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Determining the work which is supplied to a system by an external agent provides a crucial step in any
experimental realization of transient fluctuation relations. This, however, poses a problem for quantum systems,
where the standard procedure requires the projective measurement of energy at the beginning and the end of the
protocol. Unfortunately, projective measurements, which are preferable from the point of view of theory, seem to
be difficult to implement experimentally. We demonstrate that, when using a particular type of generalized energy
measurements, the resulting work statistics is simply related to that of projective measurements. This relation
between the two work statistics entails the existence of modified transient fluctuation relations. The modifications
are exclusively determined by the errors incurred in the generalized energy measurements. They are universal
in the sense that they do not depend on the force protocol. Particularly simple expressions for the modified
Crooks relation and Jarzynski equality are found for Gaussian energy measurements. These can be obtained by
a sequence of sufficiently many generalized measurements which need not be Gaussian. In accordance with the
central limit theorem, this leads to an effective error reduction in the individual measurements and even yields a
projective measurement in the limit of infinite repetitions.
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I. INTRODUCTION

In spite of the great theoretical as well as practical interest
in the transient quantum fluctuation relations, their direct ex-
perimental confirmation is still missing. These relations were
pioneered by the classical fluctuation relations of Bochkov
and Kuzovlev [1], and are named after Jarzynski [2] and
Crooks [3].

Transient fluctuation relations restrict the statistics of work
applied to a closed system by externally controlled, classical
forces. The considered systems initially stay in thermal
equilibrium but may be driven into regions of nonequilibrium
far beyond the linear response regime. Yet these relations yield
key properties of equilibrium systems. Moreover, apart from
their relevance for the understanding of the thermodynamics
as well as the nonequilibrium behavior of small systems, the
statistics of work, which is supplied to a system in a particular
process, is of practical importance for the design and function
of future nanoscale devices such as engines and pumps [4–7].

According to the Crooks relation [3] given by

p�(w) = e−β(�F−w)p�̄(−w), (1)

the probability density function (pdf), p�(w), of finding the
work w supplied to the system by a force λ(t) varying in
agreement with a prescribed protocol � = {λ(t)|0 < t < τ }, is
connected with the time-reversed process. This time-reversed
process is subject to the time-reversed protocol �̄ = {λ(τ −
t)|0 < t < τ } [8]. It starts at equilibrium, at the same inverse
temperature β as the forward process and at those parameter
values λ(τ ) that were finally reached in the forward process.
The quantity �F denotes the difference in free energy between
the initial states of the forward and the backward processes and
hence corresponds to the change in free energy of an isothermal
process connecting λ(0) with λ(τ ).

In terms of the characteristic function of work
G�(u), which is the Fourier transform of the work pdf,

G�(u) ≡ ∫
dw eiuwp�(w), the Crooks relation can equiva-

lently be written as

G�(u) = e−β�F G�̄(−u + iβ). (2)

As an immediate consequence of the Crooks relation the
Jarzynski equality follows. It expresses the mean value of
exponentiated work in terms of the free energy difference �F ,
reading

〈e−βw〉 = e−β�F . (3)

The validity of the transient fluctuation relation has been
demonstrated for a wide variety of situations, including open
classical [9] as well as closed [10–12] and open [13–15]
quantum systems, which also may be probed by measurements
during the force protocol [16–18]. Recent reviews are provided
by [19–22].

The main issue in the experimental confirmation of the
quantum fluctuation relations is the determination of work. In
the classical context, this does not present a basic problem
because the work can be determined in an incremental way by
integrating the supplied power which can be inferred from the
instantaneous states of the system. Needless to say that, for
this purpose, the system has to be continuously monitored. In
quantum mechanics, the monitoring will have a severe impact
on the system dynamics and also on the statistics of work. An
additional difficulty comes from the fact that work is not an
observable [12]. Within the standard approach [22], the work
supplied to a closed system by the action of a time-dependent
force λ(t) is expressed as the difference of the system energies
at the time τ after a prescribed work protocol has finished and
at the starting time t = 0 of the protocol.

