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Ultraslow diffusion in an exactly solvable non-Markovian random walk
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We study a one-dimensional discrete-time non-Markovian random walk with strong memory correlations
subjected to pauses. Unlike the Scher-Montroll continuous-time random walk, which can be made Markovian
by defining an operational time equal to the random-walk step number, the model we study keeps a record
of the entire history of the walk. This new model is closely related to the one proposed recently by Kumar,
Harbola, and Lindenberg [Phys. Rev. E 82, 021101 (2010)], with the difference that in our model the stochastic
dynamics does not stop even in the extreme limit of subdiffusion. Surprisingly, this small difference leads
to large consequences. The main results we report here are exact results showing ultraslow diffusion and a
stationary diffusion regime (i.e., localization). Specifically, the equations of motion are solved analytically for the
first two moments, allowing the determination of the Hurst exponent. Several anomalous diffusion regimes are
apparent, ranging from superdiffusion to subdiffusion, as well as ultraslow and stationary regimes. We present
the complete phase diffusion diagram, along with a study of the persistence and the statistics in the regions of
interest.
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I. INTRODUCTION

Perhaps the most important quantity determining the type
of diffusion of a random walker is the asymptotic scaling
of the mean square displacement (MSD) with time. The
MSD is defined by 〈�x2〉 = 〈(x − 〈x〉)2〉 ∼ t2H , and the
asymptotic scaling exponent H is known as the Hurst
exponent [1]. The linear dependence on time, with H = 1/2,
is associated with the so-called normal diffusion. When the
MSD changes at a faster or slower rate than “normal,” the
diffusion is termed anomalous. Anomalous diffusion [2–7] is
categorized as subdiffusive for 0 < H < 1/2, superdiffusive
for 1/2 < H < 1, or ballistic (or wavelike) for H = 1.
Even faster superballistic diffusion with 〈�x2〉 ∼ t3 has been
observed [8] in the study of turbulence in the atmosphere
as early as 1926. Many systems have been shown to exhibit
anomalous diffusion in areas as diverse as physics, chemistry,
geophysics, biology, and economy [9–29]. More recently,
anomalous diffusion has been observed in many experiments,
such as self-motile active colloids [30], platinum deposition
by plasma sputtering on a porous carbon substrate [31],
ferrimagnetic maghemite nanoparticles [32], binary mixtures
of hard particles confined to narrow pores [33], and many
others [34]. Subdiffusive behavior has been reported, e.g., in
semiconductors, polymers, and porous systems (see references
in Ref. [5]). In microbiology, subdiffusion is widely observed
as a method for transporting material inside living cells [35]
(more references in Ref. [36]), possibly explained by the
crowded environment within the cell [37]. Several tools
have been used to describe anomalous dynamics, such as
generalized diffusion equations [46], continuous time random
walks [2,4,19,21,47–50], generalized master equations [51],
generalized Langevin equation (GLE) [38,41–45], gener-
alized thermodynamics [52,53], and fractional dynamical
equations [5,12,54–56] (the latter considered as particularly
suitable for describing subdiffusion and slow relaxation
processes).

With the use of the mathematical tools above, other
patterns of anomalous diffusion processes have been un-
covered, such as the logarithmic corrections to scaling,
of the type 〈x2(t)〉 ∼ t log t (marginally superdiffusive) and
〈x2(t)〉 ∼ t/ log t (marginally subdiffusive) obtained using
GLE [38] and CTRW [39,40], respectively. These models
display transitions from one diffusion type to another by
suitable changes to the model’s parameter. Another type of
diffusive behavior is ultraslow diffusion, also called strong
anomalous diffusion or superslow diffusion. In this case, the
MSD grows logarithmically with time, i.e., 〈x2(t)〉 ∼ logν t

with ν > 0 as found in Sinai’s model [57] (see Refs. [12,58–
60] and references therein). Theoretical models generating
USD are rare [61], especially in discrete-time random walks,
which require some sort of explicit microscopic mechanism.
On the experimental side, it has recently been suggested
that individual movement patterns of humans and capuchin
monkeys may exhibit ultraslow diffusion [62].

Another approach to study diffusion processes is the well-
known discrete time random walk. Random walks are very
convenient for microscopic modeling. They allow a direct
description of the physics underlying the stochastic dynamics
and have been broadly used to describe stochastic processes in
statistical physics [63]. More recently, Schütz and Trimper [64]
introduced an exactly solvable discrete-time non-Markovian
random walk model that retains the full memory history of
previous decisions, leading to a memory-driven superdiffusive
behavior separated from the normal diffusion phase by a
marginally superdiffusive regime of the type 〈x2(t)〉 ∼ t log t .
The model became known as the elephant random-walk
(ERW) model, as an allusion to the fact that “elephants
always remember,” an expression used by the authors of the
original paper. A continuous time generalization of the ERW
was conducted by Paraan and Esguerra [65], along with a
discussion on the non-Gaussian behavior associated with the
superdiffusive regime. The ERW model was later generalized
to include damage to the memory [66], which uncovered
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another superdiffusive regime endowed with log-periodic
oscillations within a parameter region driven by negative
feedback. The dynamics proposed by Schütz and Trimper was
generalized by Kumar, Harbola, and Lindenberg [67] (KHL)
which included pause probabilities in the dynamics, leading to
the emergence of subdiffusion.

