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Cluster-size distribution in the autocatalytic growth model
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We generalize the model of transition-metal nanocluster growth in aqueous solution, proposed recently
[J. Jȩdrak, Phys. Rev. E 87, 022132 (2013)], by introducing a more complete description of chemical reactions.
In order to model time evolution of the system, equations describing chemical reaction kinetics are combined
with the Smoluchowski coagulation equation. In the absence of coagulation and fragmentation processes, the
model equations are solved in two steps. First, we obtain the explicit analytical form of the i-mer concentration,
ξi , as a function of ξ1. This result allows us to reduce considerably the number of time-evolution equations. In the
simplest situation, the remaining single kinetic equation for ξ1(t) is solved in quadratures. In a general case, we
obtain a small system of time-evolution equations, which, although rarely analytically tractable, can be relatively
easily solved numerically.
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I. INTRODUCTION

Colloid formation, as well as polymerization processes
of various kinds, usually involve chemical reactions. Conse-
quently, a theoretical description of such phenomena should
take into account both the chemical reactions and purely
physical processes of coagulation and fragmentation. In
particular, within the rate-equation approach, time-evolution
equations which are a generalization of both the rate equa-
tions, describing the kinetics of chemical reactions, and the
Smoluchowski coagulation equation, a standard tool used by
physicists to describe various aggregation phenomena [1–19],
are obtained.

Such “reaction-aggregation” equations [16–19] usually
defy analytical solutions unless the model parameters are
chosen in a very special way—suffice it to say that even the
standard Smoluchowski coagulation equation can be solved
analytically only in a few cases; cf. [4].

In a recent paper [19], we proposed a reaction-aggregation
model, which reduces to the model of autocatalytic reaction
in the absence of coagulation. In such a situation, we were
able to find an analytical solution of the model equations
in two nontrivial cases. In the present work, we consider
generalization of this model, for which a detailed analysis
is provided and analytical results are presented. In particular,
in the absence of coagulation, the analytical form of the k-mer
(cluster consisting of k atoms or monomers) concentration
(ξk) as a function of the monomer concentration (ξ1), i.e.,
ξk = sk(ξ1), has been found for essentially arbitrary values of
the model parameters.

This result has two important consequences. First, it greatly
reduces a number of independent time-evolution equations.
The remaining ones are to be solved either analytically (in the
simplest situation, only one time-evolution equation remains,
which can be solved in quadratures) or, in general, numerically.
Typically, we are left with a system consisting of 2–4 first order
ordinary differential equations, which makes the numerical
analysis of the model feasible.
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Second, an explicit form of each of the sk(ξ1) functions
provides us with complete information about the structure
of the cluster-size distribution. In particular, we are able
to determine all k-mer concentrations in the t → ∞ limit
by solving only one algebraic equation (mass conservation
constraint), but without solving any of the kinetic equations. It
should be noted here that in many applications, the long-time
asymptotic cluster-size distribution is far more important than
details of the time evolution of the system.

Our original goal was to provide a rigorous mathematical
description of a transition-metal nanocluster nucleation and
growth kinetics in aqueous solution according to the mecha-
nism proposed by Watzky and Finke [20–24]. Mathematical
modeling of nanocluster nucleation and growth is a subject of
considerable practical importance due to the fact that solution
route synthesis still remains one of the most convenient
methods of producing transition-metal nanoparticles [25],
which find numerous applications due to their unique optical,
electronic, catalytic, and biological properties. However, the
Watzky-Finke (WF) mechanism, both in its basic and one of its
extended forms, is applicable to other experimental situations,
particularly to certain cases of transition-metal oxide or sulfide
(e.g., CdS) nanocluster formation and some polymerization
phenomena, including protein aggregation [24]. Therefore, it
is expected that the results presented here will find useful
applications outside the field of colloidal science.

This paper is organized as follows: we start in Sec. II by
listing chemical reactions and physical processes included in
the present model. In Sec. III, we introduce time-evolution
rate equations of the model, being a generalization of those
introduced and analyzed in Ref. [19]. In Sec. IV, we analyze
in detail the situation when coagulation and fragmentation
processes are absent. This section contains the central results
of the present paper, i.e., the relationship between k-mer and
monomer concentrations.

In Sec. V, we show how the results of Sec. IV can be applied
in order to solve the time-evolution equations. In Sec. VI, we
provide the reader with some simple special cases of the model,
for which analytical solutions of the time-evolution equations
can be easily obtained. Limitations of the present model are
discussed in Sec. VII. Section VIII contains a summary and
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discussion. Some possible generalizations of the present model
are briefly discussed in the Appendices.

II. MODEL

The basic form of a transition-metal colloidal nanoparticle
formation mechanism, as proposed by Watzky and Finke [20]
(cf. [21–24]) consists of two steps. The first is production
of a monomer, i.e., a zero-valent transition-metal atom (B1)
due to the reaction of a metal precursor (A), which is usually
a transition-metal coordination compound, with the reducing
agent (R),

A + R → B1 + X1. (1)

The second is a parallel autocatalytic reduction reaction taking
place on the surface of an i-mer (Bi), i.e., the zero-valent metal
cluster consisting of i atoms,

A + R + Bi → Bi+1 + X2. (2)

The remaining (apart from Bi) products of reactions (1) and (2)
are collectively denoted X1 and X2.

In contrast to our previous treatment [19] of the WF
mechanism in its original formulation [20–23], here the
presence of the reducing agent has been explicitly taken into
account in both (1) and (2) [26]. Usually, as an excess of the
reducing agent is used, we may assume that its concentration
is time independent. Consequently, both (1) and (2) are
frequently treated as pseudo-first and pseudo-second order
reactions, respectively [20–23,27–31]. However, in the present
paper, this assumption is abandoned [32].

Two basic steps (1) and (2) may be supplemented with the
coagulation process,

Bi + Bj � Bi+j ; (3)

cf. Ref. [21]. In addition, although chemical reactions (1)
and (2) are assumed to be irreversible due to the presence
of a large amount of the reducing agent, this does not need to
be the case for the physical processes, and (3) is generalized
to include fragmentation [19].

Various extensions of the original WF scheme (1)–(3)
are possible, and frequently required, depending on the
experimental situation at hand. First, in many cases of practical
importance, a transition metal (e.g., Au) has more than
one possible oxidation state. In such situation, at least one
additional preliminary step,

P + R → A + X3, (4)

should be introduced [27–31]; see also [19]. For example, P

may be an Au(III) chloride complex ion [AuCl4]−, resulting
from dissociation of tetrachloroauric acid (HAuCl4). Accord-
ing to (4), Au(III) is reduced first to Au(I) [33], appearing
in a form of [AuCl2]− ≡ A complex ion, and subsequently
reduced to zero-valent gold forming nanoclusters of various
size, (Au0)i ≡ Bi [30].

Next, analogously to the case of the A → B reduction
reaction, (4) can also have its catalytic counterpart [28],

P + R + Bi → A + Bi + X4. (5)

Again, X3 and X4 denote additional products of reactions (4)
and (5), respectively. Also, in open systems, the supply of R,

P , or A molecules or Bi clusters (i � 1) by an external source
(injection mechanism) may be present.

Many other generalizations of the above-defined model are
obtained if Eqs. (1)–(5) are augmented by additional chemical
reactions, or if more complex mechanisms of (1), (2), (4),
or (5) reactions are considered, i.e., by taking into account
more elementary reactions steps (cf. e.g., Ref. [34]). Some
such extensions are discussed in Appendices A and B.

III. TIME-EVOLUTION EQUATIONS

We assume here that our system can be treated as spatially
homogeneous (“perfect mixing” assumption). The validity of
this assumption and its limitations are discussed in Sec. VII.
Also, we assume that temperature is time independent (isother-
mic process). Under such conditions, a description making use
of kinetic rate equations is adequate, and concentrations of
R, P , A, and Bi , i ∈ N, denoted here by cρ , cπ , cα , and ξi ,
respectively, are the state variables of the present model [35].