Until now, in the literature, one may find a proposal of a
direct confirmation [23] and several elaborate ideas on how to
establish the transient fluctuation relations in a more indirect
way [24–26]. Recently, an experimental realization of the
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proposal made in Ref. [25] was reported [27]. These indirect
methods [24–27] circumvent the measurement of work and
infer its statistics by means of a simulation of the characteristic
function of work, which is imprinted in the reduced state of an
ancilla. Here we do not follow this procedure but investigate
whether generalized energy measurements can be employed
for determining the work.

At first glance, this does not seem to be a promising
approach because we proved in a previous work [28] that
generalized measurements violate the transient fluctuation
relations if they are not adapted to the actual force protocol
in a special way. Only projective measurements can be
universally used for arbitrary protocols [28]. For the majority
of generalized energy measurements, the resulting work
statistics does not allow one to determine the “ideal” work
statistics obtained by use of projective measurements for the
same force protocol. However, for the special class of energy
measurements introduced in Sec. II, the work statistics is
connected to the ideal one such that the latter can be recovered
from the former, as discussed in Sec. III. In Sec. IV we
derive modified fluctuation relations for this particular class
of generalized energy measurements. Most importantly, the
appearing modifications are completely determined by the
error probabilities of the measurement devices but do not
depend on the force protocol. The form of the modification
is such that these relations can directly be used to infer the
changes of the system free energy. Particularly simple and easy
to handle modifications result for Gaussian error distributions.

In Sec. V we demonstrate how one may obtain mea-
surements with Gaussian distributed errors from multiply
repeated measurements with more general non-Gaussian error
distributions by using arguments that underlie the central
limit theorem [29]. A further beneficial effect of repeated
measurements is a strong reduction of the error. The paper
closes with Sec. VI.

II. ENERGY MEASUREMENTS

We first collect the most important general properties of
generalized measurements and then introduce a special class
of energy measurements. For a more complete account of the
theory of generalized measurements we refer to the book by
Wiseman and Milburn [30].

A. General properties of generalized measurements

The description of generalized measurements in terms of
positive operator valued measures (POVM) is very flexible. It
not only allows for the assignment of a certain probability to
find a pointer within some given range, but also determines the
state of the system immediately after a measurement has been
performed. The answers to both questions are given in terms of
measurement operators Mx , where x ∈ X is a pointer state, X
the totality of these states, and Mx are bounded operators on the
Hilbert space of the considered systems with a normalization
condition specified below.

Once a value x of the pointer is measured in a system,
which stays in a state described by the density matrix ρ, the
non-normalized postmeasurement state is given by MxρM

†
x .

Both the normalization and the probability px(ρ) to find x in

the state described by ρ are given by

px(ρ) = Tr M†
xMxρ. (4)

Because of the requirement that this probability should be
normalized for any density matrix ρ, i.e.,

∫
X dx px(ρ) = 1,

the measurement operators must provide a partition of unity
of the form ∫

X
dx M†

xMx = 1. (5)

Apparently, the eigenprojection operators of an observable,
say, of the system Hamiltonian, define a proper set of
measurement operators where the pointer values indicate
the eigenstates of the observable. These then give rise to a
projective measurement.