In this paper we propose a random-walk model that follows
closely the dynamics of the non-Markovian ERW model,
thereby including the long-range time memory correlations.
The ERW memory model defines a simple non-Markovian
stochastic dynamics with a clear microscopic origin. It has
been shown that it provides a solid microscopic foundation for
a Fokker-Planck equation with a time-dependent term (see, for
example, Refs. [64,76]). The unbounded long-time memory
is essential to confer the non-Markovian character to the
dynamics leading to anomalous (super) diffusion. However,
we also include pause probabilities, in some extent inspired
in the KHL model. The pauses are included focusing on:
(a) leaving the ERW dynamics intact and (b) allowing the
pausing controlling parameter to assume a wide range of
values, leading to new diffusion regimes. This general model
can be shown to contain the KHL model as a particular
case. The pauses act like traps that slow down the particle’s
speed allowing for other diffusion types to appear, as can be
seen in the KHL model. Notice that the original dynamics
of the ERW model contains no pauses, but a damping-like
term is inherently included in the Fokker-Planck equation
(FPE) of the model. This can be easily seen by comparing
the FPE in Ref. [64] with Eq. (5) in Ref. [68]. We choose
to introduce pause probabilities as a way to trap down
the random particle, thereby enhancing the damping effect
and ultimately leading to subdiffusion and strong anomalous
diffusion (such as ultraslow and stationary diffusions). The
functional form for the pausing probability is chosen in such
a way that the solution becomes analytically treatable. The
inclusion of pauses (or traps) causes the emergence of new
diffusion regimes, e.g., with H < 1/2. Based on an heuristic
approach, we write the functional form for the probability to
pause, namely Ps(t), as a power law of time. This special
formulation of the model yields exact solutions for the first
two moments with the outcome of several diffusion regimes,
such as: superdiffusive, subdiffusive, ultraslow, and stationary
regimes. The stationary regimes correspond to H < 0 and are
thus related to unusually strong antipersistent correlations, in
contrast to the other types of persistence, usually classified
according the Hurst exponent, i.e., 0 < H < 1/2 and 1/2 <

H < 1, correspond to negative (antipersistent) correlations
and positive (persistent) correlations, respectively, while H =
1/2 is relative to an uncorrelated Brownian process. Negative
values for the Hurst exponents are abundant in the study of
diffusive systems, particularly in biophysics, geophysics, and
materials science [69–74]. The model’s regimes are obtained
simply by suitably tuning the model’s parameters. To the best
of our knowledge, this is the first discrete-time random-walk
model to display such a rich variety of diffusion regimes.

The paper is organized as follows. Section II describes
the model’s dynamics and Sec. III discusses the equations of
motion. The first and second moments are derived in Secs. IV
and V, respectively. Section VI discusses the results, and in
Sec. VII the conclusions are drawn.

II. THE MODEL

We describe a discrete-time random-walk model in one
dimension with unitary time steps and long-range memory
correlations. The model generalizes the elephant random-walk
model of Schütz and Trimper [64], by introducing an explicit
time-dependent random decision to induce pauses in the walk.
More specifically, consider the general position of the walker
at time t , represented by Xt . At time t + 1, the walker
moves to a neighboring site, Xt+1 = Xt + σt+1, where the
stochastic variable σ takes on the values σt+1 = ±1,0, with
σt+1 = +1 (σt+1 = −1) for a right (left) step and σt+1 = 0
for a pause. The choice of a particular value of σt+1 starts
with a random decision obtained from a probabilistic equation,
namely Pw(t) + Ps(t) = 1. In this equation, Ps(t) represents
the probability to pause the motion, whereas Pw(t) stands
for the probability to walk. Therefore, we set σt+1 = 0
with probability Ps(t) and σt+1 = ±1 with probability Pw(t).
The functional form of Ps(t) is discussed below. Except
for the pauses, the dynamics in our model is the same used
for the elephant random-walk model [64]. This means that,
when σt+1 �= 0, we choose a previous time t ′ from a uniform
distribution, such that 1 � t ′ � t and σt ′ �= 0, and set σt+1

according to

σt+1 =
{

+ σt ′ with probability p

− σt ′ with probability q
. (1)

Although p + q = 1, we shall keep both parameters, for
clarity, until the end of the calculations. Equation (1) means
that the decision at t ′ is accepted with probability p or rejected
with probability q. All the previous history of the walker
prior to t + 1 is used in the decision process, which confers a
non-Markovian character to the model. The initial conditions
are set in such a way that X0 = 0, and at t = 0 the walker
moves one step to the right or left with probability s or 1 − s,
respectively, thereby setting X1 = ±1. It is essential that the
walker effectively moves at the initial time, so that the ERW
rules can be applied.

