and (4), the
dissipated-heat terms are recast into

d

dt
QS = −TrS+D{D̂(ÎD ⊗ ĤS + ĤSD)}, (5)

and

d

dt
QD = −TrS+D{D̂(ĤD ⊗ ÎS)}. (6)

These results along with Eq. (2) provide a means for exploring
physical systems whose description likely requires the use of
approximative dissipative methods.

III. CLASSICAL DRIVING LIMIT

The concept of classical driving of a quantum system
emerges from the full composite picture given above when we
assume that the drive acts as a classical entity, that is, its state is
unaffected by the internal interactions of the composite. As a
result, it and the rest of the composite remain uncorrelated
at all times so that the Born approximation [26] is valid
ρ̂ = ρ̂D ⊗ ρ̂SE . In addition, we omit the drive-environment
interaction described by ĤDE to retrieve the typical classical
picture. Within these assumptions, the system-environment
dynamics are determined by [see Appendix B for a full
derivation]

ĤCL = ĤCL,S ⊗ ÎE + ÎS ⊗ ĤE + ĤSE, (7)

where ĤCL,S = ĤS + ∑
α Âα 〈B̂α〉D . Here the expectation

value is defined by 〈B̂α〉D = TrD{ρ̂DB̂α} and we exploit
the general decomposition of the interaction Hamiltonian
ĤSD = ∑

α B̂α ⊗ Âα , where B̂α = B̂†
α and Âα = Â†

α [26]. The
usual time-dependence of the system Hamiltonian in driving
is introduced by 〈B̂α〉D , which is determined by the time-
evolution of the uncorrelated drive subsystem. Our definition
of a classical drive corresponds to that used in Refs. [29,30] for
a bipartite system in the limit of vanishing mutual corrections
to the drive dynamics. We define the classical drive in this
limit to assert it as an external independent work source as
detailed in Appendix B. Furthermore, the crossover from exact
reduced dynamics to a parametric field dependence of a qubit
is studied for the spin- 1

2 star with frustration in Ref. [31] using
the so-called generalized coherent state formalism [32,33].

In analogy with the fully classical case [34], the clas-
sically injected power can be written with the help of a
power operator P̂S = (∂Ĥ ′

CL,S[λ(t)]/∂λ)(∂λ/∂t) [22], where
Ĥ ′

CL,S[λ(t)] denotes the classically driven system Hamiltonian
and λ(t) is the time-dependent control parameter describing the
effect of an external macroscopic work source on the system
[5,8,12,16–20]. The resulting average injected power is
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dWCL/dt = TrS{ρ̂SP̂S} with WCL being the average injected
work [22]. For the classical driving assumption described
above, Eq. (2) reduces to dWCL/dt when we identify
Ĥ ′

CL,S[λ(t)] = ĤCL,S [see Appendix B for details] yielding
the known result for classically injected power [22]

d

dt
WCL = d

dt
〈ĤCL,S〉 + i

�
TrS+E{ρ̂SE[ĤCL,S ⊗ ÎE,ĤSE]}

= d

dt
〈ĤCL,S〉 − TrS{D̂ĤCL,S}, (8)

where the injected power is immediately separated into the
change in the internal energy of the effective system given by
the first term and the system related heating power given by
the second term after each equality.

IV. EXAMPLE: JAYNES-CUMMINGS MODEL

To analyze the quantum work injection with and without
the classical driving assumption, we study as an example the
resonant single-mode Jaynes-Cummings model [35] where
the driving of the two-level system (TLS) is induced by the
photonic bath. The system-drive Hamiltonian is

Ĥ JC = �ω

2
ÎD ⊗ σ̂z + �ωb̂†b̂ ⊗ ÎS + �g(b̂ ⊗ σ̂+ + b̂† ⊗ σ̂−),

(9)

where σ̂z = |e〉 〈e| − |g〉 〈g|, σ̂+ = σ̂
†
− = |e〉 〈g|, b̂† (b̂) is the

photonic creation (annihilation) operator, ω is the resonance
angular frequency, and g is the TLS-drive coupling strength.
The states |g〉 and |e〉 are the ground and excited states of the
TLS, respectively. Using Eq. (7), the corresponding classical
driving Hamiltonian is given by

Ĥ JC
CL,S = �ω

2
σ̂z + e−iωtSσ̂+ + eiωtS∗σ̂−, (10)

where S = �g
∑∞

n=0 a∗
nan+1

√
n + 1 for the initial photonic

state
∑∞

n=0 an |nF 〉, where |nF 〉 is the nth Fock state. The
time-dependent exponential terms result from the uncorrelated
time-evolution of the drive.