B. Minimally disturbing energy measurements

Next we introduce a particular class of energy mea-
surements. As a special example of this class, we first
consider a situation in which the energy measurements at the
beginning and the end of the force protocol are performed by
Gaussian superpositions of projective measurements of energy
eigenstates, which can be expressed as

ME(t) =
∑

n

1

(2πμ2(t))1/4
exp

(−(en(t) − E)2

4μ2(t)

)
	n(t), (6)

where 	n(t) and en(t) denote the eigenprojection operators
and the eigenvalues of the Hamiltonians H (λ(t)), respectively,
with t = 0 indicating the beginning and t = τ the end of
the force protocol. Hence the spectral representation of these
Hamiltonians is given by H (λ(t)) = ∑

n en(t)	n(t). Calculat-
ing the conditional probability qGauss

t (E|en(t)) to measure the
energy E in the state 	n(t)/Tr 	n(t), one obtains a Gaussian
distribution with mean value en(t) and variance μ2(t), reading

qGauss
t (E|en(t)) ≡ Tr M

†
E(t)ME(t)	n/Tr 	n

= 1√
2πμ2(t)

e−(E−en(t))2/(2μ2(t)). (7)

The measurement operator defined by Eq. (6) can be written
in a compact form as

ME(t) = q
1/2
t (E|H (t)). (8)

Any choice of the error pdf qt (E|H (t)) leads to self-
adjoint energy measurement operators ME(t) = M

†
E(t) which

therefore, according to the Wiseman-Milburn taxonomy, are
minimally disturbing [30]. In the example of a Gaussian energy
measurement operator (6), the error distribution is a function
of the difference E − en(t) only but does not depend on E and
en(t) separately, and hence

ME(t) = q
1/2
t (E1 − H (t)|0). (9)

We call minimally disturbing energy measurements of this
type homogeneous.

Finally, we conclude that the Gaussian measurement oper-
ator (6) is homogeneous because the deviation of the average
from the condition, 〈E〉qt

− en(t), is independent of n—in
fact, it vanishes—and the variance μ2(t) is independent of
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the condition en(t). Here 〈E〉qt
and μ2(t) are the average and

variance determined by the pdf qt (E|en(t)), respectively.

III. WORK STATISTICS WITH MINIMALLY DISTURBING
ENERGY MEASUREMENTS

As described in Introduction, the work statistics is based on
the measurement of energies E and E′ at the beginning and the
end of the force protocol, respectively, and is hence determined
by the joint probability P�(E′,E), which, for general energy
measurement operators ME(t) of the type of Eq. (8), is given
by

P�(E′,E) = Tr M2
E′(τ )U (�)ME(0)ρ0ME(0)U †(�)

=
∑
m,n

qτ (E′|em(τ ))q0(E|en(0))p�(m,n), (10)

where we allow for different measurement operators for
the initial and final energy measurements, characterized by
conditional pdfs q0(E|en(0)) and qτ (E′|em(τ )). The operator
U (�) ≡ Uτ,0 governs the time evolution from the beginning
to the end of the force protocol and follows as the solution of
the Schrödinger equation,

i�∂Ut,s/∂t = H (λ(t))Ut,s, (11)

with the initial condition

Us,s = 1. (12)

In going to the second line of Eq. (10), we interchanged
the order of the initial measurement operator ME(0) and the
initial density matrix ρ0 = Z−1(0)e−βH (λ(0)), where Z(0) =
Tr e−βH (λ(0)). This is possible because both operators are
functions of the same Hamiltonian H (λ(0)). Here, p�(m,n)
denotes the joint probability to find the eigenstates n and m in
projective energy measurements at the beginning and the end
of the force protocol, respectively. It reads

p�(m,n) = Tr 	m(τ )U (�)	n(0)ρ0U
†(�). (13)

The work pdf p�(w) can be expressed in terms of the joint
probability P�(E′,E) as

p�(w) =
∫

dEdE′ δ(w − E′ + E)P�(E′,E), (14)

which leads to the following expression for the characteristic
function G�(u):

G�(u) =
∫

dw eiuwp�(w)

=
∑
m,n

∫
dEdE′ eiu(E′−E)

× qτ (E′|em(τ ))q0(E|en(0))p�(m,n)