The first model to introduce pause probabilities within
the dynamics of the ERW model was proposed by Kumar
et al. [67], leading to subdiffusion. Here we follow a different
approach, by defining the pause probabilities in a way that,
besides preserving the original ERW dynamics, leads to the
emergence of new diffusion regimes. This approach induces,
for example, the outcome of regimes slower than subdiffusion,
as shown below. We follow a heuristic reasoning to derive a
functional form for Ps(t). The pauses act like traps, slowing
down the particle and reducing its speed v(t). Thus, classically,
we can write dv/dt = −μv with μ(t) = λ/t (λ > 0). This
leads to a velocity that decays with time as a power law, i.e.,
v(t) ∼ t−λ. In order to comply with this form for v(t) the
pause probability must follow a power-law dependence with
time. It can be written as Ps(t) = 1 − At−λ (t > 0, λ � 0).
For simplicity we assume that Ps(t) is position independent.
We also take only positive values for the coefficient A, which
causes the pause probability to increase with time for λ > 1.
The occurrence of pauses can then be fine tuned by suitable
choices of λ, with immediate effects on the diffusion behavior.
Notice that a time-independent form for Ps(t) would not have

052110-2



ULTRASLOW DIFFUSION IN AN EXACTLY SOLVABLE . . . PHYSICAL REVIEW E 89, 052110 (2014)

any effect on the asymptotic diffusive behavior of the walker.
In fact, this would only lead to a linear rescaling of the time
parameter, namely t → at . A linear rescaling cannot modify
the asymptotic behavior of the model, which is related to the
exponent of t .

In the next sections we study this model and its conse-
quences to the diffusive regimes of the walker.

III. THE EQUATIONS OF MOTION

We now derive analytical expressions for the first two
moments of the model. In what follows we shall work with
α = p − q =, or α = 2p − 1 (since p + q = 1). It turns out
that the results can be readily parametrized in terms of α,
although the physical meanings of p and q are more evident.

Let nf (t) and nb(t) denote the number of steps taken in
the forward and backward directions at time t , respectively. If
nt = nt (t) represents the total number of steps taken at time t ,
then the probability that a right step has been taken up to time
t is given by nf (t)/nt . Similarly, nb(t)/nt is the probability
that the walker took a left step up to time t . The effective
probabilities P +

eff(t) and P −
eff(t) of taking a step forward and

backward at time t + 1 (t � 1) are then given by

P +
eff(t) = nf (t)

nt

p + nb(t)

nt

q

and

P −
eff(t) = nb(t)

nt

p + nf (t)

nt

q,

respectively. Notice that P +
eff(t) and P −

eff(t) are conditional
probabilities, since they represent the probability of taking
right or left steps at t + 1, given the history of the process
embodied in the knowledge of the number of right and left
steps up to time t . We now define the probabilities for right and
left steps as P

f
w ≡ P

f
w (t) = P +

eff(t)Pw(t) and P b
w ≡ P b

w(t) =
P −

eff(t)Pw(t), with P
f
w + P b

w = Pw(t), and write the effective
value of σ eff

t+1 as σ eff
t+1 ≡ P

f
w − P b

w. In terms of the conditional
probabilities P +

eff(t) and P −
eff(t), we can write

σ eff
t+1 = [P +

eff(t) − P −
eff(t)]Pw

=
[
nf (t)

nt

(p − q) − nb(t)

nt

(p − q)

]
(1 − Ps),

where Pw ≡ Pw(t) and Ps ≡ Ps(t). In terms of α = p − q

we can write σ eff
t+1 = (α/nt )(nf − nb)(1 − Ps), which gives

σ eff
t+1 = (α/nt )Xt (1 − Ps). In this equation Xt = nf (t) − nb(t)

is the position of the walker at time t . However, if we denote
the total number of pauses at time t by ns ≡ ns(t), we can write
nt = nf (t) + nb(t) and nt + ns = t , which gives nt = t − ns .
Then

σ eff
t+1 = α

t − ns

Xt (1 − Ps), (2)

where ns(t) = ∫ t

t0
Ps(t)dt . In this equation, t0 represents a

temporal cutoff scale which reflects the breakdown of the
continuum approximation for t → t0. For the initial condition,
we then set x(t = t0) = x0. We now use the power-law
functional form for the pause probability, introduced in the

previous section, namely,

Ps(t) = 1 − At−λ (λ � 0) (3)

where 0 < A � tλ0 , since 0 � P (t0) = 1 − At−λ
0 � 1, which

allows the number of pauses ns(t) to be written as

ns(t) =
∫ t

t0

(1 − At−λ)dt. (4)

The cases λ �= 1 and λ = 1 must be treated separately for the
determination of σ eff

t+1.
For λ �= 1, we can write ns(t) as

ns(t) =
(

t − A
t1−λ

1 − λ

)
−

(
t0 − A

t1−λ
0

1 − λ

)
(λ �= 1), (5)

from which follows, by rearranging the terms, that t − ns =
A0 + At1−λ/(1 − λ). Therefore, Eq. (2) can be written as

σ eff
t+1 = αAt−λ

A0 + [A/(1 − λ)]t1−λ
Xt (λ �= 1). (6)

