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Phase transitions in a system of hard rectangles on the square lattice
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The phase diagram of a system of monodispersed hard rectangles of size m x mk on a square lattice is
numerically determined for m = 2,3 and aspect ratio k = 1,2, ...,7. We show the existence of a disordered
phase, a nematic phase with orientational order, a columnar phase with orientational and partial translational
order, and a solidlike phase with sublattice order, but no orientational order. The asymptotic behavior of the phase
boundaries for large k is determined using a combination of entropic arguments and a Bethe approximation.

This allows us to generalize the phase diagram to larger m and k, showing that for £ > 7, the system undergoes
three entropy-driven phase transitions with increasing density. The nature of the different phase transitions is
established and the critical exponents for the continuous transitions are determined using finite size scaling.
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I. INTRODUCTION

The study of entropy-driven phase transitions in a sys-
tem of long hard rods has a long history dating back
to Onsager’s demonstration [1] that the three-dimensional
system undergoes a transition from an isotropic phase to an
orientationally ordered nematic phase as the density of the rods
is increased [1-5]. Further increase in density may result in
a smectic phase that partially breaks translational symmetry,
and a solid phase [6,7]. In two-dimensional continuum space,
the continuous rotational symmetry remains unbroken, but the
system undergoes a Kosterlitz-Thouless—type transition from
a low-density phase with exponential decay of orientational
correlations to a high-density phase having quasi-long-range
order [8—14]. Experimental realizations include tobacco mo-
saic virus [15], liquid crystals [3], carbon nanotube gels [16],
and Brownian squares [17]. The phenomenology is, however,
much less clear when the orientations are discrete, and the
positions are either on a lattice or in the continuum, when even
the existence of the nematic phase has been convincingly seen
in simulations only recently [18,19].

Consider hard rectangles of size m x mk on a two-
dimensional square lattice where each rectangle occupies m
(mk) lattice sites along the short (long) axis. The limiting
cases when either the aspect ratio k = 1 or m = 1 are better
studied. When m = 1 and k > 7, there are, remarkably, two
entropy-driven transitions: from a low-density isotropic phase
to an intermediate density nematic phase, and from the nematic
phase to a high-density disordered phase [18,20]. While the
first transition is in the Ising universality class [21,22], the
second transition could be non-Ising [20], and it is not yet
understood whether the high-density phase is a reentrant
low-density phase or a new phase [20,23]. When k£ = 1 (hard
squares), the system undergoes a transition into a high-density
columnar phase. The transition is continuous for m = 2
[24-28], and first order for m = 3 [25]. When m — oo,
keeping k fixed, the lattice model is equivalent to the model of
oriented rectangles in two-dimensional continuum, also known
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as the Zwanzig model [29]. For oriented lines in the continuum
(k — 00), a nematic phase exists at high density [22]. The
only theoretical results that exist are when m = 1 and k = 2
(dimers), for which no nematic phase exists [30-33], k > 1,
when the existence of the nematic phase may be proved
rigorously [19], and an exact solution for arbitrary k on a
treelike lattice [5,23].

Less is known for other values of m and k. Simulations
of rectangles of size 2 x 5 did not detect any phase transition
with increasing density [34], while those of parallelepipeds on
cubic lattice show layered and columnar phases, but no nematic
phase [35]. In general, numerical studies of large rectangles
are constrained by the fact that it is difficult to equilibrate
the system at high densities using Monte Carlo algorithms
with local moves, as the system gets jammed and requires
correlated moves of several particles to access different
configurations.

In addition to being the lattice version of the hard rods
problem, the study of lattice models of hard rectangles is
useful in understanding the phase transitions in adsorbed
monolayers on crystal surfaces. The (100) and (110) planes
of fcc crystals have square and rectangular symmetry and
may be treated with lattice statistics if the adsorbate-adsorbate
interaction is negligible with respect to the periodic variation
of the corrugation potential of the underlying substrate [36].
For example, the critical behavior of a monolayer of chlorine
(C1) on Ag(100) is well reproduced by the hard square model
(k =1) and the high-density c(2 x 2) structure of the CI
adlayer may be mapped to the high-density phase of the hard
square problem [37]. Structures such as p(2 x 2), ¢(2 x 2),
and (2 x 1) are ordered structures. Lattice gas model with
repulsive interaction up to fourth nearest neighbor has been
used to study the phase behavior of selenium adsorbed on
Ni(100) [38]. The results in this paper show that different
phases with orientational and positional order may be obtained
by only hard core exclusion.

At a more qualitative level, discrete models of hard
rods have been used to obtain a realistic phase diagram
for polydispersed systems [39,40], to describe orientational
wetting of rods [41], to model and understand self-assembly
of nanoparticles on monolayers [34] and thermodynamics of
linear adsorbates [42,43].
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Lattice models of hard rectangles also fall in the general
class of hard core lattice gas models of differently shaped
particles. The study of these models also has been of continued
interest in statistical physics as minimal models for the melting
transitions. The different shapes studied include squares
[44—46], hexagons on triangular [47,48] and square lat-
tices [49], triangles [50], and tetrominoes [34].

In this paper, we adapt and implement an efficient Monte
Carlo algorithm with cluster moves that was very effective in
studying the hard rod (m = 1) problem on lattices [20,51].
The hard rectangle model and the algorithm are described in
detail in Sec. II. We observe four distinct phases at different
densities: isotropic, nematic, columnar, and sublattice phases.
These phases, suitable order parameters to characterize them,
and other thermodynamic quantities are defined in Sec. III.
From extensive large scale simulations, we determine the
rich phase diagram for m = 2,3, and k = 1, ...,7. The phase
diagram for m =2 is discussed in Sec. IV. We find that
all transitions except the isotropic-columnar transition for
k = 6 are continuous. The critical exponents and universality
classes of the continuous transitions are determined. Section V
contains the details about the phase diagram and the nature of
the phase transitions for m = 3. In Sec. VI, we use a Bethe
approximation and estimates of entropies for the different
phases to determine the phase boundaries for large k, allowing
us to generalize the phase diagram to arbitrary m and k. In
particular, it allows us to take the continuum limit m — oo,
thus obtaining predictions for a system of oriented rectangles
in the continuum. Section VII contains a summary and a
discussion of possible extensions of the problem.

II. MODEL AND MONTE CARLO ALGORITHM

We define the model on a square lattice of size L x L
with periodic boundary conditions. Consider a monodispersed
system of rectangles of size m x mk such that the aspectratio is
k. A rectangle can be either horizontal or vertical. A horizontal
(vertical) rectangle occupies mk sites along the x (y) axis and
m sites along the y (x) axis. No two rectangles may overlap.
An activity z = e* is associated with each rectangle, where p
is the chemical potential.

