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We studied the efficiency of two different schemes for a magnetically driven quantum heat engine, by
considering as the “working substance” a single nonrelativistic particle trapped in a cylindrical potential well,
in the presence of an external magnetic field. The first scheme is a cycle, composed of two adiabatic and two
isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic modulation
of the external magnetic-field intensity. The second scheme is a variant of the former, where the isoenergetic
trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats.
This second scheme constitutes a quantum analog of the classical Carnot cycle.
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I. INTRODUCTION

In analogy with classical thermodynamics, a quantum heat
engine generates useful mechanical work from heat, by means
of a reversible sequence of transformations (trajectories) in
Hilbert’s space, where the “working substance” is of quantum
mechanical nature [1–11]. Several theoretical implementations
for a quantum heat engine have been discussed in the literature,
such as entangled states in a qubit [12], quantum mechanical
versions of the Otto cycle [13,14], and photocells [9,10]. The
photocell, where the working substance are thermalized light
quanta (photons), is at the same time inspired by and provides
a conceptual model for the mechanism of photosynthesis in
plants and bacteria [15]. In recent years, it has been proposed
that if the reservoirs are also of quantum mechanical nature,
these could be engineered into quantum coherent states [9,10]
or into squeezed thermal states [14], thus allowing for a
theoretical enhancement of the engine efficiency beyond the
classical Carnot limit [9,10,14].

One of the simplest theoretical implementations for a
quantum heat engine is a system composed by a single particle
trapped in a one-dimensional potential well [1–4,7]. The
different trajectories can be driven by a quasistatic deformation
of the potential well, by applying an external force [1,2,16].
Two different schemes of this process have been discussed
in the literature, in the context of a nonrelativistic particle
whose energy eigenstates are determined by the Schrödinger
spectrum [1,2,8], and more recently we studied an extension
of the problem into the relativistic regime by considering the
single-particle Dirac spectrum [16].

In the present work, we propose yet a different alternative,
by introducing the notion of a magnetically driven quantum
heat engine. The basic idea is to combine the confining effects
of a cylindrical potential well, which physically represents an
accurate model for a semiconductor quantum dot [17,18], and
an external magnetic field. Assuming that the intensity of the
magnetic field can be modulated quasistatically, then its con-
fining effect over the trapped particle will change accordingly,
thus inducing transitions between the energy levels. These
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single-particle states, as we show below, correspond to Landau
levels [18] that combine the effect of both the geometric and
magnetic confinements, as captured by the effective frequency
� =

√
ω2

d + ω2
B/4.

II. SINGLE-PARTICLE SPECTRUM IN A CYLINDRICAL
WELL UNDER EXTERNAL MAGNETIC FIELD

Let us consider a single particle confined to a cylindrical
potential well of the form

Vdot(x,y) = m∗

2
ω2

d (x2 + y2). (1)

Here, m∗ is the effective mass of the particle. On top of this
“geometric” confinement, we shall assume a finite (constant)
magnetic field along the z axis:

B = ẑB. (2)

We shall adopt the symmetric gauge for the magnetic vector
potential

A = B

2
(−y,x,0). (3)

Under the aforementioned considerations, the single-
particle Hamiltonian representing this system is

Ĥ = 1

2m∗

[(
px − e By

2

)2

+
(

py + e Bx

2

)2]
+ Vdot(x,y).

(4)

The single-particle eigenstates are obtained as solutions of the
eigenvalue equation:

Ĥ |ψ〉 = E|ψ〉, (5)

and they correspond to Landau levels [18] with the energy
spectrum:

Enρ,m(B) = ��(2nρ + |m| + 1) − m
�ωB

2
. (6)

Here, nρ = 0,1,2, . . . and m = 0,±1,±2, . . . are the radial and
azimuthal quantum numbers, respectively. We have defined the
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effective frequency

� =
√

ω2
d + ω2

B

4
, (7)

where

ωB = eB

m∗ (8)

is the standard definition for the cyclotron frequency. The
eigenfunctions are expressed in terms of associated Laguerre
polynomials [18]

〈r|ψn(B)〉 =
√

2

l2
e,B

√
nρ!