The kinetics of chemical reactions (1), (2), (4), and (5) is
modeled here in a way that is usual for the rate-equation ap-
proach, whereas in order to describe the kinetics of reversible
aggregation (3), an approach based on the Smoluchowski
coagulation equation [3–18] is employed. In effect, we obtain
the following set of time-evolution equations for cρ , cπ , cα , ξ1,
and ξk , k > 1:

ċρ = ẇρ − k̃π cπ −
∞∑

j=1

R̃
(π)
j ξj cπ − k̃αcα −

∞∑
j=1

R̃
(α)
j ξj cα,

(6)

ċπ = ẇπ − k̃π cπ −
∞∑

j=1

R̃
(π)
j ξj cπ , (7)

ċα = ẇα + k̃π cπ +
∞∑

j=1

R̃
(π)
j ξj cπ − k̃αcα −

∞∑
j=1

R̃
(α)
j ξj cα,

(8)

ξ̇1 = ẇ1 + k̃αcα − R̃
(α)
1 ξ1cα

−
∞∑

j=1

[K1j ξ1ξj − F1j ξ1+j ], (9)

ξ̇k = ẇk + (
R̃

(α)
k−1ξk−1 − R̃

(α)
k ξk

)
cα

+ 1

2

∑
ij

[Kij ξiξj − Fij ξk] −
∑

j

[Kkjξkξj − Fkj ξk+j ].

(10)

The first sum in Eq. (10) is restricted to i + j = k. As usual,
the dot denotes a time derivative, e.g., ξ̇k ≡ dξk/dt , etc.

A. Reaction rate constants

The k̃π = k̃π (cρ), R̃(π)
k = R̃

(π)
k (cρ), k̃α = k̃α(cρ), and R̃

(α)
k =

R̃
(α)
k (cρ) functions appearing in Eqs. (6)–(10) describe the

reducing agent concentration dependence of the reaction
rates. If constant cρ(t) = cρ(0) is assumed, these functions
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become effective (observable) reaction rate constants for
reactions (4), (5), (1), and (2), respectively [36]. For k � 0,
each R̃

(α)
k (cρ) may be written as

R̃
(α)
k (cρ) = R

(α)
k f

(α)
k (cρ), (11)

where R̃
(α)
0 ≡ k̃α , R

(α)
0 ≡ kα , and similarly for R̃

(π)
k and R

(π)
k .

We assume at this point that each f
(σ )
k (cρ) function (σ = α,π ;

k � 0) can be expanded in power series in cρ ,

f
(σ )
k (cρ) = a

(σ )
0,k + a

(σ )
1,k cρ + a

(σ )
2,k c

2
ρ + · · · . (12)

Apparently, for colloidal systems, we must have a
(σ )
0,k = 0, as

there is no reduction reaction in the absence of the reducing
agent. However, we should keep in mind that Eqs. (6)–(10)
are valid only if the reducing agent appears in excess, i.e.,
max(cπ ,cα) � cρ . Consequently, the behavior of f

(σ )
k (cρ)

functions in the vicinity of cρ = 0 is not that essential. Still,
we assume that a

(σ )
1,k = 1, which can always be achieved by

rescaling R
(σ )
k . We emphasize that the presence of an excess of

the reducing agent allows us to model all chemical reactions as
irreversible processes. However, in some situations, nontrivial
time dependence of cρ should be taken into account for the
reasons explained in Sec. II.

The simplest form of f
(σ )
k (cρ) is a linear function, R̃

(σ )
k ≡

cρR
(σ )
k , i.e., a(σ )

m,k = 0 for m �= 1. For k > 0, i.e., for a catalytic
(σ = π ) or autocatalytic (σ = α) reaction, this particular form
of R̃

(σ )
k corresponds to an elementary reaction involving three

molecules (trimolecular). However, autocatalytic or catalytic
processes in solution are rarely elementary reactions, and it
may be expected that the real reaction mechanism is more
complex; cf. e.g., [34]. In such situation, within an effective,
approximate description, neglecting some elementary steps,
or treating them within the steady-state approximation, terms
nonlinear in cρ are present in (12) [37]. Higher-order terms are
also important when the presence of the reducing agent influ-
ences the rate of chemical reactions indirectly, by changing the
pH or ionic strength of the solution—again, we usually have
to go beyond linear approximation to model such effect.

If the present model is to be used to describe a polymer-
ization process with no reducing agent, in Eq. (12) we have to
put a

(σ )
0,k = 1, and a

(σ )
m,k = 0 for m � 1.

From now on, for k � 0, we assume a k-independent form
of the f

(α)
k functions appearing in Eqs. (11) and (12),

f
(α)
k (cρ) = f (α)(cρ). (13)

The above assumption is crucial here, as it allows one to get
rid of cρ dependence of the reaction rates; see below.

We also assume that clusters above the critical size (k = n)
do not take part in the autocatalytic process,

R
(α)
k = 0 for n = k,

(14)
R

(α)
k �= 0 for 1 � k < n.

Still, n may be arbitrarily large. The introduction of n < ∞
allows us to work with a finite system of equations (6)–(10).
This is essential if we want to solve these equations numer-
ically. Also, in any real system, we always deal with a finite
number of particles, but this rather trivial observation can

provide us only with a crude upper bound for n. However,
there may be yet another reason for introducing finite n,
if a sedimentation process takes place, effectively removing
larger particles from the system. However, for most of the
colloidal systems of interest, the time scale of sedimentation
in a gravitational field is expected to be much larger than the
characteristic time scale of chemical reactions.

Finally, let us note that the temperature dependence of all
the rate constants may be taken into account by invoking the
standard Arrhenius, Eyring, or more general phenomenologi-
cal equation [38], if necessary.

B. Coagulation and fragmentation kernels

Kij = Kji and Fij = Fji in Eqs. (9) and (10) denote the
coagulation and fragmentation kernel, respectively.

What is important is that in systems of interest, the rate
of the coagulation process may depend on the concentration
of chemical species, and, therefore, within the present model,
the cρ, cπ , or cα dependence of Kij cannot be ruled out. The
reason for this may be analogical as in the case of reaction
rate constants, namely, variations in the pH or ionic strength
of the solution caused by variable cρ, cπ , and cα . The pH
or ionic strength value, in turn, may influence the surface
charge of the clusters and, consequently, the strength of their
mutual electrostatic interactions, hence the tendency towards
coagulation.

The temperature dependence of Kij and Fij can also be
taken into account, although the realistic functional form of
this dependence is unclear and may be more complicated than
the one for k̃π , R̃

(π)
k , k̃α , and R̃

(α)
k .

C. Source terms

ẇρ , ẇπ , ẇα , ẇ1, and ẇk appearing in Eqs. (6)–(10) are
the source terms for R, P , and A molecules, monomers B1,
and the k-atom clusters Bk , respectively. The total amount of
a given substance injected into the system in the time interval
(0,t) is given by

wσ (t) =
∫ t

0
ẇσ (t ′)dt ′, (15)

where σ = α,π,ρ, or k. Clearly,

wσ (0) = 0. (16)

For reactions taking place in the homogeneous aqueous phase,
it is natural to assume

∀t : ẇσ (t) � 0, (17)

and

lim
t→∞ wσ (t) ≡ w̄σ < ∞. (18)

However, condition (17) may be abandoned when the present
model is used for the description of chemical reactions and
physical processes taking place in reverse micelles [39]. In
such situation, ẇσ (t) terms may be used to model the kinetics
of the intermicellar exchange process.
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D. Initial conditions

Equations (6)–(10) have to be supplemented with appropri-
ate initial conditions. First, from now on we assume

ξi(0) = 0, i > 1. (19)

Consequently, values of only four parameters,

cρ(0) ≡ b0, cπ (0) ≡ c0,
(20)

cα(0) ≡ d0, ξ1(0) ≡ e0,

have to be initially specified. In order to obtain nontrivial
solutions, we should have

0 < c0 + d0 ≡ q0 � b0, (21)

which also expresses the reducing agent excess condition.
The basic approach of Watzky and Finke (“two-step WF

mechanism” [20]) as defined by (1) and (2) corresponds to
c0 = e0 = 0, d0 �= 0. When additional preliminary steps (4)
and (5) are taken into account, c0 �= 0. Regarding e0, in the
present paper two cases are considered, namely,

e0 = 0 for k̃α �= 0, (22)

e0 �= 0 for k̃α = 0. (23)

E. Conserved quantities

State variables cρ,cπ ,cα , and ξi are not independent.
Namely, from Eqs. (7)–(10), we obtain

Q̇m(t) ≡ ċπ (t) + ċα(t) +
∞∑

j=1

j ξ̇j (t)

− ẇπ (t) − ẇα(t) −
∞∑

j=1

jẇj (t) = 0. (24)

Integrating Eq. (24), one gets

Qm(t) ≡ cπ (t) + cα(t) +
∞∑

j=1

jξj (t)

−wπ (t) − wα(t) −
∞∑

j=1

jwj (t) = q0 + e0, (25)

where (21) and the initial conditions (16) and (20) have been
invoked. Equation (25) is nothing but the mass conservation
constraint. For colloidal systems, “mass” refers to a total
number of transition-metal atoms, regardless of its distribution
amongst P , A, and Bi .