For λ = 1 we have Ps(t) = 1 − A/t and therefore Eq. (4)
can be integrated for t0 � 1 to give t − ns = t0 + A ln(t/t0).
We can now insert this back into Eq. (2), with 1 − Ps(t) = A/t ,
and write

σ eff
t+1 = αAt−1

t0 + A ln(t/t0)
Xt (λ = 1). (7)

The equations of motion for the model can now be written
according to the parameter λ. From Xt+1 = Xt + σt+1 we note
that σt+1 represents the step or “velocity” at time t . Thus, in
the asymptotic limit of large t we can write 〈σ eff

t+1〉 = dx/dt ,
and thus Eqs. (6) and (7) become

dx

dt
= (1 − λ)α

At1−λ + A0(1 − λ)
At−λx (λ �= 1) (8)

and

dx

dt
= α

t0 + A ln(t/t0)
At−1x (λ = 1), (9)

respectively. Equations (8) and (9) constitute the equations of
motion of the model. They are the basic equations used in the
derivation of the 1st and 2nd moments below.

The computation of the moments must be done separately
according to λ �= 1 or λ = 1. This is done in the next sections.
A summary of the results is given in Table I.

IV. FIRST MOMENT CALCULATION

A. First moment for λ �= 1

The first moment x(t) ≡ 〈x(t)〉 for λ �= 1 is the solution of
Eq. (8), given by

x(t) = C1

(
A

1 − λ
t1−λ + A0

)α

|1 − λ|α (λ �= 1).

With the initial condition x(t = t0) = x0 the constant C1 obeys
x0/C1 = |1 − λ|α[A/(1 − λ)t1−λ

0 + A0]α . Thus, for t 	 t0 we
can write

x(t) ∼ C1(1 − λ)

(
A

1 − λ

)α

t (1−λ)α (λ < 1) (10)
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TABLE I. Summary of the results for the first [x(t)] and second [x2(t)] moments, as a function of λ. The Ki

are constants and α = p − q. A logarithmic correction to power law is noted for λ < 1 when α = 1/2. Ultraslow
diffusion occurs for λ = 1 and α �= 1/2, and becomes even slower for α = 1/2. Stationary diffusion with H < 0, is
noted for λ > 1.

1st moment

λ < 1 x(t) ∼ K0t
(1−λ)α

λ = 1 x(t) = x0[1 + (A/t0) ln(t/t0)]α

λ > 1 x(t) ∼ K1 + K2t
1−λ

2nd moment
(α < 1/2) x2(t) ∼ t1−λ

λ < 1 (α = 1/2) x2(t) ∼ t1−λ ln t

(α > 1/2) x2(t) ∼ t2α(1−λ)

λ = 1a (α �= 1/2) x2(t) ∼ K3 + K4(ln t)2

(α = 1/2) x2(t) ∼ K5 + K6(ln t)[ln(ln t)]
λ > 1b x2(t) ∼ K7 + K8t

1−λ

aUltraslow diffusion for λ = 1.
bStationary diffusion for λ > 1.

and

x(t) ∼ C1(λ − 1)Aα
0

(
1 + αAt1−λ

A0(1 − λ)

)
(λ > 1). (11)

B. First moment for λ = 1

For λ = 1 we must integrate Eq. (9), i.e.,∫
dx

x
= Aα

∫
dt

t[t0 + A ln(t/t0)]

to give

ln x = α ln[t0 + A ln(t/t0)] + C

= ln{C0[t0 + A ln(t/t0)]α} (12)

and then x = C0[t0 + A ln(t/t0)]α . Since x0 = C0t
α
0 , we can

write

x = x0

[
1 + A

t0
ln(t/t0)

]α

(λ = 1). (13)

If we had chosen an exponential form for Ps(t), the first
moment would be an exponentially decaying function of time.
The pause probability written as an increasing power law with
time leads to power-law behavior for the first and second
moments, as desired.

V. SECOND MOMENT CALCULATION

We now turn our attention to the second moment. We start
with the basic equation Xt+1 = Xt + σt+1, which gives

X2
t+1 = X2

t + 2σt+1Xt + σ 2
t+1,

and thus 〈
X2

t+1

〉 = 〈
X2

t

〉 + 2〈σt+1Xt 〉 + 〈
σ 2

t+1

〉
. (14)

Note that 〈σ 2
t+1〉 = (+1)2P

f
w + (−1)2P b

w + (0)2Ps , where Ps

is the probability to pause and P
f
w (P b

w) is the probability
for a right (left) step, as defined above. Thus, we can write
〈σ 2

t+1〉 = P
f
w + P b

w = 1 − Ps = At−λ, and Eq. (14) now reads〈
X2

t+1

〉 = 〈
X2

t

〉 + 2〈σt+1Xt 〉 + At−λ. (15)

This will be the basic equation, valid for any λ � 0, to be used
in the evaluation of the second moment. In this expression
we shall determine the average value of 〈σt+1Xt 〉 using the
effective value σ eff

t+1 determined above (see also Ref. [75]);
i.e.,

〈σt+1Xt 〉 = 〈
σ eff

t+1Xt

〉
, (16)

valid for any λ � 0.