=
∑
m,n

gτ (u|em(τ ))g0( − u|en(0))p�(m,n), (15)

where gt (u|e) ≡ ∫
dE eiuEqt (E|e) is the characteristic func-

tions of the conditional pdf qt (E|e) with t = 0, τ .
The characteristic function G�(u) takes a considerably

simple form for homogeneous energy measurements. As the
Fourier transform of a shifted function, qt (E|e) = qt (E − e|0),
the characteristic function of the measurement error becomes

gt (u|e) = eiuegt (u), (16)

where

gt (u) ≡
∫

dE eiuEqt (E|0). (17)

Putting the expression (16) into the work characteristic
function, one finds that it is represented by a product of
a protocol-independent function of u and the characteristic
function for projective measurements, hence, reading

G�(u) = gτ (u)g0(−u)Gproj
� (u) (18)

with the characteristic function for projective energy measure-
ments given by

G
proj
� (u) =

∑
m,n

eiu(em(τ )−en(0))p�(m,n). (19)

The work pdf can then be expressed as a convolution of
the projective work pdf with a protocol-independent pdf
describing the combined effect of the errors incurred in the
initial and final energy measurements. It takes the form

p�(w) =
∫

dE Q(E)pproj
� (w − E). (20)

The combined measurement error pdf Q(E) is given by

Q(E) =
∫

dy qτ (E + y|0)q0(y|0). (21)

On the other hand, one can show that the work pdf based
on minimally disturbing energy measurements is given by
the convolution of the projective work pdf with a protocol-
independent error distribution only if the measurements are
homogeneous in the sense of Eq. (9). If the measurement
error distributions of the first and the second measurements
are known, the work pdf resulting from a projective energy
measurement can be reconstructed.

Using the characteristic function of a Gaussian distribution
given by

g(u) =
∫

dw eiwu 1√
2πμ2

e−w2/(2μ2) = e−μ2u2/2, (22)

one finds the work characteristic function to become

G�(u) = e−(μ2(τ )+μ2(0))u2/2G
proj
� (u) (23)

for energy measurements with homogeneous Gaussian error
distributions. Accordingly, the work pdf results from the
projective work pdf convoluted with a Gaussian. With Eq. (20)
it becomes

p�(w) =
∫

dE√
2π (μ2(τ ) + μ2(0))

× e−(w−E)2/[2(μ2(τ )+μ2(0))]p
proj
� (E). (24)

The effective error distribution, Q(E) = [2π (μ2(τ ) +
μ2(0))]−1/2e−E2/[2(μ2(τ )+μ2(0))], describing the combined dis-
turbance in the first and the second energy measurement, is also
a Gaussian with vanishing mean value. Its variance is given by
the sum of the variances of the initial and final Gaussian error
distributions.
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IV. MODIFIED FLUCTUATION RELATIONS

Putting u = iβ in the expression (18) for the characteristic
function of work, we obtain on the left-hand side G�(iβ) =
〈e−βw〉. The right-hand side can be expressed by means of
the Jarzynski equality, which holds for projective energy
measurements, leading to a modified Jarzynski equality for
homogeneous, minimally disturbing energy measurements of
the form [31]

〈e−βw〉 = gτ (iβ)g0(−iβ)e−β�F

= 〈e−βE〉qτ
〈eβE〉q0e

−β�F , (25)

where, in the second line, we expressed the characteristic
functions of the error distributions at u = ±iβ by the mean
values of the exponentiated energy with respect to the
corresponding error distributions using the notation 〈·〉qt

=∫
dE · qt (E|0). We want to emphasize that the correction

factor 〈e−βE〉qτ
〈eβE〉q0 is protocol independent. For Gaussian

error distributions (7) it becomes

〈e−βE〉τ 〈eβE〉0 = e(μ2(τ )+μ2(0))β2/2. (26)

Note that the modification to the original Jarzynski equality
is particularly simple in this case. As long as we know
the variance of the Gaussian error distribution, we can
determine the free energy change using the modified Jarzynski
equality (25) in a similar manner to the original case, except
for the extra numerical factor given by Eq. (26).