(nρ + |m|)!
(

ρ

le,B

)|m|

×e
− ρ2

2l2
e,B L|m|

nρ

(
ρ2

l2
e,B

)
, (9)

where le,B = √
�/(m∗�) is the effective Landau radius that

characterizes the combined confining effects of the potential
as well as the external magnetic field, and n ≡ (nρ,m). The
single-particle spectrum defined by Eq. (6) is depicted in Fig. 1,
in units of the quantum dot characteristic energy �ωd , as a
function of the external magnetic field, for the first fourteen
eigenstates. From the figure it is clear that, even at arbitrary
large magnetic fields, the ground state (nρ = 0,m = 0) is
nondegenerate. The excited states, on the other hand, are
nondegenerate except for a discrete set of crossovers as
the field intensity increases. In particular, the excited state
(nρ = 1,m = 0) exhibits only a single crossover with the state
(nρ = 0,m = 3), a feature to be discussed later on in the
context of the isoenergetic cycle.
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FIG. 1. (Color online) Single-particle energy spectrum for a
cylindrical semiconductor quantum dot under the presence of an
external, uniform, and static magnetic field, as defined in Eq. (6).
The horizontal axis represents the magnitude of the field, in units
of the ratio between the cyclotron frequency ωB = eB/m∗ and the
characteristic frequency of the dot ωd . Notice that in general the
energy levels Enρ,m(B) are not degenerate, except for the discrete
sequence of crossings that do not affect the ground state (0,0). In
particular, the lowest excited state with m = 0, the level (nρ = 1,m =
0), displays a single crossover with the level (0,3).

A cylindrical potential well, like the one we consider here,
is a standard approximation for the effective confinement
in semiconductor quantum dots [17,18]. For instance, in a
cylindrical GaAs quantum dot, a typical value for the effective
mass would be m∗ ∼ 0.067m0 [17,18], with a typical radius
ld ∼ 20–100 nm [17]. In our present analysis, for simplicity
we do not include the Zeeman term, which is typically
negligible for GaAs semiconductor nanostructures even at high
magnetic-field intensities [17].

III. SINGLE-PARTICLE QUANTUM HEAT ENGINE

As the “working substance” for a quantum heat engine, let
us consider a statistical ensemble of replicas of a single-particle
system, where each replica may be in any of the different eigen-
states of the Hamiltonian Eq. (4). The single-particle system
is then in a statistically mixed quantum state [19], described
by the density matrix operator ρ̂ = ∑

n pn(B)|ψn(B)〉〈ψn(B)|,
with |ψn(B)〉 an eigenstate of the single-particle Hamiltonian
Eq. (4) for a given (fixed) magnetic-field intensity B. To
alleviate the notation, we introduced the two-valued index
n ≡ (nρ,m) to enumerate the eigenstates of the Hamiltonian
defined in Eq. (6). This density matrix operator is stationary,
since in the absence of an external perturbation [19] i�∂t ρ̂ =
[Ĥ ,ρ̂] = 0. Here, the coefficient 0 � pn(B) � 1 represents
the probability for the system, within the statistical ensemble,
to be in the particular state |ψn(B)〉. Therefore, the {pn(B)}
satisfy the normalization condition

Trρ̂ =
∑

n

pn(B) = 1. (10)

In the context of quantum statistical mechanics, entropy
is defined according to von Neumann [19,20] as S =
−kBTrρ̂ ln ρ̂. Since in the energy eigenbasis the equilibrium
density matrix operator is diagonal, the entropy reduces to the
explicit expression

S(B) = −kB

∑
n

pn(B) ln (pn(B)). (11)

In our notation, we emphasize the explicit dependence of
the energy eigenstates {|ψn(B)〉}, as well as the probability
coefficients {pn(B)}, on the intensity of the external magnetic
field B.