From Eqs. (6)–(8), yet another relation follows. Namely,
we have

Q̇r (t) ≡ ċρ(t) − 2ċπ (t) − ċα(t)

− ẇρ(t) + 2ẇπ (t) + ẇα(t) = 0. (26)

Making use of Eqs. (16), (20), and (26), we obtain

Qr (t) ≡ cρ(t) − 2cπ (t) − cα(t)

−wρ(t) + 2wπ (t) + wα(t) = b0 − 2c0 − d0. (27)

F. Stationary solution

The stationary solution [40] of Eqs. (6)–(10) is defined by
the following condition:

ċρ = ċπ = ċα = ξ̇1 = ξ̇2 = · · · = ξ̇n = 0. (28)

Stationary values of the state variables will be denoted by
a bar, e.g., c̄α . Due to (18) and the irreversible character of
reactions (1), (2), (4), and (5), we have ċπ = ċα = ċρ = 0
only if

c̄π = lim
t→∞ cπ (t) = 0, c̄α = lim

t→∞ cα(t) = 0. (29)

As a consequence of Eqs. (29), from Eq. (25) we obtain

∞∑
j=1

j ξ̄j = w̄π + w̄α +
∞∑

j=1

jw̄j + c0 + d0 + e0. (30)

Note that Eq. (30) follows from the existence of the constant
of motion, and therefore the value of the sum

∑∞
j=1 j ξ̄j does

not depend on the choice of k̃π , R̃
(π)
k , k̃α , R̃

(α)
k , or Kij and Fij

functions.
This is not the case for individual ξ̄j , however. In the general

situation, the stationary value of each ξ̄j depends on the choice
of Kij and Fij [41]. Still, as will be shown below, in the absence
of both cluster source terms (ẇj = 0) and physical processes of
coagulation and fragmentation (Kij = Fij = 0), the sequence
ξ̄1,ξ̄2, . . . ,ξ̄n is uniquely determined by the following model
parameters: n, q0, e0, k̃α , and R̃

(α)
k for k = 1, . . . ,n − 1. Its

form depends neither on k̃π , R̃
(π)
k , nor on ẇρ , ẇπ , and ẇα .

Finally, c̄ρ can be found from (27) and (29); we get

c̄ρ = w̄ρ − 2w̄π − w̄α + b0 − 2c0 − d0. (31)

G. Method of moments

In some situations, in order to analyze the properties of
Eqs. (6)–(10), it is useful to rewrite these equations in terms of
new variables. The μth moment of the cluster mass distribution
is defined as

Mμ(t) =
∞∑

j=1

jμξj (t). (32)

The presence of variable cρ(t), source terms ẇσ , or a chemical
reaction not involving Bi clusters [42] does not affect the form
of the time-evolution equations for Mμ(t) as given by Eq. (6)
of Ref. [19]. The only new contribution comes from the cluster
source terms ẇk . If the latter are present, instead of Eq. (6) of
Ref. [19], we then have [43]

Ṁμ =
∑
j=1

jμẇj + k̃αcα +
∑
j=1

G̃(μ)
j ξj cα

+
∑
p,q

S̃ (μ)
pq ξpξq +

∑
p=2

T̃ (μ)
p ξp. (33)

In Eq. (33), S̃ (μ)
pq = S̃ (μ)

qp ≡ 1
2 [(p + q)μ − pμ − qμ]Kpq ,

T̃ (μ)
p ≡ ∑p−1

i=1 (iμ − 1
2pμ)Fi,p−i , and G̃(μ)

j ≡ [(j + 1)μ −
jμ]R̃(α)

j . The analysis of the general qualitative properties
of Eq. (33), provided in Sec. III of Ref. [19], remains valid
here with only minor modifications. Namely, first, the initial

052122-4



CLUSTER-SIZE DISTRIBUTION IN THE . . . PHYSICAL REVIEW E 89, 052122 (2014)

conditions for Eq. (33) now read Mμ(0) = e0. Also, the
stationary value of M1, i.e., M̄1 ≡ limt→∞ M1(t), is now
given by (30).

The remaining part of Sec. III of Ref. [19] can also be
generalized in an obvious manner. Equations (33) for various
μ, supplemented by time-evolution equations for cρ , cπ ,
and cα , can be given a closed, tractable form, analogous to
Eqs. (8)–(11) of Ref. [19], if a restriction is imposed on the
parameter n appearing in (14), μ, as well as the values of the
model parameters, namely, n = ∞, μ ∈ N ∪ 0, Fij ≡ 0, and
R̃

(π)
i , R̃

(α)
i , Kij given by

Kij = κ0 + κ1(i + j ) + κ2ij, R̃
(σ )
i = ã

(σ )
R i + b̃

(σ )
R . (34)

In the above equation, κ0, κ1, κ2, and ã
(σ )
R , b̃(σ )

R for σ = π,α are
arbitrary non-negative coefficients. Note that for finite n, and
μ �= 0, the right-hand side (rhs) of Eq. (33) cannot be expressed
as the function of only Mμ variables, even for Kij = Fij = 0.

IV. ABSENCE OF COAGULATION

A. General remarks

An important simplification of the present model is obtained
if coagulation and fragmentation processes are neglected.
For transition-metal nanocluster growth in solution, such
an assumption is justified in some situations. First, if a
stabilizing agent such as polyvinyl alcohol (PVA) or polyviny-
lopyrrolidone (PVP) is present in a system, coagulation is
severely limited or even entirely absent [29,31]. Second,
if the nanocluster have a nonzero surface charge, then the
resulting repulsing electrostatic interactions between clusters
may prevent coagulation. Third, lack of coagulation may be a
reasonable approximation for nanoparticle growth in reverse
micelles, where the geometry or size of the micelle water pool
prohibits coagulation, at least to some extent. From now on, we
also assume that there is no injection of the nanoclusters. As a
consequence, for Kij = Fij = 0 and ẇk = 0, Eq. (9) takes the
form

ξ̇1 = cα

(
k̃α − R̃

(α)
1 ξ1

)
, (35)

whereas for 1 < k < n from Eq. (10), we obtain

ξ̇k = cα

(
R̃

(α)
k−1ξk−1 − R̃

(α)
k ξk

)
. (36)

Note that the presence of cα(t) in Eqs. (35) and (36) makes
this system of time-evolution equations nontrivial. Only for
cα(t) = const do we obtain a system of linear equations that
are investigated, e.g., in Ref. [44]; cf. [45].

It is convenient to consider the k = n separately [46].
Invoking Eqs. (14) and (36), we get

ξ̇n = cαR̃
(α)
n−1ξn−1. (37)

We may expect that, in general, ξn(t) �= 0 for t > 0. Yet, if only
ξn+1(0) = 0, which is assumed to be the case here [cf. Eq. (19)],
for i > n we should have ξi(t) = 0, regardless of the values
of the corresponding coefficients R̃

(α)
i [47]. In other words,

n-mers are the largest clusters appearing in a system and,
hence, for n < ∞, we should expect some kind of “finite-size”
effects in the solutions of Eqs. (35)–(37).