Next we discuss a modified Crooks relation for homoge-
neous, minimally disturbing energy measurements. Starting
from the Crooks relation (2), holding for projective mea-
surements, we may express the characteristic functions for
projective measurements by means of Eq. (18) in terms of those
for homogeneous, minimally disturbing measurements. In this
way we obtain a modified Crooks relation of the form [31]

G�(u) = gτ (u)g0(−u)

g0(−u + iβ)gτ (u − iβ)
e−β�F G�̄(−u + iβ). (27)

By multiplying both sides by g0(−u + iβ)gτ (u − iβ) and
performing the inverse Fourier transform, one obtains the
following modified Crooks relation in terms of the work pdfs
reading ∫

dE eβEQ(E)p�(w − E)

= e−β(�F−w)
∫

dE e−βEQ(E)p�̄(E − w), (28)

where the total error pdf Q(E) is given by Eq. (21). Either
of the two equivalent variants (27) and (28) of the modified
Crooks relation can be employed for determining the free
energy change �F , provided the total error pdf is known.

For a Gaussian error distribution (7), the modified Crooks
relation in terms of the characteristic function, Eq. (27),
reduces to

G�(u) = e−β(μ2(τ )+μ2(0))(iu+β/2)e−β�F G�̄(−u + iβ). (29)

In this case, the inverse Fourier transformation leads to a more
direct relation between the forward and the backward work
pdfs without involving integral transformations. The result can

be brought in the following form:

p�

(
w − β(μ2(τ ) + μ2(0))/2

)
= e−β(�F−w)p�̄

( − w − β(μ2(τ ) + μ2(0))/2
)
. (30)

The modification from the original form of the Crooks
relation consists of a shift in the arguments of the forward
and the backward work pdfs by the product of β and the
arithmetic mean of the variances of the error distribution of
the energy measurements in the beginning and the end of the
protocol. The exponential factor connecting the forward and
backward work pdfs remains the same as in the original Crooks
relation.

In the case of Gaussian energy measurements, inferring
free energy differences from experimentally determined work
pdfs by means of the modified Crooks relation appears to
be considerably simpler than for an arbitrary homogeneous,
minimally disturbing measurement: For Gaussian measure-
ments the arguments of the work pdfs only have to be shifted
in a specific way, whereas for more general homogeneous
measurements the forward and the backward work pdfs must
be convoluted with functions depending on the effective error
distributions.

V. REPEATED ENERGY MEASUREMENTS

In the previous sections we found that minimally disturbing
energy measurements lead to modified fluctuation theorems.
The resulting modifications are solely determined by the
characteristic functions g0(u) and gτ (u), specifying the errors
of the initial and final energy measurements. A particularly
simple form of the modification emerges for generalized
measurements with Gaussian distributed errors. Using the
central limit theorem we demonstrate in the present section that
a frequent repetition of initial and final energy measurements
leads to a modified fluctuation theorem of the same form
as it would result from a single pair of Gaussian energy
measurements. This result is universal for all repeated energy
measurements having homogeneous and minimally disturbing
error distributions with finite variance values.

Hence we consider a situation where the energy in the
beginning and at the end is not only measured once but
instead, several times. We suppose that the individual mea-
surements are homogeneous and minimally disturbing energy
measurements which are characterized by conditional error
pdfs qt (E|en(t)) = qt (E − en(t)|0), which may be different
in the beginning (t = 0) and at the end (t = τ ) of the
protocol, but within these two sets of measurements they are
supposed to be identical. We shall comment on generalizations
later on.