We study this system using constant  grand canonical
Monte Carlo simulations. The algorithm that we implement
is an adaptation of the algorithm with cluster moves that
was introduced in Refs. [20,51] to study the problem of hard
rods (m = 1). We describe the algorithm below. Given a valid
configuration of rectangles, in a single move, a row or a column
is chosen at random. If a row is chosen, then all horizontal
rectangles whose heads (bottom, left corner) lie in that row
are removed, leaving the rectangles with heads in other rows
untouched. The emptied row now consists of two kinds of
sites: forbidden sites that can not be occupied with horizontal
rectangles due to the presence of vertical rectangles in the
same row or due to rectangles with heads in the neighboring
(m — 1) rows, and sites that may be occupied by horizontal
rectangles in a valid configuration. An example illustrating the
forbidden sites is shown in Fig. 1(a). It is clear that the sites
that may be occupied are divided into intervals of contiguous
empty sites. The problem of occupation of the emptied row
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FIG. 1. (Color online) An illustration of the Monte Carlo al-
gorithm. (a) Configurations before and after the evaporation of
horizontal rectangles with head on a particular row (denoted by
an arrow). Sites denoted by cross symbols can not be occupied by
horizontal rectangles in the new configuration. (b) An example of
the flip move for rectangles of size 2 x 6. A rotatable or flippable
plaquette of size 6 x 6, consisting of three aligned rectangles, is
shown by the dashed line. After the flip move, the horizontal
rectangles become vertical.

with a new configuration now reduces to the problem of
occupying the empty intervals. However, the empty intervals
may be occupied independent of each other, as the occupation
of one is not affected by the configuration of rectangles in
the remaining ones. Thus, the reoccupation of the emptied
row reduces to a problem of occupying a one-dimensional
interval with rods. This problem is easily solvable and the
equilibrium probabilities of each new configuration may be
easily calculated. We refer to Refs. [20,51] for the calculation
of these probabilities. If a column is chosen instead of a row,
then a similar operation is performed for the vertical rectangles
whose heads lie in that column.

In addition to the above evaporation-deposition move, we
find that the autocorrelation time is reduced considerably
by introducing a flip move. In this move, a site (i,j)
is picked at random. If it is occupied by the head of a
horizontal rectangle, then we check whether (i, j + m),(i,j +
2m), ...,(i,j + [k — 1]lm) sites are occupied by the heads
of horizontal rectangles. If that is the case, we call this set
of k aligned rectangles a rotatable plaquette of horizontal
rectangles. In the flip move, such a rotatable plaquette of
size mk x mk, containing k horizontal rectangles, is replaced
by a similar plaquette of k vertical rectangles. An example
of the flip move is shown in Fig. 1(b). If (i,j) is occupied
by the head of a vertical rectangle and a rotatable plaquette
of vertical rectangles is present, then it is replaced by a
plaquette of k aligned horizontal rectangles. A Monte Carlo
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move corresponds to 2L evaporation-deposition moves and L?
flip moves. It is easy to check that the algorithm is ergodic and
obeys detailed balance.

We implement a parallelized version of the above algorithm.
In the evaporation-deposition move, we simultaneously update
all rows that are separated by m. Once all rows are updated in
this manner, the columns are updated. We also parallelize the
flip move. The lattice is divided into L?/(m?k?) blocks of size
mk x mk. The flipping of each of these blocks is independent
of the other and may therefore be flipped simultaneously. We
flip a rotatable plaquette with probability % The parallelization
and efficiency of the algorithm allows us to simulate large
systems (up to L = 810) at high densities (up to 0.99).

We check for equilibration by starting the simulations with
two different initial configurations and making sure that the
final equilibrium state is independent of the initial condition.
One configuration is a fully nematic state, where all rectangles
are either horizontal or vertical and the other is a random
configuration where rectangles of both vertical and horizontal
orientations are deposited at random.

III. DIFFERENT PHASES

Snapshots of the different phases that we observe in simu-
lations are shown in Fig. 2. First is the low-density isotropic
(D) phase in which the rectangles have neither orientational
nor translational order [see Fig. 2(c)]. Second is the nematic
(N) phase in which the rectangles have orientational order
but no translational order [see Fig. 2(d)]. In this phase, the
mean number of horizontal rectangles is different from that
of vertical rectangles. The third phase is the columnar (C)
phase, having orientational order and partial translational order
[see Fig. 2(e)]. In this phase, if the majority of rectangles
are horizontal (vertical), then their heads, or bottom left
corners, preferably lie in rows (columns) that are separated
by m. Thus, it breaks the translational symmetry in the
direction perpendicular to the orientation but not parallel to the
orientation. Clearly, there are 2m symmetric C phases. In this
phase, the rectangles can slide much more along one lattice
direction. The fourth phase is the crystalline sublattice (S)
phase with no orientational order [see Fig. 2(f)]. We divide the
square lattice into m? sublattices by assigning to a site (i, j) a
label i mod m)+ m x (j mod m). The sublattice labeling
for the case m = 2 is shown in Fig. 2(a). In the S phase,
the heads of the rectangles preferably occupy one sublattice,
breaking translational symmetry in both the directions.

From the symmetry of the system we would expect
up to seven phases. The orientational symmetry could be
present or broken while the translational symmetry could
be unbroken, broken along only one or both x and y
directions. If the orientational symmetry is broken, then
the translational symmetry could be broken either parallel
or perpendicular to the preferred orientations. Out of the
seven possibilities, we do not observe (i) a phase with no
orientational order but partial translational order, (ii) a phase
with orientational order and complete translational order (iii)
a smecticlike phase in which orientational order is present
and translational symmetry parallel to the orientation is
broken.
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FIG. 2. (Color online) Snapshots of different phases (at different
densities) in a system of 2 x 14 hard rectangles. (a) The four sublat-
tices when m = 2. (b) The color scheme: eight colors corresponding
to two orientations, horizontal (H) and vertical (V), and heads of
rectangles being on one of the four sublattices, denoted by SLO to
SL3. (c) The isotropic phase where all eight colors are present. (d)
The nematic phase, dominated by four colors corresponding to four
sublattices and one orientation. (e) The columnar phase, dominated
by two colors corresponding to two sublattices and one orientation.
(f) The sublattice phase, dominated by two colors corresponding to
one sublattice and two orientations.

To distinguish among the four different phases, we define
the following order parameters:

2 <Nh - Nv)
=mk—— 1
Or=m N (1a)
m?>—1 2ij
N n;e m?
0 = mi Xz e ) (1b)
N
m—1 2mij m—1 2ij
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Q3 _ mzk(‘ Z]_O J | | Z]_O J >’ (1C)
N
Q4:m2k<n°_n1;]n2+n3>, (1d)
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where N}, and N, are the total number of horizontal and vertical
rectangles, respectively, n; is the number of rectangles whose
heads are in sublattice i = 0, ...,m% — 1, r; are the number of
rectangles whose heads are inrow (j mod m), and ¢; are the
number of rectangles whose heads are in column (j; mod m).
All four order parameters are zero in the I phase. Q| is nonzero
in the N and C phases, Q, is nonzero in the C and S phases,
Q3 is nonzero only in the C phase, and Q4 is nonzero only in
the S phase. Q4 in Eq. (1d) has been defined for m = 2. Its
generalization to m > 3 is straightforward.