Note that the rhs of Eq. (35), each of Eqs. (36), and Eq. (37)
do not depend explicitly on time. Dividing (36) by (35), we

obtain

dξk

dξ1
= R̃

(α)
k−1ξk−1 − R̃

(α)
k ξk

k̃α − R̃
(α)
1 ξ1

= R
(α)
k−1ξk−1 − R

(α)
k ξk

kα − R
(α)
1 ξ1

, (38)

whereas for k = n, from (37) and (35) we find

dξn

dξ1
= R̃

(α)
n−1ξn−1

k̃α − R̃
(α)
1 ξ1

= R
(α)
n−1ξn−1

kα − R
(α)
1 ξ1

. (39)

Note also that neither cα nor cρ appear in (38) and (39); for
cρ , this follows from Eq. (13). Equations (38) and (39) form
a finite (n < ∞) or infinite (n = ∞) set of linear ordinary
differential equations. Their solutions, denoted

ξk ≡ sk(ξ1), k < n,

ξn ≡ un(ξ1), (40)

ξi = 0, i > n,

provide information about the structure of the cluster “mass
spectrum”. Importantly, the sk(ξ1) functions do not depend on
n. What is also important is that the form of Eqs. (38) and (39)
and, consequently, the functional form of sk(ξ1) and un(ξ1) (40)
do not depend on the presence of any chemical reaction, which
either does not involve Bi clusters [e.g., Eq. (4)] or in which
Bi play a role of a passive catalyst [e.g., Eq. (5)]. In fact,
an arbitrary number of such reactions may be present without
affecting sk(ξ1) and un(ξ1), which, in particular, depend neither
on the source terms for R, P , and A molecules, nor on the
values of k̃π and R̃

(π)
j . Moreover, for the latter parameters, no

assumption such as (13) is needed.
On the other hand, obviously, the time evolution of ξ1,

cα , cρ , and cπ depends, in general, on the values of all
model parameters, including those which do not change the
“structural” relations (40).

Even if the knowledge of the explicit form of the sk(ξ1) and
un(ξ1) functions alone does not give us hints about the system
dynamics, it allows us to determine the asymptotic cluster-size
distribution (or, in the case of polymer systems, the asymptotic
molecular weight distribution). Namely, using (30), we obtain

M̄1 = ξ̄1 +
n−1∑
i=2

isi(ξ̄1) + nun(ξ̄1)

= w̄π + w̄α + c0 + d0 + e0, (41)

where ξ̄1 ≡ limt→∞ ξ1(t). Equation (41) allows (in practice
only numerically) one to determine ξ̄1 and, therefore, each
ξ̄k . In many applications (e.g., in modeling of the nanocluster
fabrication or some polymerization processes), this may be
much more interesting than any details of the time evolution
of the system. Also for this reason, the determination of an
explicit form of sk(ξ1) and un(ξ1) is the central result of the
present paper.

At this point, it is convenient to discuss in detail two
distinct situations as defined by (22) and (23). Apart from the
solution of Eqs. (38) and (39) for arbitrary injective sequence
R

(α)
1 ,R

(α)
2 , . . . ,R

(α)
n−1, some relations between ξ1 and other state

variables (M0,M1, and cα) will be presented.
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B. The k̃α �= 0, e0 = 0 case

1. Relations between M0, ξ1, and cα

For μ = 0 and Kij = Fij = ẇj = 0, Eq. (33) reads

Ṁ0 = k̃αcα. (42)

In the present case, an important relation is obtained by
dividing Eq. (35) by Eq. (42). Due to assumption (13), f (α)

k (cρ)
cancels out and we obtain

ξ̇1

Ṁ0
= dξ1

dM0
= 1 − ω

q0
ξ1. (43)

Dimensionless parameter ω in Eq. (43) is defined by

ω

q0
= R̃

(α)
1

k̃α

= R
(α)
1

kα

. (44)

Equation (43) can be easily solved, to get

ξ1 = h0(M0) = q0

ω

[
1 − exp

(
− ω

q0
M0

)]
; (45)

cf. Eqs. (34) and (35) of Ref. [19]. We emphasize that Eq. (45)
is universally valid for any n > 1, and for arbitrary choice of
the R

(α)
k parameters, if only R

(α)
1 �= 0.

Next, for cρ(t) = cρ(0), from Eqs. (35) and (42) we obtain∫ ξ1

0

dξ

k̃α − R̃
(α)
1 ξ

= − 1

R̃
(α)
1

ln

(
1 − R

(α)
1 ξ1

kα

)

= M0

k̃α

=
∫ t

0
cα(t ′)dt ′ � 0. (46)

In a more general case of time-dependent cρ , instead of Eq. (46)
we have ∫ ξ1

0

dξ

kα − R
(α)
1 ξ

= − 1

R
(α)
1

ln

(
1 − R

(α)
1 ξ1

kα

)

=
∫ t

0
f (α)(cρ(t ′))cα(t ′)dt ′. (47)

Equation (46) establishes a universal relation between cα(t)
and ξ1(t), and allows one to determine the explicit form of the
latter, once the former is known, or vice versa. From (44)
and (46), it follows that

ξ1(t) <
q0

ω
, t � 0. (48)

For k̃α �= 0, e0 = 0, and cα(0) = d0 �= 0, inequality (48)
follows also from the fact that ξ1(0) = 0, and therefore Eq. (35)
implies that ξ̇1(0) > 0. This, in turn, implies that ξ̇1(t) > 0 for
t ∈ (0,∞).

2. ξk as a function of ξ1

In the present case, Eq. (38) can be rewritten as

dξk

dξ1
= rk−1ξk−1 − rkξk

λ − r1ξ1
, (49)

where

λ ≡ kα

R = r1
q0

ω
, ri ≡ R

(α)
i

R , (50)

and R is a constant of the same dimension as R
(α)
k , e.g., one

may take R = R
(α)
1 . Introducing new variables

x = y1 = r1

λ
ξ1 − 1 = ω

q0
ξ1 − 1 = −e

− ω
q0

M0 ,

(51)
yk = rk

λ
ξk − 1 = rk

r1

ω

q0
ξk − 1,

−1 � x < 0, we may rewrite (49) as

dyk

dx
= rk

r1

(
yk − yk−1

x

)
. (52)

In terms of yi variables, initial conditions (19) read

yk(−1) = −1, k � 2. (53)

For k = 2,3, . . ., Eqs. (52) form a closed hierarchy of linear
ordinary differential equations, which can be solved iteratively.
We assume at this point that ri �= rj for i �= j and k < n [cf.
Eq. (14)], therefore rk−1 �= 0, rk �= 0. The k = n case will be
discussed separately.

Solution of Eqs. (52) for arbitrary k < n can be inferred by
analyzing the form of yk(x) for k � 4. We find

yk(x) = (−1)k
k∑

j=1

[ ∏k
l=1 rl

rj

∏
m�=j (rj − rm)

(−x)
rj

r1

]

= 1

Vk

k∑
j=1

(−1)j
(∏k

l=1 rl

rj

)
V

(j )
k−1(−x)

rj

r1

= − Vk(x)

Vk(−1)
, (54)

where

Vk(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(−x)
r1
r1 r1 r2

1 · · · rk−2
1 rk−1

1

(−x)
r2
r1 r2 r2

2 · · · rk−2
2 rk−1

2

(−x)
r3
r1 r3 r2

3 · · · rk−2
3 rk−1

3
...

...
...

. . .
...

...

(−x)
rk
r1 rk r2

k · · · rk−2
k rk−1

k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (55)

whereas V
(i)
k−1 and Vk = Vk(−1) are Vandermonde determi-

nants with k − 1 and k rows, respectively,

V
(i)
k−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 r1 r2
1 · · · rk−3

1 rk−2
1

1 r2 r2
2 · · · rk−3

2 rk−2
2

...
...

...
. . .

...
...

1 ri−1 r2
i−1 · · · rk−3

i−1 rk−2
i−1

1 ri+1 r2
i+1 · · · rk−3

i+1 rk−2
i+1

...
...

...
. . .

...
...

1 rk r2
k · · · rk−3

k rk−2
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (56)

Vk =

∣∣∣∣∣∣∣∣∣∣∣∣

1 r1 r2
1 · · · rk−2

1 rk−1
1

1 r2 r2
2 · · · rk−2

2 rk−1
2

1 r3 r2
3 · · · rk−2

3 rk−1
3

...
...

...
. . .

...
...