We assume, as we already did implicitly, that the measure-
ments are short on the time scale of the unitary dynamics of
the system such that they can be considered instantaneous,
though we may allow for some time elapsing between two
subsequent measurements. We only require that all energy
measurements performed at the beginning take place before
the protocol has started and after the system has equilibrated
and is isolated from the thermal bath. The second set of
measurements at the end of the protocol must be performed
after the force parameter has reached its final value λ(τ ). For
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such an experimental setup, the joint probability P�(E′,E) to
find the energies E = {E1,E2, . . . ,EN } prior to the start of
the protocol and E′ = {E′

1,E
′
2, . . . ,E

′
N } after the protocol has

ended is given by

P�(E′,E) = TrM′
E′U (�)MEρ0M†

EU †(�)M′†
E′

= TrM′†
E′M′

E′U (�)MEρ0M†
EU †(�). (31)

In going to the second line we made use of the invariance of
the trace under cyclic permutations. The operators

M′
E′ =

N−1∏
k=0

[
ME′

N−k
(τ )U (λ(τ ))

]
,

(32)

ME =
N−1∏
k=0

[
MEN−k

(0)U (λ(0))
]

describe the collective action of measurements after and
before the protocol, respectively. The time-evolution operators
U (λ(t)) = e−iεH (λ(t))/�, with t = 0,τ , propagate the state
between two subsequent measurements separated by the time
ε. In principle, the products in Eq. (32) are ordered with de-
creasing indices labeling the sequence of measurements from
the left to the right. However, because both the measurement
operators and the time evolution operators are functions of
the same Hamiltonian, all factors of each product mutually
commute with each other. Moreover, the initial density matrix
ρ0 as a function of H (λ(0)) commutes with the operator ME.
As a consequence, in both products M′†

E′M′
E′ and MEM†

E
the time evolution operators combine to unit operators and the
expressions yield

P�(E′,E) = Tr
N∏

k=1

M2
E′

k
(τ )U (�)

N∏
k=1

M2
Ek

(0)ρ0U
†(�)

=
∑
m,n

N∏
k=1

qτ (E′
k|em(τ ))q0(Ek|en(0))p�(m,n). (33)

Taking as estimates of the work the difference of the arithmetic
means of the energies measured after the end and before the
beginning of the protocol, i.e., estimating the work as w =
N−1 ∑

k(E′
k − Ek), we obtain for the work pdf, the expression

p�(w) =
∫

dN E dNE′ δ

(
w − 1

N

N∑
k=1

(E′
k − Ek)

)
P�(E′,E).

(34)

Using Eq. (33), the corresponding characteristic function can
be further evaluated to yield

G�(u) =
∑
n,m

N∏
k=1

gτ (u/N |em(τ ))g0(− u/N |en(0))p�(m,n).

(35)

For homogeneous measurements this expression can be further
simplified with the help of Eq. (16), yielding

G�(u) =
[
gτ

(
u

N

)
g0

(
− u

N

)]N

G
proj
� (u), (36)

where G
proj
� is the characteristic function for projective energy

measurements defined in Eq. (19). The prefactor in front of the
characteristic function for projective measurements coincides
with the characteristic function of a sum of N independent,
identically distributed random numbers. Under the condition
that the second moments of the error distributions qt (E|0)
exist for t = 0,τ , the rationale of the central limit theorem
applies [29]. Then the cumulant generating functions kt (u) =
ln gt (u) can be written as kt (u) = −μ2(t)u2/2 + o(u2),
where μ2(t) = ∫

dE E2qt (E|0), and limx→0 o(x)/x = 0.
Consequently, for large numbers of energy measurements,
Eq. (36) tends to

G�(u) = e−(μ2(τ )+μ2(0))u2/(2N)G
proj
� (u), (37)

and therefore the total error pdf QN (E) becomes Gaussian with
the variance μ2

eff ≡ (μ2(τ ) + μ2(0))/N . For finite numbers of
measurements, the resulting error distribution will deviate
from a Gaussian most pronouncedly at the tails of the
distribution. The details of these deviations depend on the
combined error pdf

∫
dy qτ (E + y)q0(y) of single pairs of

initial and final energy measurements and can be estimated
for large numbers of measurements by the corresponding rate
function of large deviations [32].