Comparison of Eqs. (9) and (10) readily indicates that
the classical driving assumption potentially ignores rele-
vant dynamics depending on the specifics of the initial
photonic state. For example, if we assume that the S-D
composite evolves unitarily starting from |nF 〉 ⊗ |e〉, the
injected work in the corresponding classical driving WCL,FOCK

vanishes along with the effective interaction. In quantum
driving, however, it can be solved using Eq. (2) and the
exact solution of the Jaynes-Cummings model [36] as
WQ,FOCK(t) = −�ω sin2(	nt), where the Rabi frequency is
	n = g

√
n + 1. If the initial state is |α〉 ⊗ |e〉, where |α〉 =

e−|α|2/2 ∑∞
n=0

αn

(n!)1/2 |nF 〉 is a coherent state with n̄ = |α|2 as
the average photon number, the classical driving results in
WCL,COH(t) = −�ω sin2(g|α|t). The respective work in quan-
tum driving is WQ,COH(t) = −�ωe−|α|2 ∑∞

n=0
|α|2n

n! sin2(	nt),
exhibiting the expected behavior of collapses and revivals of
the Rabi oscillations [36]. Note that the classically injected
work approximates the one given by the composite approach
well if we study times below the characteristic time tq = |α|/g
and the average photon number is much greater than unity.
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FIG. 2. (Color online) Transferred energies in the Jaynes-
Cummings model when the initial state is a product state of the
excited two-level state and a Fock state with n = 0 as a function of
time. Blue curve shows the injected work WQ, green curve shows
the energy extracted from the drive WQ + QD = −� 〈ĤD〉, and red
curve shows the total dissipated heat Qtot. We use g = 0.5ω for the
coupling strength in Eq. (9) and 
 = 0.2ω for the transition rate
coefficient defined in the main text.

To study the effect of including a dissipative environment,
we assume in our example that the system-drive composite
is coupled to a reservoir inducing Markovian decay such
that the dissipator is given by D̂ = ∑

ϕ,φ

εφ > εϕ

{2L̂ϕφρ̂SDL̂
†
ϕφ −

L̂
†
ϕφL̂ϕφρ̂SD − ρ̂SDL̂

†
ϕφL̂ϕφ} [26]. The Lindblad opera-

tors are defined as L̂ϕφ = √
γR(ϕ,φ)|ϕJC〉〈φJC|, where

Ĥ JC|ϕJC/φJC〉 = εϕ/φ|ϕJC/φJC〉. We assume that the dissi-
pative dynamics are dominated by the system-environment
interaction and take ĤSE = �(|g〉 〈e| + |e〉 〈g|) ⊗ Ê, where
Ê is the environment part of the coupling opera-
tor. The transition rates are evaluated utilizing Fermi’s
golden rule so that γR(ϕ,φ) = 
| 〈ϕJC|(ÎD ⊗ |g〉 〈e|)|φJC〉 +
〈ϕJC|(ÎD ⊗ |e〉 〈g|)|φJC〉 |2, where 
 = |�|2SE/�

2, and we
assume white noise spectrum SE for simplicity. This evaluation
in association with the Lindblad form enables direct heat
transfer from the drive. We show the relevant energy changes
in Fig. 2 obtained by placing an excitation in the TLS and
assuming that the photonic system is initially in the vacuum
state. The decay rates are taken to be sufficiently large so
that the usual oscillatory behavior caused by the transfer of
the excitation is swiftly damped by the coupling to the bath,
and Qtot approaches unity as the environment absorbs the
excitation. Similarly � 〈ĤD〉 approaches zero as the initial
energy received from the TLS is dissipated. The injected work
assumes a negative value describing energy transfer from the
system to the drive and its asymptotic value is nonzero due to
the direct heat transfer from the drive.