A. Second moment for λ �= 1

The calculation of the second moment for λ �= 1 involves
the use of Eqs. (15) and (16) along with Eq. (6) for σ eff

t+1. The
time derivative of the second moment can then be written as
(see Appendix)

dx2

dt
= 2αAt−λ

A0 + [A/(1 − λ)]t1−λ
x2 + At−λ (λ �= 1),

where x2(t) ≡ 〈X2(t)〉. Integration gives

x2(t) ∼

⎧⎪⎨
⎪⎩

{A/[(1 − λ)(1 − 2α)]}t1−λ (α < 1/2)

[C0A
2α/(1 − λ)2α]t2α(1−λ) (α > 1/2)

At1−λ ln t (α = 1/2)

for λ < 1 and t 	 t0. For λ > 1 and t 	 0, the result is given
by

x2(t) ∼ A0

2α
ln[A0(λ − 1)] + C0A

2α
0

− A

λ − 1

{
1 + ln[A0(λ − 1)] + 2αC0A

2α−1
0

}
t1−λ

(17)

as seen from Eq. (A2). Notice that for λ > 1 the number of
pauses is even greater than the maximum number of pauses
allowed by the Kumar-Harbola-Lindenberg (KHL) model.
In this case, the second moment remains finite, due to the
additive constant in Eq. (17). This means that the width
of the distribution does not grow with time, as opposed to
what is observed in the ERW, even for p = 1/2 (traditional
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RW). Likewise, the first moment also remains finite in the
asymptotic limit, according to Eq. (11). Therefore, the particle
remains confined in a finite-space region. This is one of the
distinguished features of the model, not commonly observed
in discrete-time RW models in the literature.

B. Second moment for λ = 1

For λ = 1 we use Eqs. (15) and (16), along with Eq. (7)
for σ eff

t+1. A differential equation for x2(t) is obtained in the
Appendix given by Eq. (A3), i.e.,

dx2

dt
= 2

Aα(1 − λ)

t[t0 + A ln(t/t0)]
x2 + At−λ. (18)

When this equation is integrated it gets separated into two
forms, according to the value of α. The solutions are derived
in the Appendix. One gets

x2(t) = C1[t0 + A ln(t/t0)]2 + t0 + A ln(t/t0)

1 − 2α
,

for α �= 1/2, and

x2(t) = [t0 + A ln(t/t0)] ln[t0 + A ln(t/t0)]

+C2[t0 + A ln(t/t0)],

for α = 1/2. In this case, the second moment has a logarithmic
correction to the power law. Expressions for the constants are
derived in the Appendix.

VI. MODEL’S STATISTICS

We also briefly present some aspects of the statistics
associated with the diffusion regimes of the model. Some
results are already known for λ = 0, i.e., the ERW model:
the propagator is Gaussian for α < 0 and non-Gaussian for
α > 1/2 [64,76]; for 0 < α < 1/2 the propagator is seemingly
Gaussian, but some doubts remain [76]. In Figs. 4 and 5 below
we take into account the effect of the pause probabilities
in the statistics. We also study the statistics when α > 1/2
(or p > 3/4). The probability density functions (PDFs) for
the persistence length and the walker’s position are also
determined. This is discussed below in Fig. 5 for λ � 0.

The diffusion regimes are also usually characterized as
persistent (H > 1/2) and antipersistent (0 < H < 1/2), while
for H = 0 the position series corresponds to the uncorrelated
Gaussian white noise. Antipersistent regimes associated with
H < 1/2, means that fluctuations tend to induce stability (via
some sort of negative feedback mechanism). This is fine for
α < 0, or p < q, since in this region a negative feedback
mechanism is naturally embodied in the dynamics of the ERW
model. However, it is interesting to note the coexistence of
antipersistent regimes (with H < 1/2) with escape regimes
(those for which 〈x(t)〉 diverges). Moreover, the escape region
occurs for α > 0, meaning that p > q. This indicates that the
underlying feedback (microscopic) is positive, which should
induce persistence [as in the superdiffusive region (iv)] rather
than antipersistence. We believe that the microscopic effects
are diminished (or even totally destroyed) by memory effects.
This happens for λ = 0 (or the ERW model) and p = 0, for
example (notice that H = 1/2 in this case; see Fig. 1). More
studies are necessary to clarify these points as in Refs. [77,78].