The ensemble-average energy of the quantum single-
particle system is

E ≡ 〈Ĥ 〉 = Tr(ρ̂Ĥ ) =
∑

n

pn(B)En(B). (12)

For the statistical ensemble just defined, we consider two
different schemes for a quantum analog of a thermodynamic
heat engine. The first one, that we shall refer to as the
isoenergetic cycle, consists on four stages of reversible trajec-
tories: two isoentropic and two isoenergetic ones, as originally
proposed by Bender et al. [1,2] in the context of a Schrödinger
particle, and more recently extended by us to a relativistic
Dirac particle [16]. Along the isoenergetic trajectories, the
ensemble-average energy Eq. (12) is conserved, while during
the isoentropic ones, the von Neumann entropy defined by
Eq. (11) remains constant. We distinguish this first scheme
from the quantum Carnot cycle to be discussed next, where
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the isoenergetic trajectories in Hilbert’s space are substituted
by isothermal processes, as the system is brought into thermal
equilibrium with macroscopic reservoirs at temperatures TC �
TH , respectively.

IV. ISOENERGETIC CYCLE

The isoenergetic cycle, a scheme for a quantum heat-engine
originally proposed by Bender et al. [1,2] in the context of a
single Schrödinger particle, and more recently extended by
us to a relativistic Dirac particle [16], is composed by two
isoentropic and two isoenergetic trajectories. In particular,
during the isoenergetic trajectories, the working substance
must exchange energy with an energy reservoir [3,4]. A
possible practical realization of this cycle was proposed in
Ref. [3], where the working substance exchanges energy with
single-mode radiation in a cavity, which acts as an energy
reservoir.

The system trajectories in Hilbert’s space are assumed to
be driven by reversible quasistatic processes, in which the
walls of the potential well are deformed quasi-statically by an
applied external force, such that the distance L is modified
accordingly [1,2,16]. In this work, we propose a similar
concept (see Fig. 2), but the confinement length to be modified
is the effective Landau radius introduced in Eq. (9),

le,B =
√

�/(m∗�) = (
l−4
d + l−4

B /4
)−1/4

, (13)

with ld = √
�/(m∗ωd ) representing the geometric confinement

imposed by the cylindrical potential well, while

lB =
√

�/(m∗ωB) (14)

is the confinement scale imposed by the magnetic field. The
effective Landau radius le,B can be modified through lB , by
quasistatically adjusting the intensity of the external magnetic
field. Along these trajectories, the total change in the ensemble
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FIG. 2. (Color online) Isoenergetic cycle for the effective two-
level system composed by the ground state (nρ = 0,m = 0), and
the first accessible excited state (nρ = 1,m = 0) compatible with the
selection rule T1→2 ∝ δm1,m2 , as explained in the main text. The cycle
involves two isoenergetic trajectories and two isoentropic ones.

FIG. 3. (Color online) Pictorial description of the magnetization
versus external magnetic field for the idealized isoenergetic cycle.

average energy of the system is given by

dE =
∑

n

pn(B)dEn(B) +
∑

n

dpn(B)En(B)

= (δE){pn(B)}=cnt + (δE){En(B)}=cnt , (15)

where we have introduced the two-valued index n ≡ (nρ,m)
to enumerate the eigenstates of the Hamiltonian, defined in
Eq. (6). The first term in Eq. (15) represents the total energy
change due to an isoentropic process, whereas the second term
represents a trajectory where the energy spectrum remains
rigid.