We now define the thermodynamic quantities that are useful
to characterize the transitions between the different phases.
Q;’s second moment y;, compressibility «, and the Binder
cumulant U; are defined as

xi =(07)L%, (2a)

k = [(p%) — (p)*1L?, (2b)
4

U=1- <Q—>2 (2¢)
3(07)

The transitions are accompanied by the singular behavior
of the above thermodynamic quantities at the corresponding
critical densities. Lete = (u — u¢)/ e, Wwhere . is the critical
chemical potential. The singular behavior is characterized
by the critical exponents «, 8, y, v defined by Q ~ (—e)P,
e <0, x ~ €|V, k ~ |e|™%, and & ~ |e|™”, where £ is the
correlation length, |e| — 0, and Q represents any of the order
parameters. Only two exponents are independent, others being
related to them through scaling relations.

The critical exponents «, 8, y, and v are obtained by finite
size scaling of the different quantities near the critical point:

U~ fi(eL'), (3a)
Q ~ L PV f,(eL'"), (3b)
x = LY f(eL""), (3¢)
Kk = L fo(e L'V, (3d)

where f,, f;, fy, and f are scaling functions.

IV. PHASE DIAGRAM AND CRITICAL BEHAVIOR
FORm =2

In this section, we discuss the phase diagram for the
case m =2 and aspect ratio k = 1,2,...,7. The critical
exponents characterizing the different continuous transitions
are determined numerically.

A. Phase diagram

The phase diagram obtained from simulations for m = 2
and integer k are shown in Fig. 3. The low-density phase
is an I phase for all k. The case k =1 is different from
other k. In this case, the problem reduces to a hard square
problem and orientational order is not possible as there is no
distinction between horizontal and vertical squares. The hard
square system undergoes only one transition with increasing
density, it being a continuous transition from the I phase to a C
phase [24,44-46]. This transition belongs to the Ashkin-Teller
universality class (see Refs. [25-28] for recent numerical
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FIG. 3. (Color online) Phase diagram for rectangles of size 2 x
2k. I, N, C, and HD denote isotropic, nematic, columnar, and high-
density phases respectively. The HD phase is a C phase for k = 1
and an S phase for k > 1. The data points are from simulation, while
the continuous lines and shaded portions are guides to the eye. The
shaded portion denotes regions of phase coexistence.

studies). For k = 2,3, we find that the system undergoes one
continuous transition directly from the I phase to a crystalline
S phase. On the other hand, the system with £ = 4,5,6 may
exist in I, C, or S phases. With increasing density, the system
undergoes two phase transitions: first from the I to a C phase
which could be continuous or first order, and second, from the
C to a S phase which is continuous. For k = 7, we observe
three continuous transitions with increasing density: first from
the I to the N phase, second into the C phase, and third into the
S phase. By confirming the existence of the N and C phases for
k = 8, we expect the phase behavior for k > 8 to be similar to
that for k = 7.

The system undergoes more than one transition only for
k > kmin = 4. We now present some supporting evidence for
this claim. In Fig. 4(a), we show the probability distribution of
the nematic order parameter Q, when k = 4, for different
values of u and fixed L, close to the I-C and the C-S
transitions. For lower values of u, the distribution is peaked
around zero corresponding to the I phase. With increasing

6 : : : : :
o~ L=256 —
1 L=640 -
4 ! i 1
93 )
&~ i i
2
1 L

0 " J“‘ n 1 ‘" e
203-02-01 0 0.1 02 03
Q Q

FIG. 4. (Color online) (a) The probability distribution of the
order parameter Q; for k = 4 at different p values, when L = 416.
(b) The same for different system sizes when u = 6.55.
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W, the distribution becomes flat and two symmetric maxima
appear at Q| # 0 (Q3 also becomes nonzero simultaneously),
corresponding to a C phase. On increasing u further, the two
maxima continuously merge into a single peak at Q; = 0,
corresponding to the S phase (Q3 also becomes zero and Q4
becomes nonzero). Figure 4(b) shows the distribution of Q;
for three different system sizes at a fixed value of u for which
P(Q1) has two symmetric maxima at Q; # 0. The two peaks
become sharper and narrower with increasing L. We find the
similar behavior for P(Q3) also. From the above, we conclude
that the C phase exists for k = 4 albeit for a very narrow range
of w. For k =2 and 3, we do not observe the existence of
a columnar phase and find that the probability distributions
of O and Q3 are peaked around zero for all u. Hence, we
conclude that k;, = 4.

The N phase exists only for k > 7. This is also true for
m = 1 [18]. To see this, notice that the I-C transition fork = 6
is first order (see Fig. 3). If a nematic phase exists for k = 6,
then the first transition would have been continuous and in the
Ising universality class [21].

B. Critical behavior for the isotropic-sublattice
(I-S) phase transition

The system of rectangles with m = 2 undergoes a direct
I-S transition for k = 2,3. At this transition, the translational
symmetry gets broken along both x and y directions but
the rotational symmetry remains preserved. We study this
transition using the order parameter Q, [see Eq. (1b)]. O»
is nonzero in the S phase and zero in the I phase. In this
case, O and Q3 remain zero for all values of x. The data
collapse of U, Q», and x, for different values of L near the
I-S transition are shown in Fig. 5 for k =2 and in Fig. 6
for k = 3. From the crossing of the Binder cumulant data
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FIG. 5. (Color online) Data collapse for different L near the I-
S transition for rectangles of size 2 x 4 (m =2, k =2). We find
ukS & 533 (pkS ~ 0.930). The exponents are B/v = ¢, y/v =1,
and v &~ 1.18.
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FIG. 6. (Color online) Data collapse for different L near the I-
S transition for rectangles of size 2 x 6 (m =2, k = 3). We find
ukS ~ 6.04 (pS ~ 0.925). The exponents are B/v = ¢, y/v = 1,
and v &~ 1.23.

for different L, we estimate the critical chemical potential
ulS A~ 5.33 (oIS ~ 0.930) for k = 2 and uS ~ 6.04 (p!S ~
0.925) for k = 3. The order parameter increases continuously
with u from zero as ubS is crossed, making the transition
continuous. Since the S phase has a fourfold symmetry due to
the four possible sublattices, we expect the transition to be in
the Ashkin-Teller universality class. Indeed, we find a good
collapse with g/v = % and y/v = 47‘1' Numerically, we find
v=1.18£0.06 fork=2and v=1.23+0.07 fork=3.v
being larger than 1, we do not observe any divergence in «.
This transition could have also been studied using the order

parameter Q4.

C. Critical behavior of the isotropic-columnar
phase (I-C) transition

The I-C transition is seen for k = 4,5,6. When k = 4, the
critical chemical potentials for the I-C and the C-S transitions
are close to each other, making k = 4 unsuitable for studying
the critical behavior. We, therefore, study the I-C transition for
k =5 (2 x 10 rectangles) and k = 6 (2 x 12 rectangles).