-1 -0.5 0 0.5 1α
0

1

λ

SUB{t
1-λ

 ln t}

USD{(ln t)
2
} USD{ln(t)[ln(ln t)]}

ST{t
-|1-λ|

}

SUB{t
1-λ

} SUB{t
2α(1-λ)

}

SD{t
2α

(1
-λ) }

ND

(i)

(ii)

(iii)

(iv)

FIG. 1. (Color online) Diffusion regimes of the model showing
the large time scaling behavior of the second moment. The notation
SD, ND, SUB, USD, and ST stand for superdiffusive, normal
diffusive, subdiffusive, ultraslow diffusion, and stationary diffusion,
respectively. The logarithmic regimes are shown along the (blue)
dashed (〈x2〉 ∼ (ln t)2) and dash-double-dotted (〈x2〉 ∼ t1−λ ln t)
lines and also on the point (α,λ) = (1/2,1), for which 〈x2〉 ∼
(ln t)[ln(ln t)]. The diffusion is ultraslow (USD) for λ = 1. Normal
diffusive regimes are restricted to the (red) continuous line. Region
(iv) corresponds to the superdiffusive regime (SD). For λ > 1 the
regime is stationary, with 〈x2〉 becoming independent of time for large
times. The main point to note are the USD and stationary regimes,
which are absent in all previous models in the family of the elephant
random walk (ERW).

VII. RESULTS AND ANALYSIS

Table I summarizes the analytical results for the first two
moments for asymptotically large times. The Hurst exponent
H can be derived from the asymptotic behavior of the second
moment x2(t). This allows us to derive the diffusion regimes, as
shown in Fig. 1. Regions (i) and (iii) indicate the subdiffusive
regimes (SUB), and the superdiffusive regime (SD) is indicated
in region (iv). For λ > 1 the Hurst exponent is negative, i.e.,
H = −|1 − λ|/2 < 0. We are terming this regime as stationary
(ST). Ultraslow diffusion exists on the (blue) dashed line (λ =
1). Normal diffusion is found on the (red) continuous line.

In Fig. 1, we can also determine the regions in the phase
diagram for which there is escape in the asymptotic limit, i.e.,
when 〈x(t)〉 diverges for large times. According to Eqs. (10)
and (13) we see that the escape regime exists when the
conditions λ < 1 and α > 0 are simultaneously met. Such an
escape regime contains regions (iii), (iv), and the right part of
region (i), for which α > 0. There is no escape for all other
combinations of the pair (α, λ).

Figure 2 shows the Hurst exponent H = H (λ) as a function
of λ for α = 0.9. For this value of α (or α > 1/2, in
general) one crosses five regimes in the phase diagram with
continuously decreasing persistence, as λ ranges from small
values for the superdiffusive regime, through the intermediate
values for the subdiffusive regime to larger values (λ � 1) for
the ultraslow and stationary regimes. This figure illustrates
the rich variety of regimes encompassed by the model that
can be obtained by tuning one single parameter. The transition
between different diffusion types is always smooth. This seems
to be a general feature associated with these transitions. It can
also be seen in other theoretical studies, like: (a) transition
between subdiffusive and normal behavior crossing over an
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H = α(1-λ) < 1/2

α = 0.9

USD{(ln t)
2
}

ST{t -|1-λ|
}

H = 1/2

H = (1-λ)/2 < 0

H = α(1-λ) > 1/2
SD

SUB

ND

FIG. 2. (Color online) The variation of the Hurst exponent with λ

for α = 0.9 showing the continuous transition across all the phases:
from the superdiffusive regime [H = α(1 − λ) > 1/2, continuous
line] for small λ through the subdiffusive regime [H = α(1 − λ) <

1/2, dashed line] to the stationary phase [H = (1 − λ)/2 < 0, dash-
dotted line] for λ > 1. The notation for the diffusion regimes is the
same as described in the legend of Fig. 1. Negative Hurst exponents
are unusual and should be treated with extra care. Here, a negative
Hurst exponent does not mean that the random-walk propagator
becomes less wide at long times but rather that the width approaches
a constant aysymptotically.

intermediate marginally subdiffusive logarithmic behavior in
Refs. [39,40], and (b) between superdiffusion and subdiffusion
and stationary diffusion separated by lines describing normal
diffusion and logarithmic diffusion in Ref. [38].

The theoretical predictions and the computer simulation
results for the first two moments for selected values of α and
λ are shown in Fig. 3. It is seen that the analytic results from
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FIG. 3. Comparison between the theoretical predictions for the
first and second moments (from Table I) and computer simulations,
versus the natural logarithm of time. Averages were achieved with
3 × 106 runs with 105 time units each. The circles and squares
represent computer simulation results for the first and second
moments, respectively. The error bars are about the same size as the
symbols used to represent the moments, except for the first moments
in Fig. 3(a). In the latter case the first moment values are too small,
leading to large fluctuations and poor fittings.
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FIG. 4. (Color online) (a) The position PDFs for α = −0.6 (p =
0.2) in a (natural)log-linear plot showing the frequency of occurrences
of the position at tmax = 106 time units, against the normalized
position (xr = [x − 〈x〉]/σ ). This provides a collapse of all data
in a single Gaussian (solid line), represented by a parabola in this
scale. (b) The residues of all data relative to the fitted parabola in
the top panel showing the Gaussian deviations for λ � 0.8. The inset
shows the PDFs of the persistence lengths wp,λ with the logarithm
of the frequency in the vertical axis. The straight lines (exponential
behavior) indicate that the position PDFs are Gaussian, pointing out
to Gaussian statistics for λ � 0.6. Averages were accomplished with
50 000 runs and 106 time units each. These preliminary results shed
some light on the transition from Gaussian to non-Gaussian behavior.