Let us first consider an isoentropic process, defined by the
constraint [21] {pn(B)} = cnt. Under quasistatic conditions,
the work performed in varying the external magnetic field B

is related to the magnetization M = − (∂E/∂B)S of the
system (see Fig. 3), dW = −MdB. Therefore, when the
magnetic field changes from B = Bγ to B = Bδ , the total
work performed by the system is

Wγ→δ =
∫ Bδ

Bγ

dB

(
∂E

∂B

)
{pn(Bγ )=pn(Bδ)}=cnt

=
∑

n

pn(Bγ )[En(Bδ) − En(Bγ )]. (16)

Notice that our sign convention is such that, for an expansion
process le,Bδ

> le,Bγ
, the work performed by the system is

negative [22], indicating that the ensemble-averaged energy is
decreasing during expansion.

Let us now consider an isoenergetic process, that is, a
trajectory in Hilbert space defined by the equation dE = 0.
The solution to this equation, for B ∈ [Bδ,Bγ ], is given by the
path ∑

n

pn(B)En(B) =
∑

n

pn(Bγ )En(Bγ ), (17)

along with the normalization condition Eq. (10). Clearly, by
definition an isoenergetic process satisfies

dE = δWγ→δ + δQγ→δ = 0, (18)

with δWγ→δ ≡ (δE){pn(B)}=cnt and δQγ→δ ≡ (δE){En(B)}=cnt.
The integral of Eq. (18) along the trajectory Bγ → Bδ yields

	E = Wγ→δ + Qγ→δ = 0. (19)
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Here, the first term Wγ→δ corresponds to the magnetic
work performed by the system when changing its induced
magnetization due to the applied field, at constant total energy.
The second term Qγ→δ = −Wγ→δ corresponds to the amount
of energy exchanged by the system with the environment, in
order to rearrange its internal level occupation. According to
the previous analysis, the heat exchanged by the system with
the environment along the isoenergetic process is given by

Qγ→δ =
∑

n

∫ Bδ

Bγ

En(B)
dpn(B)

dB
dB. (20)

Evidently, Eq. (17) combined with the normalization condition
Eq. (10) are not enough to uniquely define the coefficients
pn(B) along an isoenergetic trajectory. An exception is the
case when the energy scale of all the processes involved is
such that only transitions between two adjacent levels are
possible. Since the only driving force to induce transitions
is a quasistatic variation of the magnetic-field intensity, the
azimuthal symmetry of the Hamiltonian Eq. (4) is conserved
at any moment along this process. Therefore, the transition
probability amplitudes impose the selection rule T1→2 ∝∫

dϕ ei(m1−m2)ϕ = δm1,m2 , and hence the azimuthal quantum
numbers of initial and final states must be the same m1 = m2,
that is angular momentum Lz is conserved for such a transition.

Let us focus on the particular case when the two states in-
volved are the ground state and the first accessible excited state,
respectively: 1 ≡ (nρ = 0,m = 0) and 2 ≡ (nρ = 1,m = 0)
(see Fig. 1 and Fig. 2). It is clear that transitions between
these two energy levels, when the quasistatic variation of
the magnetic-field intensity is the only driving force, are
allowed by symmetry, since m1 = m2 = 0 for both eigenstates.
Moreover, by looking at Fig. 1 it is clear that (nρ = 1,m = 0) is
the lowest excited state accessible from the ground state (nρ =
0,m = 0) that respects the selection rule imposed by angular
momentum conservation. From Fig. 1 it is also evident that a
crossover occurs between the excited states (nρ = 1,m = 0)
and (nρ = 0,m = 3). However, transitions between the ground
state (nρ = 0,m = 0) and the excited state (nρ = 0,m = 3), or
between (nρ = 0,m = 3) and (nρ = 1,m = 0) are forbidden
by angular momentum conservation, if the quasistatic variation
of the magnetic-field intensity is the only driving force, as
discussed above. The next excited state that would respect the
symmetry is (nρ = 2,m = 0) but, as clearly seen in Fig. 1, this
one is quite high in energy and does not cross at any point
with (0,0) nor (1,0). Therefore, under these considerations,
the ground state (nρ = 0,m = 0) and the excited state (nρ =
1,m = 0) constitute an effective two-level system.