The critical behavior is best studied using the order
parameter Qs [see Eq. (1¢)]. Q3 is nonzero only in the C phase.
First, we present the critical behavior for k = 5. The simulation
data for different system sizes are shown in Fig. 7. From the
crossing of the Binder cumulant curves, we obtain u'"¢ ~ 4.98
(,OLI,’C ~ 0.876). The transition is found to be continuous.
There are four possible columnar states: majority of heads
are either in even or odd rows (when horizontal orientation is
preferred), or in even or odd columns (when vertical orientation
is preferred). Due to this fourfold symmetry, we expect the I-C
transition to be in the Ashkin-Teller universality class. The
data for different L collapse with g/v = %, y/v = 47‘1’ and
v = 0.82 £ 0.06 (see Fig. 7), confirming the same. Unlike the

052124-5



JOYIJIT KUNDU AND R. RAJESH

| Y YY) Ry
0.6 + .?f. 4 0.6 - U gr: ]
L) . (b)
0471 o ot ] 04 R
o ] o : [ ]
S 021 = : { = 1
[ - 02+ n
. L=400 = L=400 —=— )
Or Lt L=600 ol L=600 u
. L=800 -+ L=800 =« %
-0.2 : o -
48 49 5 5.1 10 1 2 3 4 5
m Inje LMY
1.6 + JJIA’A 1 24+ A;
c & (d)
R W st ( )— N
% LAy ; o am
' | |
= osl L =127 -
o ] = o
L=400 — = "ﬁé L=400 —=— &
0.4+ 1=600 . L=600 %,
L=800, = o [L800 e P
10 1 2 3 45 10 1 2 3 4°5
Inle LYY Inje LYY

FIG. 7. (Color online) The data for different L near the I-C
transition collapse when scaled with exponents /v = é, y/v = %,
and v =0.82. We find pur¢ ~4.98 (p'C ~ 0.876). Data are for
rectangles of size 2 x 10.

I-S transition for k = 2,3, v < 1 and lies between the Ising
and g = 4 Potts points. At the I-C transition, partial breaking
of translational symmetry and complete breaking of rotational
symmetry occur simultaneously.

The I-C transition for k =4 is also continuous [see
Fig. 4(a)], and is therefore expected to be in the Ashkin-Teller
universality class. However, there is no reason to expect that v
will be the same as that for k = 5.

For k = 6, the I-C transition is surprisingly first order.
Figure 8(a) shows the time profile of density near the I-C
transition. p alternates between two well defined densities,
one corresponding to the I phase and the other to the C phase.
This is also seen in the probability distribution for density
[see Fig. 8(b)]. Near the I-C transition, it shows two peaks
corresponding to the I and the C phases. Thus, at pu = k<,
the density has a discontinuity, which is shown by the shaded
region in the phase diagram (see Fig. 3). The probability
distribution of the order parameter Q3 shows similar behavior
[see Fig. 8(c)]. Near pu = ;LIC'C the distribution shows three
peaks: one at Q3 = 0 corresponding to the I phase and the
other two at Q3 # 0, corresponding to the C phase. At u-€
the three peaks become of equal height and the order parameter
Q3 jumps from zero to a nonzero value. These peaks sharpen
with increasing system size [see Fig. 8(d)]. These are typical
signatures of a first order transition. Hence, we conclude that
the I-C transition may be continuous or first order depending
on k.

D. Critical behavior of the isotropic-nematic
phase (I-N) transition

We find that the nematic phase exists only for k£ > 7.
We study the I-N phase transition for k = 7 using the order
parameter Q; [see Eq. (1a)]. Q; is nonzero in the N and C
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FIG. 8. (Color online) Data for the density p and the order
parameter Q3 for rectangles of size 2 x 12. (a) Equilibrium time
profile of p near the I-C transition, for u = 3.02 and L = 720.
Probability distribution, near the I-C transition, of (b) p for different
values of u when L =576, (¢c) Qs for different values of u
when L = 576, and (d) Q3 for L =240 (u =2.99) and L = 576
(n = 3.02).

phases and zero in the I phase. We confirm that the ordered
phase is an N phase by checking that O3, which is nonzero
only in the C phase, is zero. In the nematic phase, the
rectangles may choose either horizontal or vertical orientation.
Thus, we expect the transition to be in the Ising universality
class. When m = 1, this has been verified using extensive
Monte Carlo simulations [21]. Here, we confirm the same for
m = 2. The data for Uy, |Q1|, and x; for different L collapse
onto one curve when scaled with the two-dimensional Ising
exponents /v = é, y/v= %, and v = 1 (see Fig. 9). We find
uN &~ 1.77 (N & 0.746). We note that the value of U, at the
point where the curves for different L cross is slightly smaller
than the Ising value 0.61. This suggests that larger system sizes
are necessary for better collapse of the data.

E. Critical behavior of the nematic-columnar
phase (N-C) transition

The N-C transition is also studied for k = 7, using the order
parameter Q3. Q3 is zero in the nematic phase but nonzero
in the columnar phase. At the I-N transition, orientational
symmetry gets broken. If the nematic phase consists of mostly
horizontal (vertical) rectangles, then there is no preference
over even and odd rows (columns). In the columnar phase,
the system chooses either even or odd rows (columns), once
the orientational symmetry is broken. Due to the two broken
symmetry phases we expect this transition to be in the Ising
universality class. We indeed find good data collapse when Us,
| O3, and x3 for different system sizes are scaled with Ising ex-
ponents (see Fig. 10). The critical chemical potential or critical
density is obtained from the crossing point of the binder cumu-
lant U5 for different L. We find 1€ ~ 1.92 (o€ ~ 0.766)
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FIG. 9. (Color online) The data for different L near the I-N
transition collapse when scaled with the Ising exponents /v = %,
y/v=1.,v=1and uN ~ 1.77. The critical density p}™ ~ 0.746.

Data are for rectangles of size 2 x 14.

for this transition. We expect the critical behavior to be same
fork > 7.

F. Critical behavior of the columnar-sublattice
phase (C-S) transition

The C-S transition exists for k > 4. This transition is studied
by choosing k = 5. We characterize the C-S transition using
the order parameter Q4 which is nonzero only in the S phase.
In the C phase, the system chooses one particular orientation
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FIG. 10. (Color online) The data for different L near the N-C
transition collapse when scaled with the Ising exponents /v = %,
y/v=1,v=1,and u}C ~ 1.92. The critical density p}"C ~ 0.766.
Data are for rectangles of size 2 x 14.
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FIG. 11. (Color online) The data for different L near the C-S
transition collapse when scaled with exponents /v = %, y/v= %,
v = 0.83, and uSS ~ 9.65. The critical density p&5 ~ 0.958. Data
are for rectangles of size 2 x 10.

and either even or odd rows or columns, depending on the
orientation. This corresponds to two sublattices being chosen
among four of them. In the C-S transition, the translational
symmetry gets broken completely by choosing a particular
sublattice, but along with that the orientational symmetry gets
restored. This transition is found to be continuous. The data
of Us, |Q4l, and x4 for different L near the C-S transition
collapse well when scaled with the exponents belonging to
the Ashkin-Teller universality class. The estimated critical
exponents are /v = %, y/v= ZT’ and v = 0.83 £ 0.06 (see
Fig. 11). Binder cumulants for different system sizes cross at
Mg-s ~ 9.65 (/OCC'S ~ 0.958). We expect similar behavior for
k = 4 and 6 but possibly with different v. The C-S transition
occurs at very high density. With increasing k, the relaxation
time becomes increasingly large, making it difficult to obtain
reliable data for the C-S transition when k > 6.