1 rk r2
k · · · rk−2

k rk−1
k

∣∣∣∣∣∣∣∣∣∣∣∣
. (57)
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From the last line of Eq. (54), it should be obvious that
the initial condition (53) is indeed satisfied for each k. The
correctness of this compact form of yk(x) may be in turn
verified by simple algebraic manipulations, involving Laplace
expansion of Vk(x) [48]. Eventually, returning to the original
variables, from (51) and (54) we obtain

ξk = sk(ξ1) = r1

rk

q0

ω

[
1 −

Vk( ω
q0

ξ1 − 1)

Vk(−1)

]
. (58)

So far we have assumed that k < n. Now we discuss the case
of the largest cluster size, k = n. Although Rn = 0 implies
rn = 0, in order to be able to use transformation (51) in the
present case, we assume that rn �= 0, but disregard the term
proportional to Rn on the rhs of Eq. (38). This may be formally
achieved by rewriting Eq. (49) for k = n as

dξn

dξ1
= rn−1ξn−1 − crnξn

λ − r1ξ1
, (59)

and putting c = 0. Making use of (51) again, we get

dyn

dx
= − rn

r1

(
1

x
+ yn−1

x

)
, (60)

where yn−1(x) is given by Eq. (54) and the initial condi-
tions (53) read yn(−1) = −1. Equation (60) can be integrated
in a straightforward manner to get

yn(x) =
n−1∑
j=1

∏n
l=1 rl

r2
j

(−1)j
V

(j )
n−2

Vn−1

[
1 − (−x)

rj

r1
]

− rn

r1
ln(−x) − 1. (61)

In terms of ξn and either ξ1 or M0, we obtain

ξn = un(ξ1) = −q0

ω
ln

(
1 − ω

q0
ξ1

)

+ q0

ω
r1

n−1∑
j=1

(−1)j
∏n−1

l=1 rl

r2
j

V
(j )
n−2

Vn−1

[
1 −

(
1 − ω

q0
ξ1

) rj

r1
]

= M0 + q0

ω
r1

n−1∑
j=1

(−1)j
∏n−1

l=1 rl

r2
j

V
(j )
n−2

Vn−1

[
1 − e

− ω
q0

rj

r1
M0

]
.

(62)

Please note that rn does not appear in Eq. (62).

3. Special case: r j = j

For the linear reaction kernel (rj = j ) analyzed in detail in
Ref. [19], from Eq. (54) we obtain

yk(x) = (−1)k
k∑

j=1

k!

j
∏

m�=j (j − m)
(−x)j

= (−1)k
k∑

j=1

(−1)k−j k!

j (k − j )!(j − 1)!
(−x)j

= −1 +
k∑

j=0

(
k

j

)
xj = (x + 1)k − 1. (63)

Taking into account Eq. (51), for k < n we find

ξk

(
ξ1

) = λ

rk

( r1

λ
ξ1

)k

= 1

k

q0

ω

(
ω

q0
ξ1

)k

, (64)

in agreement with Eq. (21) of Ref. [19]. For k = n, from
Eq. (61) we get

yn(x) = n

n−1∑
j=1

1

j

(
n − 1

j

)
[(−1)j − xj ] − n ln(−x) − 1,

(65)

and therefore

ξn = un(ξ1) = −q0

ω
ln

(
1 − ω

q0
ξ1

)

+ q0

ω

n−1∑
j=1

1

j

(
n − 1

j

) [
(−1)j −

(
ω

q0
ξ1 − 1

)j
]

. (66)

C. The k̃α = 0, e0 �= 0 case

In this section, we analyze a situation when the A → B1

reaction (1) is absent, i.e., k̃α = 0. This case may be relevant
to the problem of modeling certain polymerization processes,
as well as for the description of growth of the core-shell-type
nanoparticles.

In order to obtain nontrivial solutions, we have to assume
now that some clusters are initially present in a system. In
accordance with Eqs. (19) and (20), we take e0 ≡ ξ1(0) �= 0.

1. Time dependence of M0, and relations between ξ1 and cα

For k̃α = 0, Eq. (33) has a simple form,

Ṁ0 = 0. (67)

Integrating (67), and taking Eqs. (19) and (20) into account,
we get

M0(t) = M0(0) = e0. (68)

For constant cρ(t) = cρ(0) from Eq. (35), we obtain

− 1

R̃
(α)
1

∫ ξ1

e0

dξ

ξ
= − 1

R̃
(α)
1

ln

(
ξ1

e0

)

=
∫ t

0
cα(t ′)dt ′ � 0. (69)

Analogously to Eq. (46), Eq. (69) expresses a universal relation
between cα(t) and ξ1(t). In the present case, where there is no
monomer production or injection, ξ1(t) must be a decreasing
function of time; condition ξ̇1(t) � 0 clearly follows from
Eq. (35). Therefore, for t � 0, we have

ξ1(t) � e0. (70)

Inequality (70) follows also from Eq. (69) in a straightforward
manner.

2. ξk as a function of ξ1

As a next step, we determine the functional form of the
k-mer concentration ξk as a function of ξ1. However, in the
present situation, we cannot make use of the results derived for
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k̃α �= 0 because now λ = 0 and transformation (51) becomes
singular.

Dividing (36) by (35), we obtain

dξk

dξ1
= rkξk − rk−1ξk−1

r1ξ1
, (71)

where ri are defined by Eq. (50). In the present case, we define
auxiliary variables yk and y1 ≡ x as follows:

x = y1 = ξ1

e0
, yk = rk

r1

ξk

e0
, (72)

0 < x � 1. Making use of (72), we rewrite (71) as

dyk

dx
= rk

r1

(
yk − yk−1

x

)
. (73)

Note that although Eq. (73) has exactly the same form as
Eq. (52), now not only are x and yk defined differently, but
also instead of (53) we have

yk(1) = 0, k � 2. (74)

Again, (74) corresponds to initial conditions (19) for the ξk

variables.
As in the k̃α �= 0, e0 = 0 case, we first consider k < n [cf.

Eq. (14)]; the k = n case will be discussed separately. Also
in the present situation, the solution of Eq. (73) for arbitrary
k < n can be inferred simply by solving this equation for
k = 2,3, and 4. We find

yk(x) = (−1)k+1

(
k∏

l=2

rl

)
k∑

j=1

[
x

rj

r1∏
m�=j (rj − rm)

]

= −
(

k∏
l=2

rl

)
k∑

j=1

(−1)j
V

(j )
k−1

Vk

x
rj

r1 , (75)

where V
(j )
k−1 and Vk are defined by Eqs. (56) and (57). The

initial condition (74) follows easily from the basic properties
of determinants (orthogonality of the Laplace expansion).
Eventually, from (72) and (75) we obtain

ξk = sk(ξ1) = −e0

(
k−1∏
l=1

rl

)
k∑

j=1

(−1)jV (j )
k−1

Vk

(
ξ1

e0

) rj

r1

. (76)

In order to analyze the k = n case, we again assume rn �= 0;
however, we disregard the appropriate terms on the rhs of (71).
As a consequence, from Eqs. (71) and (72), we obtain

dyn

dx
= − rn

r1

yn−1

x
, (77)

where now yn−1(x) is given by Eq. (75) and the initial
condition (74) is yn(1) = 0. The solution of Eq. (77) reads

yn(x) =
(

n∏
l=2

rl

)
n−1∑
j=1

(−1)j

rj

V
(j )
n−2

Vn−1

[
x

rj

r1 − 1
]
. (78)

Using Eqs. (78) and (72), we finally get

ξn = un(ξ1)

= e0

n−1∑
j=1

(−1)j
∏n−1

l=1 rl

rj

V
(j )
n−2

Vn−1

[(
ξ1

e0

) rj

r1 − 1

]
. (79)

3. Special case: r j = j

For rj = j , yk(x) as given by Eq. (75) reads

yk(x) = −
k∑

j=1

(−1)j k!