In practice, single quantum dots can be prepared in the
ground state (0,0) by coupling them to a modified high-Q
single-defect cavity [23]. It has been shown experimentally
that a high-Q cavity can enhance the spontaneous emission rate
in single quantum dots up to a factor of 8 [23], due to Purcell’s
effect [24]. Therefore, after a very short time the dot will decay
towards the ground state regardless of its initial condition.
Once the system has been prepared in its ground state, the
iso-energetic cycle can start by quasistatically tuning the static
magnetic field in the absence of external radiation sources.

The effective two-level system constituted by the states
(0,0) and (1,0) as described before, along with the different

FIG. 4. (Color online) Efficiency of the isoenergetic cycle, cal-
culated from Eq. (34), is represented as a function of the expansion
parameter α > 1. Different values of the initial magnetic field in the
cycle B1, expressed in terms of the number of flux quanta N�1 , are
compared. We find that the asymptotic limit represented by Eq. (35)
(red dashed line in the figure) is achieved in practice for N�1 > 30.

trajectories involved in the cycle, is represented in Fig. 4.
Combining Eq. (17) with the normalization condition Eq. (10),
the isoenergetic trajectories are described by

p1(B) = E2(B1) − E2(B)

E1(B) − E2(B)
+ E1(B1) − E2(B1)

E1(B) − E2(B)
p1(B1),

(21)

with p2(B) = 1 − p1(B) after the normalization condition
Eq. (10). The heat exchanged by the system with the environ-
ment during the isoenergetic trajectory connecting the initial
and final states B1 → B2 is given by the expression

Q1→2 = {E2(B1) + [E1(B1) − E2(B1)]p1(B1)}

× ln

[
E1(B2) − E2(B2)

E1(B1) − E2(B1)

]
, (22)

where the spectrum En(B) was defined in Eq. (6).
For the effective two-level system described in Fig. 2,

we consider the cycle which starts in the ground state with
p1(B1) = 1. Then, the system experiences an isoenergetic
expansion from lB1 → lB2 > lB1 , followed by an isoentropic
expansion from lB2 → lB3 > lB2 . Then, it experiences an
isoenergetic compression lB3 → lB4 < lB3 , to finally return to
its initial ground state through an isoentropic compression
lB4 → lB1 .

We shall assume that the final state after the iso-energetic
process lB1 → lB2 corresponds to maximal expansion, that is,
the system ends completely localized in the excited state n = 2.
In this condition, we have

p1(B2) = 0, p2(B2) = 1. (23)

The conservation of total energy between the initial and final
states connected through the isoenergetic process leads to the
equation

p1(B1)E1(B1) = p2(B2)E2(B2), (24)

where p1(B1) = p2(B2) = 1 for maximal expansion. There-
fore, given the spectrum in Eq. (6), Eq. (24) implies that
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lB2/lB1 = α1, where α1 is determined by the condition

�ωd

√
1 + N2

�1
= 3�ωd

√
1 + N2

�1

α4
1

. (25)

Here, we have defined N�1 = l2
d/(2l2

B1
) = �B1/�0 as the

number of flux quanta �0 = h/(2e) piercing the area πl2
d .

Equation (25) possesses physically meaningful solutions

α1 =
√

3N�1(
N2

�1
− 8

)1/4 (26)

when N�1 > 2
√

2. Therefore, the minimal initial value of
the external field required to perform the cycle is B1,min =
4
√

2�/(el2
d ). For instance, if one considers a typical size of a

semiconductor quantum dot of ld = 70 nm [17], the minimal
initial field is B1,min ∼ 4.8 T. The heat exchanged with the
environment along this first stage of the cycle is calculated
after Eq. (22)

Q1→2 = E1(B1) ln

[
E2(B1) − E1(B1)

E2
(
α−2

1 B1
) − E1

(
α−2

1 B1
)
]

, (27)

while the work performed is W1→2 = −Q1→2.
The next process along the cycle is an isoentropic expansion