Table I are in accordance with the numerical simulations. It
is interesting to note the large fluctuation values for the first
moment in Fig. 3(a). This is due to the small values of x(t) for
λ = 0.2. In order to reduce the fluctuations and achieve better
fittings, it would be necessary to increase cpu time by a factor
of 100, at least.

Figure 4 shows the probability density functions of the
position of the walker at tmax (tmax = 50 000 and 107 numerical
runs) for α = −0.6 (p = 0.2). Figure 4(a) shows a Gaussian
data collapse for several values of λ. The natural logarithm of
the frequency is shown along the y axis against the position
normalized as [x − 〈x〉]/σ rendering Gaussians as parabolae.
The solid line is a Gaussian fit to the λ = 0 numerical data,
taken as a reference curve. We see an (apparent) overall
good adjustment to the Gaussian curve. However, the residues
shown in Fig. 4(b) indicate strong Gaussian deviations for
λ � 0.8. The large residues are observed for λ � 0.8. These
results are confirmed by the PDFs of the persistence length
wp,λ, defined as the time length of consecutive steps. They
are shown in the inset, in a (natural)log-linear plot, with the
logarithm of the number of occurrences in the y axis. A straight
line in this plot represents an exponential distribution, which
is known to be associated with a Gaussian statistics for the
position distribution. We notice that this is the case up to λ =
0.6. For λ � 0.8, the persistence length data is inconclusive.
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FIG. 5. (Color online) (a) The PDFs of the persistence lengths
wp,λ for α = 0.7 (p = 0.85) in a (natural)log-linear scale. Notice
that there exists a pair of characteristic values (wc,λc) such that the
PDFs collapse for wp,λ � wc and λ � λc (λc � 0.8 in the figure). In
(b) the position distribution of the walker P (x) is shown for selected
values of λ against the normalized position xr = [x − 〈x〉]/σ . The
inset shows the shape of P (x) in a linear-linear scale for λ = 0.2.
Averages were obtained with 50 000 runs and 106 time units each.
Notice the data collapse for λ < 0.8, which is surprising since it
includes superdiffusive as well as subdiffusive regimes.

However, the statistics is non-Gaussian, as indicated by the
residues. The important point to notice is that Gaussian and
non-Gaussian statistics are supported within the subdiffusive
regime in region (i) of Fig. 1. For α = −1 (p = 0) the behavior
of the PDFs with λ are similar to that for α = −0.6 (p = 0.2),
with smaller Gaussian deviations. The results are not shown
here for reasons of space.

The persistence length is shown in Fig. 5(a), where we plot
the natural logarithm of the frequency of occurrences of a
given wp,λ for several values of λ and fixed p = 0.85, thereby
crossing the superdiffusive regime and all the other phases of
the model. The collapse of the PDFs for λ < 0.8 for large
values of the persistence length is immediately noticeable.
This result is very surprising, especially because it represents
a collective behavior associated with two very different
regions of the phase diagram, namely the superdiffusive and
subdiffusive regions. The absence of exponential PDFs for
f (wp,λ) is compatible with the non-Gaussian PDFs for the
position, shown in Fig. 5(b). Only some selected cases are
shown for clarity. Notice that the logarithmic scale in the
vertical axis of Fig. 5(b) would lead to a parabola for a Gaussian
distribution. The inset shows the position PDF for λ = 0.2 in a
linear-linear scale (frequency normalized to unity) displaying
a negative skewness.

We emphasize that these are preliminary results, which
need further investigations in order to establish the definitive

character of these PDFs and, for example, the meaning of the
collapse in Fig. 5, or the value of λ for which the Gaussian
deviations begin in Fig. 4.

VIII. CONCLUSIONS

In summary, we have formulated a non-Markovian discrete-
time random-walk model with pauses subjected to long-range
time memory correlations. The equations of motion are derived
and solved exactly for the first two moments. The Hurst
exponents are obtained exactly and the rich phase diagram
is fully characterized. The transitions from one diffusion type
to another are also described in detail. Preliminary results for
the position probability density functions at large times are
shown along with the persistence lengths distributions. The
Gaussian and non-Gaussian aspects of the model’s statistics
are discussed.

The model is expected to find suitable applications in
processes where traps and subdiffusion play a role. These
are, for example, in processes involving the first passage
time density (FPTD) (see Ref. [12] for details and more
references), in reaction-diffusion processes like A + B → B,
where B represents a transient (random) trapping condition,
and hopefully in sociobiology, where diffusion is governed
by subdiffusion or ultraslow diffusion. A continuous time
generalization of the ERW model with traps would be notably
important, and helpful for finding practical applications. This
can possibly be done by following the same steps used in the
continuous-time generalization of the ERW model carried out
by Paraan and Esguerra [65].

It is worth emphasizing the similarities between these
results and those obtained by Wang and Tokuyama [38], in
which they analyze the influence of a frictional force upon
a one-dimensional particle using the generalized Langevin
equation. The phase diagram obtained by Wang and Tokuyama
contains almost all diffusive regimes we put forward in this
paper. Their continuous time GLE approach contrasts with our
discrete-time random-walk method that explores directly the
microscopic dynamics followed by the particle.