V. PHASE DIAGRAM AND CRITICAL BEHAVIOR
FORm =3

A. Phase diagram

The phase diagram that we obtain for m = 3 is shown in
Fig. 12. When k = 1, the corresponding hard square system
has a single, first order transition from the I phase into the C
phase [25]. The shaded region between two points denotes
a region of phase coexistence. For 2 < k < 6, the system
undergoes two first order transitions with increasing density:
first an I-C transition and second a C-S transition. This is
unlike the case m = 2, where for k = 2 and 3 we find only
one transition. For £ = 7, we find three transitions as in the
m = 2 case. The first transition from I to N phase is continuous
while the second from N to C phase appears to be first order.
Although we can not obtain reliable data for the third transition
into the S phase, we expect it to be first order. We note that the
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FIG. 12. (Color online) Phase diagram for rectangles of size 3 x
3k. HD denotes high density. The HD phase is a C phase for £ = 1
and a S phase for k > 1. The data points are from simulation while
the continuous line and shaded portions are a guide to the eye. The
shaded portions denote regions of phase coexistence. Except the I-N
transition, all the transitions are found to be first order.

minimum value of & beyond which the nematic phase exists is
7 for both m = 2 and 3, and matches with that for m = 1 [18].

B. Isotropic-columnar phase (I-C) transition

The I-C transition exists when k < 6. We study the this
transition for k = 6, using the order parameter Q3. Now,
there are six possible choices for the C phase: heads are
predominantly in one of the rows 0, 1, or 2 (mod 3) with
all the columns equally occupied (if horizontal orientation is
preferred) or in one of the columns 0, 1, or 2 (mod 3) and all the
rows are equally occupied (if vertical orientation is preferred).
Making an analogy with the six state Potts model, we expect
the I-C transition to be first order. The probability distribution
of the density p and the order parameter | Q3| for k = 3 near
the I-C transition is shown in Fig. 13. The distributions are
clearly double peaked at and near the transition point, one
corresponding to the I phase and the other to the C phase. We
find that these peaks become sharper with increasing system
size. This is suggestive of a first order phase transition with a

160 ! ‘ ‘ 20 ‘ :
(a), M=391 — (b) w=3.91 —
p=3.93 1=3.93

120 | H=3.94 o 15§ u=3.94
T 1 Jo
[=%] ; ,.v E-/
401 | [ 5t
0 ' 0
08 082 084 086 0 0.3 0.6 0.9
p Q5]

FIG. 13. (Color online) Distribution of (a) the density p near the
I-C transition, (b) the order parameter | Q3| near the I-C transition.
The data are for rectangles of size 3 x 18 and L = 432.
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FIG. 14. (Color online) The I-N transition for rectangles of size
3 x 21. (a) Distribution of the order parameter Q; near the I-N
transition. The data are for L = 420. (b) Binder cumulant for different
system sizes crosses at uIN & 2.92 (p!™N ~ 0.79). Value of U at i,
is ~0.61.

discontinuity in both density and order parameter as p crosses
,ui‘c. The discontinuity in the density is denoted by the shaded
regions of Fig. 12. The chemical potential at which the I-C
transition occurs is given by uC ~ 3.93. Similar behavior is
seen near the I-C transition for rectangles of size 3 x 3k with
k=72,3,4, and 5. We observe that the discontinuity in the
density increases with k.

C. Critical behavior of the isotropic-nematic
phase (I-N) transition

As for m =2, for m =3 we find the existence of the
nematic phase only for k > 7. We study the I-N transition
for k = 7 with the order parameter Q. It is expected to be
in the Ising universality class since there are two possible
choices of the orientation: either horizontal or vertical. We are
unable to obtain good data collapse for |Q;|, x1, and U; as
the relaxation time increases with increasing m and k. Instead,
we present some evidence for the transition being continuous
and belonging to the Ising universality class. In Fig. 14(a), the
distribution of the order parameter QO near the I-N transition
is shown. The two symmetric peaks of the distribution come
closer with decreasing  and merge to a single peak, this being
a signature of a continuous transition. The Binder cumulant U,
for different system sizes crosses at u!™ ~ 2.92 (pIN ~ 0.79)
[see Fig. 14(b)]. The value of U at u = u™N is very close to
the U, value (0.61) for the Ising universality class.

D. Nematic-columnar phase (N-C) transition

The N-C transition is studied for k = 7 using the order
parameter Q3. Contrary to our expectation that the N-C
transition should be in the g = 3 Potts universality class, we
observe a first order transition. The temporal dependence of the
density near the N-C transition is shown in Fig. 15(a). Density
jumps between two well separated values corresponding to
the two different phases near the coexistence. Figure 15(b)
shows the discontinuity in the order parameter | Q3| near the
transition. P(]Q3|) shows two peaks of approximately equal
heightnear "¢ ~ 3.12. However, we are limited in our ability
to obtain reliable data for 3 x 21 rectangles for larger system
sizes, and the observed first order nature could be spurious.
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FIG. 15. (Color online) (a) Temporal variation of density near
the N-C transition, (b) distribution of the order parameter | Q3| near
the N-C transition. The data are for rectangles of size 3 x 21 and
L =1756.

E. Columnar-sublattice phase (C-S) transition

The C-S transition is studied by choosing k£ = 2. We use
the order parameter Q4 which is nonzero only in the S phase.
The probability distribution of the density o and the order
parameter | Q4| for 3 x 6 rectangles near the C-S transitions is
shown in Fig. 16. The distributions are again double peaked
at and near the transition point, making the C-S transition first
order. These peaks become sharper with increasing system
size. The discontinuity in the density near the C-S transition
is very small and can also be seen in the shaded portions of
Fig. 12. We estimate u$S ~ 9.33. Similar behavior near the
C-S transitions is also observed for k > 2, but the relaxation
time increases with k.

VI. ESTIMATION OF THE PHASE BOUNDARIES USING
ANALYTICAL METHODS

In this section, we obtain the asymptotic behavior of the
phase diagram for large k using theoretical arguments.