(see Fig. 2), characterized by the condition p2(B2) = p2(B3) =
1. We shall define the expansion parameter α ≡ lB3/lB2 >

1. Notice that α > 1 can be arbitrarily chosen. The work
performed during this stage, with lB2 = α1lB1 is calculated
from Eq. (16)

W2→3 = 3�ωd

⎛
⎝
√

1 + N2
�1

(α1α)4
−
√

1 + N2
�1

α4

⎞
⎠ . (28)

The cycle continues with a maximal compression process from
lB3 = α1αlB1 to lB4 = α3α1αlB1 under isoenergetic conditions
(see Fig. 2). The condition for energy conservation is in this
case similar to Eq. (24), implying p2(B3) = p1(B4) = 1 and

�ωd

√
1 + N2

�1

(α1α3α)4
= 3�ωd

√
1 + N2

�1

(α1α)4
. (29)

The solution to Eq. (29) fixes the value for the compression
coefficient α3 < 1

α3 = N
1/2
�1(

8(α1α)4 + 9N2
�1

)1/4 . (30)

The heat exchanged by the system with the environment
along this process, applying Eq. (20), is given by the expression

Q3→4 = E2

(
B1

(αα1)2

)

× ln

⎡
⎢⎢⎣

E1

(
B1

(αα1α3)2

)
− E2

(
B1

(αα1α3)2

)

E1

(
B1

(αα1)2

)
− E2

(
B1

(αα1)2

)
⎤
⎥⎥⎦ (31)

and the work performed is W3→4 = −Q3→4. The last path
along the cycle is an adiabatic process (see Fig. 2), which
returns the system to its initial ground state with p1(B4) =

p1(B1) = 1. The work performed during this final stage, as
obtained by applying Eq. (16), is given by

W4→1 = �ωd

⎛
⎝√1 + N2

�1
−
√

1 + N2
�1

(αα1α3)4

⎞
⎠ . (32)

It follows from Eqs. (28) and (32), in combination with
Eqs. (25) and (29), that the network along the isoentropic
trajectories cancels, W2→3 + W4→1 = 0.

The efficiency of the cycle is thus defined by the ratio

η = 1 −
∣∣∣∣Q3→4

Q1→2

∣∣∣∣ . (33)

When substituting the corresponding expressions from
Eq. (27) and Eq. (31) into Eq. (33), we obtain the explicit
analytical result

η
(
N�1 ,α

) = 1 − 3
�1(αα1)

�1(1)

ln
[

�1(αα1α3)
�1(αα1)

]
ln
[

�1(1)
�1(α1)

] , (34)

where we have defined �1 (α) =
√

1 + N2
�1

/α4. The trend of
the efficiency is shown in Fig. 4 as a function of the expansion
parameter α, for different values of the initial external field B1

(expressed in terms of N�1 ). For very large fields N�1 � 1,
one has from Eq. (26) and Eq. (30) that α1 = 1/α3 = √

3, and
hence the efficiency tends to the asymptotic limit

η → 1 − 1/α2, N�1 � 1. (35)

Remarkably, this asymptotic result has been obtained before
for an isoenergetic cycle driven by a mechanical external force,
both in the Schrödinger [1] as well as in the low-energy limit for
the Dirac particle case [16]. This suggests that it may represent
a universal maximal efficiency for any quantum mechanical
engine based on the isoenergetic cycle construction, just as the
Carnot efficiency is to classical macroscopic heat engines.

V. QUANTUM CARNOT CYCLE

In this section, we shall discuss a quantum mechanical
version of the Carnot cycle, as applied to the statistical
ensemble of single-particle systems under consideration. The
thermodynamic cycle which defines the corresponding heat
engine is composed of four stages or trajectories in Hilbert’s
space: two isothermal and two isoentropic processes, as
depicted in Fig. 5.