V. MODIFICATION OF THE BOCHKOV-KUZOVLEV
IDENTITY

Let us study the nonequilibrium work relations in our
framework and employ the well-established two-measurement
approach (TMA) [5,8,11,18,20,37,38] for a general nondegen-
erate N -level system. For simplicity, we assume here that the
system-drive composite is decoupled from the environment
during the driving protocol. An extension of the TMA to strong
system-bath couplings exists leading to partition functions for
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J. SALMILEHTO, P. SOLINAS, AND M. MÖTTÖNEN PHYSICAL REVIEW E 89, 052128 (2014)

open systems [5,12], but the extension still exploits the strictly
classical driving as described earlier. As a prerequisite, we
assume that we can probe the composite only by projective
measurements of ĤS . This implies that the TMA only grants
us access to the exclusive work Wexcl not accounting for the
change in the system-drive interaction energy [5]. On the other
hand, applying the TMA to joint system-drive measurements
of ĤS + ĤSD would result in trivial stochastics and no
thermodynamic information would be retrieved. The typical
quantum fluctuation relations avoid this problem by assuming
classical driving [5,8], which deposits the information of
the driving protocol in the system degrees of freedom and,
hence, allows the thermodynamic quantities to be acquired by
measurements of the system alone.

We assume that the state of the composite system prior to the
first measurement is ρ̂SD(0) = ρ̂D(0) ⊗ ρ̂S(0) and measure ĤS

at time t = 0 so that the composite state collapses to ρ̂M
SD(0) =

ρ̂D(0) ⊗ |nS〉 〈nS | with probability ρS,nn(0) = 〈nS |ρ̂S(0)|nS〉,
where εn |nS〉 = ĤS |nS〉. The total temporal evolution is given
by ρ̂SD(t) = Û (t,0)ρ̂M

SD(0)Û †(t,0), where Û (t,0) is the unitary
time-evolution operator for the system-drive composite. We
also denote the reduced system density operator by ρ̂S(t) =
TrD{ρ̂SD(t)}. The second measurement at t = T yields εk with
probability

Pk,n = TrD{〈kS |Û (T ,0)ρ̂D(0) ⊗ |nS〉 〈nS | Û †(T ,0)|kS〉}.
(11)

The averaged exponentiated exclusive work is then writ-
ten summing over the discrete stochastic trajectories as
〈e−βWexcl〉 = ∑

n ρS,nn(0)
∑

k Pk,ne
−β(εk−εn), where β is the

inverse temperature and 〈. . .〉 denotes the ensemble average
over the distribution of exclusive work.

We assume that the system is initially in a Gibbs state
ρ̂S(0) = e−βĤS /ZS , where ZS = TrS{e−βĤS } is the partition
function of the bare system [5,8,39]. With this assumption,
we obtain

〈e−βWexcl〉 =
∑

k

e−βεk

ZS

∑
n

Pk,n

=
∑

k

e−βεk

ZS

TrD{〈kS |Û (T,0)ρ̂D(0)⊗ÎSÛ
†(T,0)|kS〉},

(12)

where we applied
∑

n |nS〉 〈nS | = ÎS after the second equality.
Note that

∑
k Pk,n = TrS+D{ρ̂SD(T )} = 1. Furthermore,

the classical driving assumption results in a factorizable
time-evolution operator in Eq. (11) and, hence,

∑
n Pk,n = 1.