(k − j )!(j − 1)!
xj

= −x
d

dx
[(1 − x)k − 1]

= kx(1 − x)k−1. (80)

Making use of Eq. (72), for k < n we find

ξk ≡ sk(ξ1) = ξ1

(
1 − ξ1

e0

)k−1

. (81)

Obviously, sk

(
e0

) = 0 for k � 2, as it should be. Next, for
k = n, Eq. (78) now reads

yn(x) = n

n−1∑
j=1

(−1)j
(

n − 1

j

)
(xj − 1) = n(1 − x)n−1. (82)

From Eqs. (72) and (82), we obtain

ξn = un(ξ1) = e0

(
1 − ξ1

e0

)n−1

. (83)

It could be easily verified that Eq. (68) is indeed obeyed, both
for n = ∞ and for n < ∞. In the former case, from (81) we
also obtain

M1 ≡ g1(ξ1) =
∞∑

k=1

kξ1

(
1 − ξ1

e0

)k−1

= e2
0

ξ1
, (84)

whereas in the latter we have

M1 ≡ g
(n)
1 (ξ1) = nξn +

n−1∑
k=1

kξk

= ne0

(
1 − ξ1

e0

)n−1

+ ξ1

n−1∑
k=1

k

(
1 − ξ1

e0

)k−1

= e2
0

ξ1

[
1 −

(
1 − ξ1

e0

)n]
. (85)

In the above, g1(ξ1) is an inverse of the h1(M1) function
introduced in Ref. [19]; g1(ξ1) = limn→∞ g

(n)
1 (ξ1), as could

be expected. The correctness of Eq. (85) can also be verified
by invoking Eq. (33) for μ = 1. Namely, in the present case,
G̃(1)

j = jR̃
(α)
1 , G̃(1)

n = 0, therefore we have

Ṁ1 = R̃
(α)
1

n−1∑
j=1

jξj cα =
⎛
⎝−nξn +

n∑
j=1

jξj

⎞
⎠ R̃

(α)
1 cα. (86)

Equation (86) divided by Eq. (35) yields

dM1

dξ1
= nξn − M1

ξ1
, (87)

which is indeed obeyed for M1 = g
(n)
1 (ξ1) given by (85) and

ξn = un(ξ1) given by (83).
Finally, for n = ∞, the asymptotic cluster-size distribution

ξ̄1,ξ̄2, . . . can be easily obtained by combining Eqs. (30), (81),
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and (84). In the simplest case, for c0 = 0 and when no source
terms are present, we obtain

ξ̄k = e2
0

d0

(
d0

d0 + e0

)k

. (88)

D. Choice of ri parameters

So far, the only assumption about the ri coefficients we
have made is that of single valuedness of the sequence
r1,r2, . . . ,rn−1, i.e., rj �= ri for j �= i. The linear reaction
kernel (rj = j ) analyzed in detail both in the present paper
and in Ref. [19] has been chosen mainly because it leads to
the considerable simplifications of the mathematical structure
of the model. This particular form of ri appears in a natural
manner, when one describes a colloidal system by referring
only to the total mass (or concentration) of the zero-valent
transition-metal atoms, M1, and not by making use of the k-mer
concentrations, ξk; cf. Refs. [20–23]. In such situation, naive
application of the mass-action law (rate of the autocatalytic
reaction proportional to cαM1) is equivalent to the choice
rj = j . Nevertheless, the linear dependence of rj on j has
no real physical justification. The more general, but still very
simple, form of rj is the power-law dependence

rj ∝ j ζ , (89)

0 � ζ � 1. There are two simple cases of rj (89), which
are nonetheless more realistic than the ζ = 1 case, namely,
diffusion-limited growth (ζ = 1

3 ) and reaction-limited growth
(ζ = 2

3 ) [49]. Another special case of (89), the size-
independent reaction kernel (ζ = 0), seems to be a reasonable
approximation for the modeling of growth of some linear
polymers, but not for colloidal particles. The ζ = 0 case of (89)
is not analyzed in the present paper (cf. Refs. [18] and [19]).

Finally, let us note that for 0 < ζ < 1, in contrast to the
ζ = 1 or ζ = 0 case, tractable equations for the time evolution
of the moments (33) cannot be obtained.

The above remarks apply also to the R
(π)
i parameters.

V. TIME-EVOLUTION EQUATIONS IN TERMS
OF sk(ξ1) AND un(ξ1) FUNCTIONS

The explicit form of sk(ξ1) and un(ξ1) as given by Eqs. (58)
and (62), or (76) and (79), makes the solution of the original
time-evolution equations (6)–(10) feasible even for a quite
arbitrary choice of the model parameters. Namely, with sk(ξ1)
and un(ξ1) at hand, it is sufficient to solve Eqs. (6) and (7)
(if present), and Eq. (8) together with either Eq. (9) or any of
Eqs. (10) for k � 2, including the k = n case.

Note that two state variables and therefore two corre-
sponding evolution equations can be eliminated by invoking
Eqs. (25) and (27). Consequently, in some situations, e.g.,
for R

(π)
i = ẇπ = 0, when Eq. (7) has an obvious solution

cπ (t) = cπ (0) exp(−k̃π t), we are left with only one equation
for a single unknown function, say ξ1(t) [50],

ξ̇1 = (
k̃α − R̃

(α)
1 ξ1

)⎛
⎝d0 −

∞∑
j=1

jR̃
(α)
j sj

⎞
⎠ . (90)

In the above equation, both sj and k̃α , R̃
(α)
j depend, in the

general case, on ξ1, but may also depend explicitly on time.
If c0 = 0 and no source terms are present, neither k̃α nor R̃

(α)
j

depend explicitly on time, and from (90) we obtain

∫ ξ1

e0

dξ(
k̃α − R̃

(α)
1 ξ

)[
d0 − ∑∞

j=1 jR̃
(α)
j sj (ξ )

] = t. (91)

However, in a general case, the solution of (91) cannot be
expressed in terms of elementary functions or standard special
functions. When c0 �= 0 or variable cρ(t) is considered, the
situation becomes even worse. Therefore, usually we have to
depend on the numerical analysis [51]. Yet, in such case, it
is generally not advised to eliminate any variables by using
constraints. As a consequence, we have to numerically solve
the following equations:

ċρ = ẇρ − k̃π cπ −
n−1∑
j=1

R̃
(π)
j sj (ξ1)cπ − R̃(π)

n un(ξ1)cπ

− k̃αcα −
n−1∑
j=1

R̃
(α)
j sj (ξ1)cα, (92)

ċπ = ẇπ − k̃π cπ −
n−1∑
j=1

R̃
(π)
j sj (ξ1)cπ − R̃(π)

n un(ξ1)cπ ,

(93)

ċα = ẇα + k̃π cπ +
n−1∑
j=1

R̃
(π)
j sj (ξ1)cπ + R̃(π)

n un(ξ1)cπ

− k̃αcα −
n−1∑
j=1

R̃
(α)
j sj (ξ1)cα, (94)

ξ̇1 = k̃αcα − R̃
(α)
1 ξ1cα, (95)

with the initial conditions (20). For c0 = 0, we disregard
Eq. (93), whereas for cρ(t) = cρ(0), Eq. (92) is absent. Also,
let us point out again that Eq. (95) can be replaced by Eq. (10)
for any 2 � k � n [52].

Some remarks are appropriate here. First, when solving
Eqs. (92)–(95) numerically, care is needed whenever ri ≈ rj ,
due to the ri − rj terms appearing in the denominators in
Eqs. (58), (62), (76), and (79). Second, the elegant and compact
form of sk(ξ1) and un(ξ1) involving Vandermonde determinants
is useless from the point of view of numerical analysis, and
all formulas have to be rewritten in an appropriate manner
[cf. the first line of Eqs. (58) and (76)]. Third, the effect of
finite n on the numerical solutions of Eqs. (92)–(95) should
always be carefully checked in order to avoid “finite-size
effects”. Finally, for the realistic value of the parameter n,
sums appearing on the left-hand side (lhs) of Eqs. (92)–(94)
have a large number of terms of alternating sign. This is likely
to make the problem of numerical computation of such sums
nontrivial.
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VI. SELECTED EXACTLY SOLUBLE CASES
OF TIME-EVOLUTION EQUATIONS

A. Simple model of autocatalytic reaction

In Ref. [19], the explicit form of the ξ1(t) function has been
found in two special cases, in particular for the two-step WF
scheme defined by Eqs. (1) and (2), with rj = j , n = ∞, and
cρ(t) = cρ(0). Time-evolution equations for this case may be
easily solved by employing the method of moments; cf. [19]
and references therein.

For completeness, below we present the corresponding
solution for the k̃α = 0, e0 �= 0 case. Time-evolution equations
for M1 and cα now read

Ṁ1 = ãRM1cα = −ċα. (96)

From Eqs. (96), mass conservation follows, i.e.,

M1(t) + cα(t) = M1(0) + cα(0) = e0 + d0. (97)

Making use of Eqs. (97) and (96), we obtain the following
time-evolution equation for M1:

Ṁ1 = ãRM1(e0 + d0 − M1). (98)

Equation (98) is the logistic equation. By integrating, we get

M1(t) = e0 + d0

1 + d0
e0

exp[−ãR(e0 + d0)t]
. (99)

In order to obtain ξ1(t), we invoke Eq. (84), which yields

ξ1(t) = e2
0

M1(t)
= e0 + d0 exp [−ãR(e0 + d0)t]

1 + d0
e0

. (100)

Finally, combining (81) with (100), we obtain

ξk(t) = e2
0

d0

(
d0

d0 + e0

)k (
1 + d0

e0
e−κ̃ t

)
(1 − e−κ̃ t )k−1,

(101)

where κ̃ = ãR(e0 + d0). Please note that for ξk(t) given
by (101), we obtain limt→∞ ξk(t) = ξ̄k with ξ̄k given by
Eq. (88), as well as ξk(0) = 0 for k � 2.