Along the first stage of the cycle, the system is brought
into contact with a thermal reservoir at temperature TH .
By keeping isothermal conditions, the Landau radius is
expanded from le,B1 → le,B2 . Since thermal equilibrium with
the reservoir is assumed along this process, the von Neumann
entropy of the system achieves a maximum for the Boltzmann
distribution [19,20]

pn(B,βH ) = [Z(B,βH )]−1e−βH En(B), (36)

with β = (kBT )−1, and the normalization factor is given by the
partition function (see Appendix B for mathematical details)

Z(B,β) =
∑

n

e−βEn = Z+Z−. (37)
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FIG. 5. (Color online) Quantum Carnot cycle discussed in this
section is pictorially represented. The isothermal trajectories are
achieved by bringing the system into contact with macroscopic
thermal reservoirs at temperatures TH > TC , respectively.

Here, we have defined

Z± = 1

2 sinh
(

�βω±
2

) , (38)

with

ω± = � ± ωB

2
. (39)

From a similar analysis as in the previous section, we
conclude that the heat absorbed by the system from the thermal
reservoir is given by

Q1→2 =
∫ B2

B1

∑
n

En(B)
dpn(B,βH )

dB
dB

= −
∂ ln

(
Z(B2,βH )
Z(B1,βH )

)
∂βH

+ β−1
H ln

(
Z(B2,βH )

Z(B1,βH )

)

= E(B2,βH ) − E(B1,βH ) + β−1
H ln

[
Z(B2,βH )

Z(B1,βH )

]
.

(40)

In the second line, we have done integration by parts, and
we made direct use of the definition Eq. (37) of the partition
function. The final result follows from substituting the explicit
expression for the partition function Eq. (37), and the definition
of the ensemble-averaged energy of the single-particle system
E = 〈Ĥ 〉 = −∂ lnZ/∂β,

E(B,β) = �ω+
2

coth

(
β�ω+

2

)
+ �ω−

2
coth

(
β�ω−

2

)
. (41)

Similarly, during the third stage of the cycle (see Fig. 5), the
system is again brought into contact with a thermal reservoir,
but at a lower temperature TC < TH . Therefore, the probability
distribution of states in the ensemble is pn(B,βC), as defined
in Eq. (36), but with TC instead of TH . The heat released to the
reservoir during this stage is given by the expression

Q3→4 = E(B4,βC)−E(B3,βC) + β−1
C ln

[
Z(B4,βC)

Z(B3,βC)

]
. (42)

The second and fourth stages of the cycle constitute isoen-
tropic trajectories (see Fig. 5). When substituting the Boltz-
mann distribution pn(β,B) = [Z(β,B)]−1 exp[−βEn(B)] into
the expression for the von Neumann entropy Eq. (11), we

FIG. 6. (Color online) Magnetization of the system changes as a
function of the applied external magnetic field, along two isothermal
and two isoentropic trajectories of the cycle. The isothermal trajec-
tories are achieved by bringing the system into contact with macro-
scopic thermal reservoirs at temperatures TH > TC , respectively.

obtain the relation

S/kB = βE + ln Z(β,B). (43)

Here, E = 〈Ĥ 〉 is the ensemble-average energy, as defined
by Eq. (12). The equation of state is obtained from Eq. (43)
as

M = −
(

∂E

∂B

)
S

= β−1 ∂

∂B
ln Z(β,B)

= −μB

ω+
�

coth

(
β�ω+

2

)
+ μB

ω−
�

coth

(
β�ω−

2

)
, (44)

with M the ensemble-average magnetization as a function of
the external magnetic field (see Fig. 6) and μB = e�/(2m∗) the
Bohr magneton. In the last line, we made use of the explicit
analytical expression Eq. (37) for the partition function to
calculate the derivative. The work performed during the second
stage of the process is

W2→3 = E(B2,βH ) − E(B3,βC). (45)

We are now in conditions to discuss the second and fourth
stages of the Carnot cycle. These isoentropic trajectories
impose implicit conditions for the intensities of the magnetic
field,

	S2→3 = S(B3,βC) − S(B2,βH ),
(46)

	S4→1 = S(B1,βH ) − S(B4,βC).