By Eq. (12), this assumption implies 〈e−βWexcl〉 = 1 retrieving
the usual Bochkov-Kuzovlev identity [5,23]. Beyond the
classical driving assumption, 〈e−βWexcl〉 is generally not
unity but its value depends on the system-drive correlations
accumulated during the driving protocol. We can additionally
write 〈e−βWexcl〉 = Z′

S(T )/Z′
S(0) if we define Z′

S(t) =
TrS{TrD{e−βĤH

S (t)ρ̂D(0)}}, where ĤH
S (t) = Û †(t,0)ÎD ⊗

ĤSÛ (t,0) is the system Hamiltonian in the complete
Heisenberg picture. Thus, Eq. (12) can be interpreted in terms
of a partition function corresponding to the temporal evolution
of the drive-averaged canonical state of the system. Details and

discussion on this interpretation are presented in Appendix C.
The modification of the Bochkov-Kuzovlev identity serves to
highlight the limited range of validity of the usual quantum
fluctuation relations. It should be observable in physical
systems where the back action is not negligible and the system
energy can be measured with sufficient accuracy. Physical pre-
requisities for observing the modification are potentially emer-
gent in fields such as circuit [40] and cavity [41] quantum elec-
trodynamics, solid-state qubits [42,43], and trapped ions [44].

A. Jaynes-Cummings model revisited

Let us return to the Jaynes-Cummings model presented
above and take the initial state of D to be

∑∞
n=0 an |nF 〉.

Thus, Eq. (12) takes the form 〈e−βWexcl〉 = 1 + 1
ZS

(e−β�ω/2 −
eβ�ω/2)(Pe,e − Pg,g), where Pg,g (Pe,e) denotes the probability
of obtaining −�ω/2 (�ω/2) from both successive measure-
ments performed in the TMA. The exact solution of the
model [36] allows us to fully determine each trajectory
related to the measurements and we obtain Pe,e − Pg,g =∑∞

n=0 |an|2[cos2(	nT ) − cos2(	n−1T )], which generally dif-
fers from zero leading to a modification of the Bochkov-
Kuzovlev identity as described above. We further assume that
the initial photonic state is coherent with an average photon
number of n̄ = |α|2 and define the second measurement to take
place at T = π/(2g

√
n̄) corresponding to a negative classical

injection of a single excitation according to WCL,COH(t)
derived earlier. In the limit of large n̄, we can approximate
Pe,e − Pg,g ≈ − π

4n̄

∑∞
n=0 |an|2 sin( π

√
n√

n̄
) [45]. Hence, the mod-

ification of the Bochkov-Kuzovlev identity scales as 1/n̄ as we
approach the classical-driving limit.

VI. CONCLUSIONS

Our analysis provides a coherent framework for driving and
work in quantum systems without resorting to time-dependent
external forces. We address the long-standing question of
defining work in quantum systems by giving a clear and
sound definition for a fully quantized drive. Since the explicit
time-dependence of the system Hamiltonian vanishes in our
approach, the description of driven dissipative systems [17,20]
avoids the problem of selecting the appropriate time-dependent
basis for defining work [46–50]. The theoretical task at hand
turns into engineering the drive and its interactions in a manner
that allows for the desired complexity in driving protocols.
We show that the usual Bochkov-Kuzovlev identity [5,23] is
modified by system-drive correlations generated by quantum
back action. To this end, adjusting the measurement protocol
in our stochastic analysis possibly provides access to similar
modifications of the quantum Jarzynski identity and the
integral fluctuation theorem [5,8]. Our work opens a new
path in treating driven quantum systems potentially essential
for future high-precision experimental studies such as those
related to quantum information processing and quantum
fluctuation relations. Recent measurements of classical sys-
tems [6,7,51–54] and proposals for experiments in classically
driven quantum systems [55–60] indicate that such studies are
within the grasp of the current technological capabilities.
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APPENDIX A: DERIVATION OF THE INJECTED
POWER AND DISSIPATED HEATING POWERS

To construct the various instantaneous powers in accor-
dance with the framework proposed in the main text, we write
the energy extracted from the drive as