A. Isotropic-nematic phase boundary

The critical density for the I-N phase transition for fixed
m and k >> 1 may be determined by making an analogy with
the continuum problem. The limit k — oo, keeping m fixed,
corresponds to the system of oriented lines in the continuum.
For this problem p. ~ A;/k [18,52]. The constant A; is
estimated to be 6.0 [18,52]. Thus, we expect pi™N ~ A, /k,

1000 F (@) p=930 — | ST(b) p=930 — 4 |
I 1=9.33 T =933 i
800 1=9.36 - 4 H=9.36 -
o f 53T
& 400 ot
200 | L o N
0 s ——‘ : \; 0 b . . . \
0978 098 0982 0 02 04 06 08
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FIG. 16. (Color online) Distribution of (a) the density p near the
C-S transition and (e) the order parameter | Q4| near the C-S transition.
The data are for rectangles of size 3 x 6 and L = 720.
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where A is independent of m. For k = 7, we observe only
a weak dependence of p™N on m with the critical density
being 0.745 £+ 0.005 (m = 1), 0.744 £ 0.008 (m = 2), and
0.787 £ 0.010 (m = 3).

B. Nematic-columnar phase boundary

To obtain the asymptotic behavior of the N-C phase
boundary, we use an ad hoc Bethe approximation scheme
for rods due to DiMarzio [53], adapted to other shapes [54].
To estimate the phase boundary of the nematic-columnar
transition of m x mk rectangles on the square lattice with
M = L x L sites, we require the entropy as a function of the
occupation densities of the m types of rows and columns.
The calculations become much simpler, if we consider a
fully oriented phase with only horizontal rectangles. Now,
the nematic phase corresponds to the phase where there is
equal occupancy of each of the m types of rows, while
the columnar phase breaks this symmetry and preferentially
occupies one type of row. For this simplified model with
only one orientation, we estimate the entropy within an ad
hoc Bethe approximation as detailed below. We present the
calculation for m = 2, classifying the rows as even and odd
rows. Generalization to higher values of m is straightforward.

Let there be N, (N,) number of rectangles whose heads (left
bottom site of the rectangle) occupy even (odd) rows. We first
place the N, rectangles one by one on the even rows. Given that
Je rectangles have already been placed, the number of ways in
which the (j, + 1)th rectangle can be placed may be estimated
as follows. The head of the (j, + 1)threctangle has to be placed
on an empty site of an even row. We denote this site by A (see
Fig. 17). The site A can be chosen at random in (M /2 — 2kj,)
ways, M /2 being the number of sites in even rows and 2kj,
being the number of occupied sites in the even rows by the j,
rectangles. We now require that the 2k — 1 consecutive sites to
the right of A are also empty. The probability of this being true
is [P, (B|A)]**"!, where P,(B|A)is the conditional probability
that B (see Fig. 17) is empty given that A is empty. In terms

FIG. 17. Schematic diagram showing the positions of sites A—F
to aid the explanation of the calculation of the nematic-columnar
phase boundary. Even and odd rows are denoted by e and o,
respectively.
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of M and j,, P,(B|A) is given by

P(BIA) = 522 “)
X % _ 2kje + je .

To place the (j, + 1)th rectangle, we also require that the
site C (see Fig. 17) and the 2k — 1 consecutive sites to the
right of C are also empty. The probability of this being true is
Py(C|A)Pyy(D|B N C)*~!, where P,(C|A) is the conditional
probability that C is empty given A is empty, and P,,(D|B N
C) is the conditional probability that D (see Fig. 17) is empty
given that both B and C are empty. Sites C and D belong to
an odd row. Since both A and B are empty, C and D can be
occupied only by rectangles with heads in the same odd row.
But, there are no such rectangles. Therefore, P,(C|A) =1,
and P.,(D|B N C) = 1. Thus, given that j, rectangles have
been placed, the (j. + 1)th rectangle may be placed in

M
Vi1 = (7 - 2kje) [P(B]A! )

ways. Hence, the total number of ways of placing N, rectangles
with heads on even rows is

| Nt
N, H Vet
L

Je=0

N.—1 (% . 2kje)2k

= N,! 1_[ )2k—1' (6)

jomo (5 = 2kje + je

Q=

—_—

Keeping the N, rectangles with heads on even rows, we now
place N, rectangles one by one on the odd rows. Given that j,
rectangles have been placed on the odd rows, the number of
ways of placing the (j, + 1)th rectangle may be estimated as
follows. The head of the (j, 4+ 1)th rectangle must be placed
on an empty site on an odd row. We denote this site by E (see
Fig. 17). E may be chosen in (% — 2kN, — 2kj,) ways, where
we have ignored correlations between rectangles. Here, 2k N,
is the number of occupied sites in the odd rows due to the N,
rectangles on the even rows, and the 2k, is the number of sites
occupied by j, rectangles in odd rows. We now require that
the 2k — 1 consecutive sites to the right of E are also empty.
The probability of this being true is [P, (F |E)**~!, where
P.(F|E) is the conditional probability that F' (see Fig. 17) is
empty given that E is empty. P,(F|E) is given by

M2 — 2kN, — 2kj,
M2 — 2kN, — 2kj, + Ne + j,’

P((F|E) = @)
where we have again ignored all correlations.

For placing the (j, 4+ 1)th rectangle, we also require that
the site G (see Fig. 17) and the 2k — 1 consecutive sites to
the right of G are also empty. The probability of this being
true is Py(G|E)Py,(H|F N G)*~!, where Py(G|E) is the
conditional probability that G is empty given E is empty,
and P,,(H|F N G) is the conditional probability that H (see
Fig. 17) is empty given that both F and G are empty. Ignoring
correlations, P,(G|E) is given by

M/2 —2kN, — 2kj,

Py(G|E) = M2 = 2k) - ®)

PHYSICAL REVIEW E 89, 052124 (2014)

If we calculate P(H|F N G) following the procedure devel-

oped by DiMarzio in Ref. [53], then the resultant entropy

is not symmetric with respect to N, and N, and depends

on the order of placement. To overcome this shortcoming,

we follow the Bethe approximation proposed in Ref. [54] as
follows:

P(FNG|H)P(H
P(HIFNG) = ( |H)P(H) ©)
Pyy(G|F)P(F)
. P(GIH)Py(F|H)
Py(GIF)

(10)

where in Eq. (9), we used P(H) = P(F) and in Eq. (10), we
replaced P(F N G|H)P(H) by P,(G|H)P,(F|H), which is
an approximation.

InEq. (10), from symmetry, itis easy to see that P,(G|H) =
P.(F|E) and P,(F|H) = P,(G|E) and can be read off from
Egs. (7) and (8). To obtain an expression for P,,(G|F), the
probability that G is empty, given that the site F’ is empty, we
again ignore correlations. We then obtain

M/2 —2kN, — 2kj,

P (GIF) = . 11
T R TR v

The number of ways of placing the (j, + 1)th rectangle is

M . 2k—1
V41 = (; — 2kN, — 21%) P.(F|E)]
x Py(G|E)P(H|G N F)]*". (12)

Substituting for each of the quantities on the right hand side,
we obtain the total number of ways of placing the N, rectangles
on the odd rows as

N,—1
1

Q, = l_[ Vij,+1
N{)! ) Jo
Jo=0

1 ﬁ‘ (Y% —2kN, — 2kj,

= N,! ja0 (% i ijo)zk

)Zk—l

)4k

(% - 2kj0 + jo
(% —2kN, — 2kj, + Ne + j,

X

. 3)
)4](—2

We would like to express the entropy in terms of the total
density p and the densities of occupied sites in even and odd
rows, given by p, and p,, respectively. Clearly,

_4kN, (14
pe=—

_4kN, {1s)
Po=—
P = Pe+ Po- (16)

The entropy per site s(p.,p0,) in the thermodynamic limit is
given by

. 1
$(Pe,po) = lim i In (L2082) . a7
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FIG. 18. (Color online) Entropy as a function of the order param-
eter Yn.c for m = 2 near the N-C transition ( pf’c ~ (0.624). The data
are for k = 4. The dotted line denotes the concave envelope.