Alternatively, the deviations of the combined error pdf from
a Gaussian pdf can be quantified by its cumulants κn, which
can be determined from the cumulant generating function

k(u) = N [kτ (u/N ) + k0(u/N )] =
∑

n

κn

n!
(iu)n (38)

by an n-fold differentiation with respect to iu, i.e., as κn =
dnk(u)/d(iu)n|u=0 [33]. For the sake of simplicity, we assume
that cumulants of all orders n exist. The Gaussian is ruled
by the first two cumulants κ1, which, in the present case,
vanishes because it coincides with the average error, and
κ2 = (μ2(τ ) + μ2(0))/N , which agrees with the variance. The
presence of higher cumulants indicates deviations from a
Gaussian distribution. The third-order cumulant indicates the
skewness and the fourth-order the kurtosis, indicating whether
the tails of the pdf contain more (κ4 > 0) or less weight
(κ4 < 0), compared to a Gaussian. Because of the particular
scaling of the cumulant generating function (38) with the
number N of measurements, the cumulants themselves depend
on N as

κn

(κ2)n/2
= cnN

1− n
2 , n � 2, (39)

where we used the square root of the variance κ2 as the
typical size of the error for comparison. The coefficients cn

depend on the particular error distributions qt (E|0), t = 0,τ

and may grow with the order n of the cumulants faster than
an/2, where a is a constant with |a| > 1. To achieve relatively
small cumulants of high order will then require a larger number
N of measurements than is needed to control the lower orders
such as κ3 and κ4.

A Gaussian distribution is also approached if the error dis-
tributions of the individual energy measurements are different
from each other but still have a finite variance. In this case, the
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variance of the error pdf QN (E) is given by

μ2
eff = 1

N2

N∑
k=1

(
μ2

k(τ ) + μ2
k(0)

)
, (40)

where μ2
k(t) is the variance of the error pdf q

(k)
t (E|0) of the kth

measurement.
Finally, we want to stress that infinitely many homogeneous

and minimally disturbing energy measurements result in
a projective measurement. For a large, but finite number,
the estimated energy becomes Gaussian distributed with a
variance that is proportional to the inverse of the number of
measurements.

VI. CONCLUSIONS

From our earlier work [28], we know that in general
replacing initial and final projective energy measurements by
generalized measurements leads to work pdfs which are not
compatible with the transient quantum fluctuation theorems. In
the present work, we found that, within the class of minimally
disturbing energy measurements, i.e., for measurements that
are described by self-adjoint functions of the Hamiltonian rep-
resenting the energy, so-called homogeneous measurements
lead to rather simple modifications of the work statistics. We
recall that a measurement is homogeneous if the probability
of finding the energy E in an energy eigenstate with the
eigenvalue en depends only on the difference E − en, i.e.,
the conditional error pdf q(E|en) is invariant under a common
shift of its arguments. For these measurements the work pdf
can be expressed by a convolution of the corresponding pdf

for projective energy measurements with an error distribution
solely determined by the error distributions of the energy
measurements. This leads to modified fluctuation relations.
Beyond their mere existence, the remarkable property of
these modified fluctuation relations lies in the fact that all
aspects in which they deviate from the standard fluctuation
relations are independent of the particular protocol and can be
expressed in terms of the error distributions imposed by the
measurements. If the error distributions of the initial and final
energy measurements are known, these modified fluctuation
relations can be used to determine the free energy change.

The modifications are particularly simple for Gaussian
energy measurements. These can be obtained from repeatedly
applied arbitrary homogeneous and minimally disturbing
energy measurements, provided their error distributions have
well-defined variance values. As a consequence of the central
limit theorem, the resulting error probability of the arithmetic
mean of the measurement results approaches a Gaussian
distribution, which converges to a δ function in the limit of
infinitely many measurements, hence yielding a projective
measurement.
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