− d

dt
〈ĤD ⊗ ÎS ⊗ ÎE〉

= − i

�
Tr{ρ̂[ĤSD ⊗ ÎE,ĤD ⊗ ÎS ⊗ ÎE]}

− i

�
Tr{[ĤDE,ĤD ⊗ ÎS ⊗ ÎE]}, (A1)

where we applied the Ehrenfest theorem [61] for time-
independent observables d 〈Ĝ〉 /dt = −(i/�)Tr{ρ̂[Ĝ,Ĥ ]} and
Ĝ denotes an arbitrary observable in the total composite space.
In Eq. (A1), the first term after the equality describes the
contribution due to the direct system-drive interaction and the
second term gives the corresponding contribution from the di-
rect drive-environment coupling. These terms describe internal
and interaction energy changes within the composite and, by
energy conservation, we can write a continuity equation in the
form of −d 〈ĤD ⊗ ÎS ⊗ ÎE〉 /dt = dWQ/dt + dQD/dt . Here
we identify dWQ/dt as the power injected into S and dQD/dt

as the power directly dissipated from the drive as given by
the first and second terms after the equality in Eq. (A1),
respectively.

By using the internal energy change of the effective
inclusive system accounting for both the system S and its
drive interaction SD, we define the heat directly dissipated
from the system, QS , in accordance with the first law of
thermodynamics through

d

dt
WQ − d

dt
QS

= d

dt
〈ÎD ⊗ ĤS ⊗ ÎE + ĤSD ⊗ ÎE〉

= − i

�
Tr{ρ̂[ÎD ⊗ ĤS ⊗ ÎE + ĤSD ⊗ ÎE,

ĤD ⊗ ÎS ⊗ ÎE + ÎD ⊗ ĤSE + ĤDE]}. (A2)

We identify the total dissipated heat as Qtot = QS + QD ,
which, by energy conservation, is equal to the energy extracted
from the system-drive composite and, subsequently, has the
identity

d

dt
Qtot

= − d

dt
〈ÎD ⊗ ĤS ⊗ ÎE + ĤSD ⊗ ÎE + ĤD ⊗ ÎS ⊗ ÎE〉

= − i

�
Tr{ρ̂[ÎD ⊗ ĤSE + ĤDE,ÎD ⊗ ĤS ⊗ ÎE

+ ĤSD ⊗ ÎE + ĤD ⊗ ÎS ⊗ ÎE]}. (A3)

Executing partial tracing wherever possible in Eqs. (A1)–(A3)
yields the definitions for WQ, QS , and QD given in the main
text.

APPENDIX B: DYNAMICS AND INJECTED WORK
UNDER THE CLASSICAL DRIVING ASSUMPTION

The notion of the classical drive is encapsulated by the as-
sumption that the drive dynamics are independent of the other
degrees of freedom. As a result, the total evolution factorizes so
that ρ̂ = ρ̂D ⊗ ρ̂SE at all times yielding TrD{−(i/�)[Ĥ ,ρ̂]} =
−(i/�)[ĤCL,ρ̂SE], where

ĤCL = ĤCL,S ⊗ ÎE + ÎS ⊗ ĤE + ĤSE, (B1)

and we write ĤCL,S = ĤS + ∑
α Âα 〈B̂α〉D and 〈B̂α〉D =

TrD{ρ̂DB̂α}. We exploit the general decomposition of the
interaction Hamiltonian ĤSD = ∑

α B̂α ⊗ Âα , where B̂α =
B̂†

α and Âα = Â†
α [26], to write the corresponding effective

term TrD{(ρ̂D ⊗ ÎS ⊗ ÎE)(ĤSD ⊗ ÎE)} and omit ĤDE . The
term proportional to ĤD does not appear in ĤCL as it
vanishes in the traced commutation. Using the factoriza-
tion, we can further write TrD{dρ̂/dt} = ρ̂SETrD{dρ̂D/dt} +
dρ̂SE/dt , where dρ̂D/dt = −(i/�)[ĤD,ρ̂D] by the assump-
tion that the drive dynamics are independent and, hence,
TrD{dρ̂D/dt} vanishes. Combining the results, we ob-
tain dρ̂SE/dt = −(i/�)[ĤCL,ρ̂SE] determining the system-
environment dynamics in classical driving. We neglected
ĤDE as the drive-environment interaction is typically not
accounted for in the classical picture. Including it would add to
ĤCL an effective interaction term TrD{(ρ̂D ⊗ ÎS ⊗ ÎE)ĤDE} =∑