B. Two simple cases of injection mechanism

In some situations, the exact analytical solution can also
be obtained when the injection mechanism for precursor A is
present, ẇα �= 0. Here we assume that (i) c0 = 0 [reactions (4)
and (5) are absent], (ii) the reducing agent concentration
is constant, cρ(t) = cρ(0), (iii) n = ∞ in Eq. (14), and (iv)
R̃

(α)
j = ãRj , i.e., rj = j . The results presented below are valid

for both cases analyzed in Secs. IV B and IV C.
In the present situation, it is again convenient to use the

method of moments. Equations (8) and (33) for μ = 1 now
read

ċα = ẇα − k̃αcα − ãRM1cα, (102)

Ṁ1 = k̃αcα + ãRM1cα. (103)

From Eq. (25), we obtain

cα(t) = h0 + wα(t) − M1(t), (104)

where h0 ≡ d0 + e0. Using Eq. (104), we get

Ṁ1 = [k̃α + ãRM1][f (t) − M1], (105)

where we define f (t) = h0 + wα(t). The above equation has
the form of Eq. (14) of Ref. [19]; however, here the concrete
form of wα(t) and f (t) is not yet specified. Equation (105) can
be given the form of the Bernoulli equation and therefore it
can be reduced to a linear equation. We obtain (cf. Eq. (15) of
Ref. [19])

M1(t) = e�(t)

ãR

[
1

k̃α + e0ãR

+ �(t)

]−1

− k̃α

ãR

, (106)

where

�(t) ≡
∫ t

0
[k̃α + ãRh0 + ãRwα(η)]dη,

(107)

�(t) ≡
∫ t

0
e�(η)dη.

Below we analyze two simple cases of the wα(t) function [53].
First, consider the situation when the precursor A is added

to the system at constant rate U during the time interval T . We
then have

ẇα(t) =
{
U, t < T

0, t � T , (108)

and, consequently,

wα(t) =
{
Ut, t < T

UT, t � T . (109)

Making use of (107) and (109), we get

�(t) = (k̃α + ãRh0)t + �a(t), (110)

where we define

�a(t) =
{

1
2 ãRUt2, t < T

ãRUT t − 1
2 ãRUT 2, t � T .

(111)

From (107), (110), and (111), it follows that

�(t) ≡
{
�1(t), t < T

�1(T ) + �2(t), t � T ,
(112)

where �1(t) and �2(t) appearing in (112) are defined as

�1(t) = exp
(− B2

4A
)

√
A

[
�

(
t
√
A + B

2
√
A

)
− �

( B
2
√
A

)]
,

(113)

�2(t) = e−AT 2

[
e(2AT +B)t − e(2AT +B)T

(2AT + B)

]
,

�(x) ≡ ∫ x

0 ez2
dz = ex2

D+(x), D+(x) is a Dawson function,
A = 1

2 ãRU [54], and B = k̃α + ãRh0.
The second injection mechanism we consider is the follow-

ing: at t = ti , a portion of the precursor is rapidly introduced
into the system. If the duration of injection is sufficiently short,
we may reasonably approximate any function describing the
real time dependence of the injection process by the Dirac δ

function. Therefore, we assume

ẇα(t) = Wδ(t − ti), wα(t) = Wθ (t − ti), (114)
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where W is a constant, and θ (x) denotes the Heaviside step
function. In the present case, we have

�(t) =
{

(k̃α + ãRh0)t, t < ti

(k̃α + ãRh0)t + ãRW (t − ti), t � ti ,
(115)

�(t) ≡
{
�1(t), t < ti

�1(ti) + �2(t), t � ti ,
(116)

where

�1(t) = eBt − 1

B ,

(117)

�2(t) = e−Cti

[
e(B+C)t − e(B+C)ti

(B + C)

]
.

In the above formula, C = ãRW , whereas B is defined as
in (113).

For k̃α �= 0, e0 = 0, in both cases analyzed above, M1(t)
given by Eq. (106) reduces to xαβ(t) given by Eq. (16) of
Ref. [19] in an appropriate limit (i.e., U = 0 and W = 0,
respectively). Also, making use of (106), we obtain

M̄1 ≡ lim
t→∞ M1(t) = d0 + e0 + w̄α, (118)

both for w̄α = UT (109) as well as for w̄α = W (114), in
agreement with the general formula (30).

Moreover, we emphasize again that all relations, which are
independent, in particular, of the form of the ẇα(t) function,
may be invoked here. For example, for k̃α �= 0, e0 = 0, we may
invoke Eq. (64) as well as Eqs. (19) and (23) of Ref. [19],

M0(M1) = q0

ω
ln

(
1 + ω

q0
M1

)
, (119)

ξ1 = h
(a)
1 (M1) = M1

1 + ω
q0

M1
, (120)

whereas for k̃α = 0, e0 �= 0, we may use Eqs. (68), (76),
and (84). This is because those results are valid if only
assumptions (iii) and (iv) of the present section are fulfilled,
i.e., we have n = ∞ and rj = j , respectively.

VII. LIMITATIONS OF THE PRESENT APPROACH

The approach proposed in the present paper has some
intrinsic limitations.

First, we have assumed that the clusters are characterized
solely by their mass (number of atoms or mers), and the
cluster geometry is disregarded. Needless to say, there are
many situations in which cluster shape should be taken into
account. Within the present approach, this could be achieved
by promoting single cluster-size index i to a double index
[i,ν(i)], where ν(i) = 1,2, . . . ,νm(i) labels different cluster
geometries possible for a given cluster size i. However,
although such an extension is conceptually simple, it yields
a more complicated mathematical model (greater number of
time-evolution equations), and therefore, in some cases, it may
lead to considerable technical difficulties.

Second, if any molecules taking part in reactions (1)–(5)
are present in low copy numbers, particle number fluctuations
may be significant. In such situation, a description making use

of the chemical master equation (CME) is more appropriate
than any approach based on macroscopic kinetic rate equations
(REs). However, for most of the colloidal or polymer systems
of interest, a solution of the corresponding CME is out of the
question, and we are forced to employ a RE description. Still,
the latter approach is a reasonable choice, provided that the
system in question is large enough.

Third, for each particular system of interest, characteristic
time scales of the chemical reactions (τr ) should be com-
pared with characteristic time scales of the diffusive (τd )
or convective (τc) transport. This allows us to check if the
assumption of spatial homogeneity is justified, which is the
case for sufficiently small values of the Damköhler numbers
DaI , DaII , defined as

DaI = τc

τr

, DaII = τd

τr

. (121)

It should be noted here that values of DaI and DaII depend on
many factors, such as temperature. Moreover, in the colloidal
systems that we are most interested in (gold colloids), values
of the Damköhler numbers strongly depend on the reducing
agent which is used. This is because by changing the reducing
agent, we may obtain rates of both (1), (2), (4), and (5) reactions
differing by orders of magnitude [29–31]. At the same time,
a change of the reducing agent affects diffusion or convection
to a much lesser extent. Finally, let us note that stirring of the
reagents also strongly influences the degree of homogeneity
of the system. In consequence, we may expect that at least
for some experimental situations, it is legitimate to treat the
system at hand as spatially homogeneous.

If concentration gradients cannot be neglected, we should
promote the state variables of the present approach to time-
dependent scalar fields. In such case, time-evolution equations
are no longer ordinary differential equations, but rather partial
differential equations (PDEs) of the reaction-diffusion type.
Although it is, in principle, rather straightforward to write
down such a system of PDEs, its solution, either analytical or
numerical, usually provides a formidable task.

However, concentration inhomogeneities, if initially
present, may substantially affect the time evolution of the
system. For example, it has been shown [55,56] that for
reversible coagulation, density (or concentration) spatial fluc-
tuations change the asymptotic (t → ∞) time dependence of
the concentrations from the exponential law predicted by the
mean-field (MF) approach to the power law, with the exponent
depending on the spatial dimensionality of the system.