ACKNOWLEDGMENTS

J.C.C. and M.A.A.S. acknowledge FAPESP [Grants No.
2011/13685-6 (J.C.C.) and No. 2011/06757-0 (M.A.A.S.)] for
financial assistance. G.M.V. thanks CNPq.

APPENDIX: CALCULATION OF THE SECOND MOMENT

1. Second moment for λ �= 1

In order to determine x2(t) for λ �= 1, we use Eqs. (15)
and (16) for 〈σt+1Xt 〉 = 〈σ e

t+1Xt 〉. The expression for σ eff
t+1

comes from Eq. (6). We obtain〈
X2

t+1

〉 = 〈
X2

t

〉 + 2αAt−λ

A0 + [A/(1 − λ)]t1−λ

〈
X2

t

〉 + At−λ.

Therefore, we can write an expression for the time derivative
of the second moment, i.e.,

dx2

dt
= 2αAt−λ

A0 + [A/(1 − λ)]t1−λ
x2 + At−λ (λ �= 1),

where x2(t) ≡ 〈x2(t)〉.
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Integration gives

x2(t) =
(

A

1 − λ
t1−λ + A0

)2α

×
[∫

At−λ(
A0 + A

1−λ
t1−λ

)2α
dt + C0

]
, (A1)

where C0 can be determined with the initial condition x2(t =
t0) = x2

0 .
For λ < 1 and t 	 t0, we obtain, from Eq. (A1),

x2(t) ∼ A

(1 − λ)(1 − 2α)
t1−λ (λ < 1,α < 1/2),

x2(t) ∼ C0A
2α

(1 − λ)2α
t2α(1−λ) (λ < 1,α > 1/2),

and

x2(t) ∼ At1−λ ln t (λ < 1,α = 1/2).

For λ > 1 and t 	 0, we have, from Eq. (A1),

x2(t) ∼ A0

2α
ln[A0(λ − 1)] + C0A

2α
0

− A

λ − 1

(
1 + ln[A0(λ − 1)] + 2αC0A

2α−1
0

)
t1−λ.

(A2)

2. Second moment for λ = 1

For λ = 1 we use Eqs. (15) and (16), along with Eq. (7) for
σ eff

t+1. We can write,

〈
X2

t+1

〉 = 〈
X2

t

〉 + 2
Aα(1 − λ)

t[t0 + A ln(t/t0)]

〈
X2

t

〉 + At−λ,

which gives a differential equation for x2(t), namely,

dx2

dt
= 2

Aα(1 − λ)

t[t0 + A ln(t/t0)]
x2 + At−λ. (A3)

This equation must be integrated separately, according to the
value of α. For α �= 1/2, the solution of Eq. (A3) is given by

x2(t) = C1[t0 + A ln(t/t0)]2 + t0 + A ln(t/t0)

1 − 2α
.

For t = t0 we use x2
0 = C1t

2α
0 + t0/(1 − 2α) to get C1 =

(1/t2α
0 )[x2

0 − t0/(1 − 2α)]. For α = 1/2, the solution of
Eq. (A3) has a logarithmic correction to the power law, i.e.,

x2(t) = [t0 + A ln(t/t0)] ln[t0 + A ln(t/t0)]

+C2[t0 + A ln(t/t0)].

For t = t0 we have 〈X2
t 〉 = x2

0 , which gives x2
0 = t0 ln t0 + C2t0

and C2 = x2
0/t0 − ln t0.
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[59] J. Dräger and J. Klafter, Phys. Rev. Lett. 84, 5998 (2000).
[60] A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, Phys. Rev. E

66, 046129 (2002).
[61] A. V. Chechkin, J. Klafter, and I. M. Sokolov, Europhys. Lett.

63, 326 (2003).
[62] D. Boyer, M. C. Crofoot, and P. D. Walsh, J. R. Soc. Interface

9, 842 (2012).
[63] L. Bachelier, Ann. Sci. Ec. Normale Super. 17, 21 (1900);

A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905);
S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943); B. B.
Mandelbrot, Multifractals and 1/f Noise: Wild Self-Affinity in
Physics (Springer, New York, 1999).
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[71] L. Klimeš, Pure Appl. Geophys. 159, 1811 (2002).
[72] J. Schmittbuhl, G. Chambon, A. Hansen, and M. Bouchon,

Geophys. Res. Lett. 33, L13307 (2006).
[73] M. Tarafder, I. Chattoraj, S. Tarafder, and M. Nasipuri, Mater.

Sci. Technol. 25, 542 (2009).
[74] J. Kalda, Europhys. Lett. 84, 46003 (2008).
[75] Marco Antonio Alves da Silva, G. M. Viswanathan, A. S.

Ferreira, and J. C. Cressoni, Phys. Rev. E 77, 040101 (2008).
[76] M. A. A. da Silva, J. C. Cressoni, G. M. Schütz, G. M.
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