α ÎS ⊗ D̂αTrD{ρ̂DĈα}, where the final expression uses the
decomposition ĤDE = ∑

α Ĉα ⊗ ÎS ⊗ D̂α .
Using a power operator method, the classically in-

jected power is derived in Ref. [22] to be dWCL/dt =
d 〈Ĥ ′

CL,S[λ(t)]〉 /dt + dQCL/dt , where Ĥ ′
CL,S[λ(t)] denotes

the classically driven system Hamiltonian and λ(t) is the
time-dependent external control parameter. The first term
〈Ĥ ′

CL,S[λ(t)]〉 /dt describes the internal energy change of the
classically driven system and the second term yields the energy
exchange with the environment given by the dissipated heat
QCL. Identifying Ĥ ′

CL,S[λ(t)] = ĤCL,S , the first term has the
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explicit form [22]

d

dt
〈Ĥ ′

CL,S[λ(t)]〉 = − i

�
TrS+E{ρ̂SE[ĤCL,S ⊗ ÎE,ĤCL]}

+ TrS+E{ρ̂SE∂t (ĤCL,S ⊗ ÎE)}

= − i

�
TrS+E{ρ̂SE[ĤCL,S ⊗ ÎE,ĤSE]}

+ TrS+E{ρ̂SE∂t (ĤCL,S) ⊗ ÎE}, (B2)

where we applied the Ehrenfest theorem in the effective
classical driving picture and ∂t denotes an explicit time-
derivative. Note especially that ∂t (ĤCL,S) = ∑

α(∂t 〈B̂α〉D)Âα .
The heat exchange term is given by [22,28]

d

dt
QCL = i

�
TrS+E{ρ̂SE[ĤCL,S ⊗ ÎE,ĤSE]}. (B3)

As described above, the injected power in the full compos-
ite framework is dWQ/dt = d〈ÎD⊗ ĤS ⊗ ÎE + ĤSD ⊗ ÎE〉/
dt + dQS/dt , where the first term after the equality is written
as

d

dt
〈ÎD ⊗ ĤS ⊗ ÎE + ĤSD ⊗ ÎE〉

= − i

�
Tr{ρ̂[ÎD ⊗ ĤS ⊗ ÎE+ĤSD⊗ÎE,ÎD⊗ ĤSE+ĤDE]}

− i

�
Tr{ρ̂[ĤSD ⊗ ÎE,ĤD ⊗ ÎS ⊗ ÎE]}. (B4)

Applying the classical driving assumption yields

d

dt
〈ÎD ⊗ ĤS ⊗ ÎE + ĤSD ⊗ ÎE〉

= − i

�
TrS+E

{
ρ̂SE

[
ĤS ⊗ ÎE

+
∑

α

〈B̂α〉D Âα ⊗ ÎE,ÎD ⊗ ĤSE

]}

+ TrS+E

{
ρ̂SE

(∑
α

− i

�
TrD{ρ̂D[B̂α,ĤD]}Âα ⊗ ÎE

)}

= − i

�
TrS+E{ρ̂SE[ĤCL,S ⊗ ÎE,ÎD ⊗ ĤSE]}

+ TrS+E{ρ̂SE∂t (ĤCL,S) ⊗ ÎE}, (B5)

where we neglect ĤDE and use the factorization of the
total evolution after the first equality, and the indepen-
dence of the drive evolution after the second equality to
write −(i/�)TrD{ρ̂D[B̂α,ĤD]} = ∂t 〈B̂α〉D . In a similar fash-
ion, the heat dissipated from the system determined by
Eqs. (A1) and (A2) becomes

d

dt
QS = − i

�
TrS+E{ρ̂SE[ĤSE,ĤS ⊗ ÎE]}

− i

�
Tr{ρ̂[ÎD ⊗ ĤSE + ĤDE,ĤSD ⊗ ÎE]}

= i

�
TrS+E{ρ̂SE[ĤCL,S ⊗ ÎE,ĤSE]}, (B6)

where we neglected ĤDE and used the Born approximation
after the second equality. Comparison of Eqs. (B2)–(B6)

reveals that dWQ/dt = dWCL/dt when we identify
Ĥ ′

CL,S[λ(t)] = ĤCL,S and apply the classical driving as-
sumption. Furthermore, the corresponding internal en-
ergy change and heating power can be identified
as d 〈ÎD ⊗ ĤS ⊗ ÎE + ĤSD ⊗ ÎE〉 /dt = d 〈Ĥ ′