Substituting for €2, and €2, from Eqgs. (6) and (13), we obtain

S(,Oe,,O,,): El ﬁ_(l_

l_()e

1— In{1—
—l—( p+2k>n< p+2k>

Py e Pi)—%Z(l—pl+§];>

i=o0,e i=o,e

x1n<1 p,+p’) (18)

p)In(1 — p)

2k

We express the entropy s(o.,0,) in terms of density p and
the order parameter ¥n.c, defined as

Yo = L0 (19)
P

¥n.c 18 zero in the nematic phase and nonzero in the columnar
phase. For a fixed value of p, the equilibrium values of p, and
pe are determined by maximizing the entropy s(p,¥n.c) with
respect to Yn.c. In Fig. 18, we show the variation of entropy
s(0,¥N.c) with N ¢ for different densities. For small values of
0, the entropy is maximized by ¥n.c = 0, 1.e, p, = p,. Beyond
a critical density pNC, s(p,¥n.c) is maximized by ¥n.c # 0,
i.e, pe # Po. YNn.c grows continuously with p for p > pNC,
and thus the transition for m = 2 is continuous.

The expansion of s(p,¥n.c) in powers of ¥n.c has only
even powers of {n.c since s(p,¥n.c) is invariant when Yn.c <
—¥N.c. Thus, the critical density is obtained from the condition
dzs/dl/fI%_CWN_C:o = 0. This gives

e _ 1+ 4k — /1 — 4k + 8k2
e 2k — 1
A -2
:(2—«/§)+E+O(k ), (20)

where A = (4 — ﬁ) > 0. We note thatas k — 0o, p"C tends

to a k independent value and that the transition exists for all
k> 2.
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FIG. 19. (Color online) Entropy as a function of the order param-
eter Yx.c for m = 3 near the N-C transition (o} ~ 0.684). The data
are for k = 2. The dotted lines denote the concave envelopes. The
curves have been shifted for clarity.

We can similarly calculate the entropy for m = 3 and then
generalize the expression of entropy for arbitrary m and k.
Now, there are m densities o1, 02, ..., om, corresponding to
the m types of rows. In terms of them, the entropy is given by

m

s({Pi}):_Z kl —s 2 (1= p)In(1 — p)

o o
1-— — |JIn(1-— —
+( p—i—mk)n( p—i—mk)

+p,
Z In(1 — p + p)
1 ¢ P = pi
——Z( —p+pit )
m mk

xln(l—p+pi+p_pi>. @1

mk
Here, we define the order parameter to be

L1 — P2
p b

Yne = (22)

where we set po = p3 = --- = p. Now, s(¥n.c,0) i not
invariant when ¥N.c = —¥nN.c. Thus, when expanded in
powers of ¥n.c, s(¥n.c,p) has cubic terms, making the
transition first order. This is illustrated in Fig. 19 which shows
the variation of entropy with ¥/n_¢ for different p near the N-C
transition. For low densities, s(¥n.c) exhibit a single peak
at Yn.c = 0, but with increasing p a secondary maximum
gets developed at ¥n.c # 0. For p = pf’c the maximum at
¥n.c =0 and ¥n.c # 0 becomes of equal height. Beyond
N-C_ the global maximum of s(¥n.c,p) jumps to Yn.c # O,
making the N-C transition to be first order.
Unlike the m = 2 case, there is no way to obtain an analytic
expression for pNC. For m = 3, the numerically determined
pNC for different k is shown in Fig. 20. From the data, we
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FIG. 20. (Color online) The critical density p-C and the spinodal
density pN°C, obtained from the Bethe approximation, as a function
of 1/k for m = 3. The solid line is 0.62875 + 0.107/ k.

obtain

0.107
o€ =0.62875 + —

m=3. (23)
We note that this expression has the same form as for m = 2
[see Eq. (20)].

For m > 3, we proceed as follows. The transition density
pN-C is bounded from above by the spinodal density pNC,
the density at which the entropy at {¥n.c = 0 changes from a
local maximum to local minimum. pN is obtained from the
condition d”s /d ¥ ¢|yyc—o = 0 and we obtain

ne | —m A 2km? —m/1 — 4k + 4k2m o NC

b = 20 —m — km + km?) Z e

24)
NT) By(m) )
= o™, k 25
1+ﬂ+ . + OKk™) — 00 (25)
1 By(k

=1_ﬁ+ 2()+0(m_3/2), m— 0o (26)
where By(m) = m and B,(k) = (1 + 5-). The spinodal

density is compared with pf‘c in Fig. 20. From Eq. (26), it
follows that py'c < 1 and tends to one when m,k — o0o. The
limit m — oo corresponds to the continuum limit. In this limit
pNC — 1. Thus, it is not clear whether the nematic-columnar

phase transition will exist in the continuum.

C. Columnar-sublattice phase boundary

The dependence of the C-S phase boundary on m and k
may be determined by estimating the entropy for the C and S
phases close to full packing. We approximate the entropy of the
C phase by the entropy of the fully aligned C phase. Since the
heads of the rectangles are all in either even or odd rows and
columns, by ignoring the unoccupied rows and columns, the
calculation of entropy reduces to a one-dimensional problem
of rods. The mean number of holes in a row is L(1 — p), and
the mean number of rods (of length mk) in a row is %. There
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are L /m such rows. The number of ways of arranging the rods
and holes on a row is
[t -t ]
= T
(L1 - p1[2]!
such that the total number of ways of arranging the rectangles is
QrLo/\,vm Hence, Sc, the entropy per site of the columnar phase is
givenby S¢c = (Lm)~" In Q,4y, which for densities close to 1 is
1—0p e
Sc ~ In ol - p)’l. 28
o — [km(l_p)}+ [(1—p?L (28
We now estimate the entropy for the sublattice phase. At full
packing, the head of each rectangle is on one of m? sublattices.
Ignoring the sites belonging to other sublattices, it is easy
to see that each configuration of rectangles can be mapped
on to a configuration of rods of length k on a lattice of size
L/m x L/m.Whenk > 1,by solving the full packed problem
of rods on strips, it is known that the entropy per unit site is
k~21nk [18]. For rectangles of size m x mk, we obtain
Ink
Sste=D~"55. k>1 (29)
where Sg is the entropy per site of the S phase. For densities
close to 1 (p =1 — €) we estimate the correction term to
Ss(p = 1) by removing €/ (m2k) fraction of rectangles at
random from the fully packed state. Here, we ignore the
entropy of the holes, assuming that the holes form bound
states. This gives the entropy of the sublattice phase, close
to the full packing to be approximately

Ink 1
8~ s — (1= p)In(l = p) + plnpl. k> 1.