VIII. SUMMARY AND DISCUSSION

In this paper, we have presented a generalization of the
autocatalytic growth model, proposed recently [19]. The time
evolution of the system is described within the mean-field-type
rate-equation approach. The kinetic equations of our model
are a generalization of both the Smoluchowski coagulation
equation and the rate equations describing the kinetics of
chemical reactions.

If coagulation processes are neglected, the model equations
simplify considerably, and a number of analytical results
become available. In particular, for arbitrary injective func-
tional dependence of the autocatalytic reaction rate constant
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on the cluster size i, in two nontrivial cases we derive
analytical expression of the i-mer concentration ξi as a
function of ξ1; ξi = si(ξ1). Consequently, we obtain complete
information about the structure of the cluster-size distribution
without solving kinetic equations. In particular, we are able
to determine the cluster mass distribution in the t → ∞ limit
by solving a single algebraic equation describing the mass
conservation condition.

Moreover, knowing the explicit form of the si(ξ1) functions,
in order to find the time dependence of all the state variables,
we have to solve (either analytically or, in the general case,
numerically) only a small subset of the original system of the
time-evolution equations.

The present model may be applied to describe both
nanocluster formation in aqueous solution and some poly-
merization phenomena.
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APPENDIX A: SELECTED EXTENSIONS
OF THE PRESENT MODEL

In this Appendix, we discuss some of the chemical reactions
and reaction mechanisms, which can be taken into account
within the extensions of the present model as defined by
Eqs. (1)–(5).

First, either P or A molecules may form dimers (P2, A2)
or, more generally, clusters consisting of a small number of
molecules,

P + P � P2, A + A � A2. (A1)

Such dimers may be inert, i.e., they do not take part in any
chemical reaction. However, A2 may also be disproportionate
according to

A2 � P + B1. (A2)

(A1) and (A2) may also be treated as a single step,

A + A � P + B1. (A3)

Next, consider a situation when the reducing agent decomposes
on the surface of metallic nanoclusters, and the latter act as a
catalyst for this process,

R + Bi → Bi + X5. (A4)

By X5, we collectively denote all products of (A4). More
generally, we may consider a reaction of the type

Y + Y ′ + Bi → Bi + X6, (A5)

where Y and Y ′ are some constituents of the system, which do
not take part in reactions (1)–(5), and X6 denotes all possible

products of (A5). Again, in (A5), the metallic nanocluster plays
only the passive role of a catalyst.

As an example of (A5), we may give the hydrogenation
reaction used to monitor the reaction progress in Ref. [20]. In
this case, Y denotes cyclohexene, Y ′ is a molecular hydrogen,
and X6 is cyclohexane.

Finally, let us return to the autocatalytic reaction (2). We
may expect that the real mechanism of this reaction involves
formation of an intermediate complex (ABi). In effect, (2)
should be replaced with

A + Bi � (ABi) → Bi+1 + X2. (A6)

Let us now discuss briefly how the presence of reactions
(A1)–(A6) in some extension of the present model would
change its mathematical structure, in particular, the form of
Eqs. (38) and (39).

First, note that the latter equations are not affected by
the presence of reactions (A1). The same is true for (A4)
and (A5), provided that interactions between molecules of
different species (A, Bj , X5, X6, Y , or Y ′) near the surface of
Bi nanoclusters can be neglected.

However, if either (A2) or (A3) reaction is present, cα

does not cancel out in Eqs. (38) and (39). Consequently,
these equations cannot be solved independently of the time-
evolution equations for cρ , cπ , cα , and ξ1. Still, Eqs. (38)
and (39) may provide a reasonable effective description of
the time evolution in any system where the mechanism of
autocatalytic reaction is assumed to have the form (A6). This
is analyzed in detail in Appendix B.

APPENDIX B: KINETIC EQUATIONS FOR A MORE
COMPLEX MECHANISM OF A + Bi → Bi+1 REACTION

In this Appendix, we show that the simple, effective
mechanism (2) of autocatalytic reaction, together with the
corresponding kinetic equations, may provide a sound ap-
proximation of a more realistic description [cf. Eq. (A6) of
Appendix A].

Namely, in many cases, it seems reasonable to assume that
either a breakup of each of the (ABi) complexes into substrates
or transformation of (ABi) into products of autocatalytic
reaction (2),

A + Bi

k̃−
i←− (ABi)

k̃∗
i−→ Bi+1 + X2, (B1)

is much faster than its production,

A + Bi

k̃+
i−→ (ABi). (B2)

As a consequence, the concentration of each (ABi) remains
both small and essentially time independent. In such situation,
the steady-state approximation is legitimate.

Rate equations corresponding to the (A6) reaction read

ξ̇i = k̃−
i ηi + k̃∗

i−1ηi−1 − k̃+
i ξicα, i > 1, (B3)

η̇i = −k̃−
i ηi − k̃∗

i ηi + k̃+
i ξicα, i � 1, (B4)

where ηi denotes concentration of (ABi). For i = 1, instead
of (B3), we have

ξ̇1 = k̃αcα + k̃−
1 η1 − k̃+

1 ξ1cα. (B5)
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Within the present treatment, Eqs. (B3)–(B5) replace Eqs. (35)
and (36). Similarly to the case of R̃

(α)
k functions [Eq. (11)], k̃±

i

and k̃∗
i , in general, depend on cρ . Next, we add Eqs. (B3)

and (B4). This step yields

ξ̇i + η̇i = k̃∗
i−1ηi−1 − k̃∗

i ηi . (B6)

From a steady-state assumption,

η̇i = 0, (B7)

by using Eq. (B4), we obtain

η
(ss)
i = k̃+

i cα

k̃∗
i + k̃−

i

ξi ≡ k̃
(e)
i ξicα. (B8)

We assume here that (B8) holds for all i � 1 and for t > 0.
Nonetheless, we should keep in mind that the steady-state
assumption and, therefore, Eq. (B8) cannot be valid during the
initial stage of the time evolution.

Making use of Eqs. (B6)–(B8), we may rewrite Eqs. (B5)
and (B3) as

ξ̇1 = k̃αcα − R̃
(α)
1 ξ1cα (B9)

and

ξ̇i = cα

(
R̃

(α)
i−1ξi−1 − R̃

(α)
i ξi

)
, (B10)

where, for i � 1, we have

R̃
(α)
i = k̃+

i k̃∗
i

k̃∗
i + k̃−

i

= k̃∗
i k̃

(e)
i . (B11)

Equation (B9) has exactly the form of Eq. (35), whereas
Eq. (B10) has the same form as Eq. (36). Moreover, for the
largest clusters (i = n), assuming that k̃∗

n = 0, k̃±
n �= 0 [i.e.,

(ABn) complexes are formed, but are not reduced to Bn+1

clusters] and using condition (B8) for i = n − 1 and i = n, we
obtain Eq. (37), again with R̃

(α)
n−1 given by (B11).

This provides justification for the effective approach of the
present model even if the reaction mechanism (A6) of the
autocatalytic reaction is more likely to be present in a system
of interest.

It remains to check the internal consistency of the steady-
state assumption (B7). For Kij = Fij = 0 and ẇk = 0, us-
ing (B8), we obtain

η̇i = d

dt

(
k̃+
i cα

k̃∗
i + k̃−

i

ξi

)
= d

dt

(
k̃

(e)
i cαξi

)
= ˙̃k(e)

i cαξi + k̃
(e)
i ċαξi + k̃

(e)
i cαξ̇i . (B12)

It is reasonable to assume that k̃
(e)
i has only weak time

dependence, or is even time independent if the cρ dependence
of k̃±

i and k̃∗
i cancels out. Therefore, the remaining two terms in

the last line of Eq. (B12) have to be small. Note that, obviously,
cα < q0 for any t ∈ (0,∞), and also ξi(t) � M0(t) � M1(t) �
q0 + e0. Consequently, we may write down the following,
rather crude upper bound for |η̇i |:

|η̇i | < (q0 + e0)k̃(e)
i (|ċα| + |ξ̇i |). (B13)

Because |ċα| + |ξ̇i | is bounded, the sufficient self-consistency
condition for the steady-state assumption (B7) reads

(q0 + e0)k̃(e)
i � ε � 1, (B14)

where ε is a sufficiently small positive constant. From Eq. (B8),
it follows that if (B14) is fulfilled for some i and ε, then ηi is
also small as compared to ξi , i.e., we have ηi/ξi � 1.
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