CL,S[λ(t)]〉 /dt

and dQS/dt = dQCL/dt , respectively.

APPENDIX C: INTERPRETATION OF THE MODIFIED
BOCHKOV-KUZOVLEV IDENTITY

Let us provide a physical interpretation of the result
obtained in Eq. (12) of the main text. We can write 〈e−βWexcl〉 =
Z′

S(T )/Z′
S(0) if we define

Z′
S(t) = TrS+D{Û (t,0)ρ̂D(0) ⊗ ÎSÛ

†(t,0)e−βĤS }
= TrS

{
TrD

{
e−βĤH

S (t)ρ̂D(0)
}}

, (C1)

where we used the cyclicity of the full trace and identified
ĤH

S (t) = Û †(t,0)ÎD ⊗ ĤSÛ (t,0) as the system Hamiltonian
given in the complete Heisenberg picture. Note that unlike
ÎD ⊗ ĤS , ĤH

S (t) operates nontrivially on the drive degrees
of freedom and the time-dependence of Z′

S(t) does not
indicate any dynamics but characterizes the effective driving
protocol. Equation (C1) shows that Z′

S(t) corresponds to
averaging the canonical ensemble of the system over the
drive degrees of freedom before tracing over the system
space, i.e., Z′

S(t) = TrS{〈e−βĤS 〉D}. Furthermore, by defining
Ĥ ∗

S (t) = −β−1 ln TrD{e−βĤH
S (t)ρ̂D(0)} we can write Z′

S(t) =
TrS{e−βĤ ∗

S (t)} implying that the partition function corresponds
to the temporal evolution of the drive-averaged canonical state
of the system governed by Ĥ ∗

S (t), which, in this sense, acts as
the quantum Hamiltonian of mean force associated with the
bare system of interest.

The above-mentioned definition of the quantum
Hamiltonian of mean force can be compared to the one used in
Ref. [12], defined analogously to its classical counterpart [62],
if one assumes that the drive subsystem takes on the role of the
bath in the bipartite presentation of Ref. [12]. The definitions
are inherently different because the previous work assumes that
a thermodynamic partition function arising from tracing over
the Gibbsian state of the full composite system is well-defined;
that is, there is a super-environment in thermal contact with the
composite at the preparation stage. In our case, no such contact
is assumed and the measurements on the system only give
us access to the drive-averaged thermodynamic bare partition
function defined in the manner above. Note especially that
the definition of the open quantum system partition func-
tion Zos

S = TrS+D{e−β(ÎD⊗ĤS+ĤSD+ĤD⊗ÎS )}/TrD{e−βĤD⊗ÎS } in
Ref. [12] implicitly includes the system-drive interaction
energy and, hence, Z′

S(t) is not an extension of Zos
S to

the full composite picture. Starting from Z′
S(t), all relevant

drive-averaged thermodynamic quantities can be defined in
the usual manner. For example, the corresponding internal
energy for the system E′

S(t) = −∂ ln Z′
S(t)/∂β obtains the

form E′
S(t) = TrS{TrD{e−βĤH

S (t)ĤH
S (t)ρ̂D(0)}}/Z′

S(t) and the
averaged free energy is F ′

S(t) = −β−1 ln[TrS{e−βĤ ∗
S (t)}].
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A. Shnirman, Phys. Rev. Lett. 105, 030401 (2010).
[47] P. Haikka, J. D. Cresser, and S. Maniscalco, Phys. Rev. A 83,

012112 (2011).
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