(30)

Comparing Egs. (28) and (30) up to the leading order we obtain
the critical density for the C-S transition to be

A
PSS — 22 k> (31)

mk?’

27)

TOW

where A, > 0 is a constant.

Given the above asymptotic behavior of the phase bound-
aries, we expect that the phase diagram for m > 4 will be
similar to that obtained for m = 3 for large k. For small k, we
check that for rectangles of size 4 x 8, there are two transitions
just as in 3 x 6 rectangles. Thus, we are led to conjecture that
the phase diagram for m > 4 will be qualitatively similar to
that for m = 3 for all k.

VII. SUMMARY AND DISCUSSION

To summarize, we obtained the rich phase diagram of a
system of m x mk hard rectangles on a square lattice for
integer m,k using a combination of Monte Carlo simulations
and analytical calculations. We improve an existing cluster
Monte Carlo algorithm by implementing the plaquette flip
move, which reduces the autocorrelation time considerably.
For k > 7, we show that the system undergoes three entropy-
driven transitions with increasing density. For m = 2, we find
that the I-N, N-C, and C-S transitions are continuous, but
the I-C transition may be continuous or first order, depending
on k. The critical exponents for the continuous transitions
were obtained using finite size scaling. The I-N and N-C
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transitions are found to be in the Ising universality class, while
the C-S transition is in the Ashkin-Teller universality class.
The I-C transitions are also found to be in the Ashkin-Teller
universality class when continuous. For larger m, the number
of possible ordered states increases and the corresponding
transitions become first order.

Surprisingly, our numerical data suggest that the nematic-
columnar phase transition for m = 3 is first order. However,
once a nematic phase with orientational order exists, there
are only three possible choices for the columnar phase. By
analogy with the three state Potts model, we would expect
a continuous transition, in contradiction with the numerical
result. We also performed simulations for a system where
the activity for vertical rectangles is zero (only horizontal
rectangles are present) and observed again a first order
transition. However, for 3 x 21 rectangles, the autocorrelation
time is high and it becomes increasingly difficult to obtain
reliable data. Simulations of larger systems are required to
resolve this puzzle in the future.

When m = 2, the I-C transition is found to be continuous
for k = 4 and 5, but first order for k = 6. For k =6, it is a
weak first order transition and it is difficult to see the jump in
density for small system sizes. It is also possible that the data
are difficult to interpret because the transition point is close to
a tricritical point (the intersection of the I-N and N-C phase
boundaries). It would be interesting to reconfirm the first order
nature by either simulating larger systems or doing constant
density Monte Carlo simulations at the transition point so that
phase separation may be seen. Also, determining a method to
map k and p to the Ashkin-Teller model parameters would be
useful in clarifying this issue.

Another issue that we are not able to resolve completely
is the determination of the minimum value of k (say ky;,) for
which two transitions exist. For m > 3, we show that k,;, = 2.
When m = 2, our numerical data suggest that ky,;, = 4, witha
direct transition from isotropic to sublattice phase for k = 2,3.
However, for k = 4, the columnar phase exists in a very narrow
window of p or p. Whether the columnar phase is present for
k = 2,3, but we are unable to resolve the transitions, is some-
thing that requires investigation of much larger system sizes.

We obtained the N-C phase boundary analytically through
a Bethe approximation. However, an improvement of the
calculations is desirable as the approximations are ad hoc and
uncontrolled and there does not appear to be a systematic
way of improving it. An exact solution on treelike lattices,
for example, the random locally layered treelike lattice
(RLTL) [5,23], would be more satisfying. At present, we have
not been able to formulate the problem of rectangles on RLTL.
This is a promising area for future study.

Several extensions of the problem are possible. An inter-
esting limit is the continuum problem of oriented rectangles
of aspect ration k. This corresponds to the m — oo limit of
the lattice model. From the analytical arguments presented
in the paper, we would expect a isotropic nematic transition
at a critical density proportional to k~'. Within the Bethe
approximation, the spinodal density for the nematic-columnar
transition tends to 1 in the continuum limit. This being an
upper bound for the critical density for the nematic-columnar
transition, it is likely that the continuum problem will have a
second transition into a columnarlike phase, a true columnar
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phase being prohibited by the Mermin-Wagner theorem. We
expect the C-S transition to be absent in the continuum, as the
critical density for the C-S transition tends to 1 as m — oo.
It would be interesting to verify these claims numerically.
Preliminary simulations show an isotropic-nematic transition.

One could also consider the model on other lattices like
the triangular lattice. Here, the parallelograms may orient
themselves along three possible lattice directions. For each
orientation, the rectangles may have two different slants (as the
shorter side of the rectangle may be oriented along two possible
lattice directions). In this case, we expect the phase diagram to
be qualitatively similar to that for the square lattice. However,
as there are three broken symmetry phases corresponding to the
three directions, the I-N transition would be in the three state
Potts universality class, as opposed to Ising universality class
for the square lattice. However, the N-C transition would be
same as that for the square lattice. The I-C transition is now ex-
pected to be first order for all m since the number of symmetric
C phases increases from 2m to 3m. The S phase will now have
2m? symmetric states, the extra factor of 2 being due to the two
different slants corresponding to each orientation. Therefore,
we expect the I-S transition to be always first order. It would be
interesting to study the C-S transition carefully in detail for the
triangular lattice and compare with that for the square lattice.

We have also studied systems with noninteger k on the
square lattice (e.g., 2 x 11). Now, it is straightforward to see
that the high-density phase can not have sublattice order. Thus,
the high-density phase does not possess either translational or
orientational order. But, at intermediate densities, we observe
the existence of the C phase fork > kp, and N phase fork > 7.
When m = 2, we observe the C phase for k > 5.5 (rectangles
of size 2 x 11). In this case, the I-C transition is found to be
first order. For both m = 2 and 3, the I-N and N-C transitions
are expected to be similar to that for integer k. Unlike integer
k, we do not observe any transition for small k& (k < 5.5 for
m = 2) and the phase remains isotropic at all densities. We
hope to clarify these issues in detail in a future paper.

We argued, based on an analogy with the continuum
problem, that ,og'N ~ A/k,where A| is independent of m. Can
this conjecture be verified analytically or through numerical
simulations? We expect that for m = 2, the critical density can
be determined numerically up to a k large enough to determine
A|. Comparison with the value of A| form = 1[18,52] would
help in verifying the conjecture.

Extension to three-dimensional cubic lattice would result
in a much richer phase diagram that remains to be explored.
The algorithm used in this paper is easily implementable in
three dimensions. Finally, the m = 1 case (hard rods) is the
only instance where the existence of a nematic phase may be
proved rigorously [19]. To the best of our knowledge, there
exists no proof of existence of phases with partial translational
order like the columnar phase. The hard rectangle model seems
an ideal candidate to prove its existence.
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