Combining Eqs. (46), and further expressing the entropies in
terms of Eq. (43), we obtain the condition

βC[E(B3,βC) − E(B4,βC)] + ln

[
Z(B3,βC)

Z(B4,βC)

]

= βH [E(B2,βH ) − E(B1,βH )] + ln

[
Z(B2,βH )

Z(B1,βH )

]
.

(47)

The fourth and final stage of the cycle also corresponds to
an isoentropic trajectory (see Fig. 5) where lB4 → lB1 , and the
work performed by the system is given by

W4→1 = E(B4,βC) − E(B1,βH ). (48)
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The efficiency of the quantum Carnot cycle is given by

ηC = 1 − Q3→4

Q1→2
= 1 − TC

TH

, (49)

where we have made use of Eq. (40) and Eq. (42) to obtain
the second line. Remarkably, the efficiency is identical to the
classical Carnot cycle. This result is in agreement with what we
found in a recent work, where the efficiency for a mechanically
driven quantum heat engine based on a relativistic Dirac
particle was studied [16].

VI. CONCLUSIONS

In this work, we explored the possibility of constructing a
single-particle quantum heat engine, by means of combining
the confining effects of a cylindrical potential well and an
externally imposed magnetic field. The overall confinement
length scale is characterized by the Landau radius le,B , which
can be quasistatically modified by tuning the intensity of
the external magnetic field B. We considered two different
schemes to implement this idea: the isoenergetic cycle and the
quantum Carnot cycle. For both cases, we obtained explicit
analytical expressions for the quantum engine efficiencies. In
particular, for the isoenergetic cycle, we showed that in the high
magnetic-field regime the efficiency achieves the asymptotic
limit η ∼ 1 − 1/α2, in agreement with results previously
reported in the literature for mechanically driven quantum
engines [1], even in the low-energy regime for relativistic
Dirac particles [16]. The generality of this expression suggests
that it may represent a universal upper theoretical limit for
the efficiency of any quantum heat engine operating under the
isoenergetic cycle scheme. The formal proof of this conjecture,
however, goes beyond the scope of the present work.

For the quantum Carnot cycle, we proved that its efficiency
depends only on the ratio between the temperatures of the
cold and hot reservoirs ηC = 1 − TC/TH , exactly as in the
classical Carnot cycle for macroscopic heat engines. This
remarkable result was also obtained in the relativistic limit
for a mechanically driven quantum heat engine [16], and
hence its apparent universal character reflects the conceptual
robustness of thermodynamics. On the other hand, if the
reservoirs themselves are considered as quantum mechanical
objects, these can in principle be prepared into quantum
coherent nonthermal states [9,10], or into squeezed thermal
states [14]. Under such conditions, theoretical studies show
that the aforementioned Carnot limit for the efficiency can be
surpassed [9,10,14].

This work is mainly intended as a proof of concept rather
than as a practical implementation protocol. However, we
believe that experimentally it would be easier to control
the intensity of an applied magnetic field than to impose a
mechanical force upon a nanosystem. For this reason, we have
focused the modeling aspects in the context of a GaAs quantum
dot as a prototype system for a cylindrical potential well,
on the hope that the idea proposed here may be attractive
for experimental scientists interested in a future practical
implementation of this concept.
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APPENDIX A

In this appendix, we present the detailed derivation of
Eq. (22). For a two-level system experiencing an isoenergetic
process that connects states 1 → 2, the probabilities satisfy

p1(B) = E2(B1) − E2(B)

E1(B) − E2(B)
+ E1(B1) − E2(B1)

E1(B) − E2(B)
p1(B1),

(A1)

with p2(B) = 1 − p1(B). The expression for the heat ex-
changed during the process is, from Eq. (20),

Q1→2 =
∫ B2

B1

(
p1(B)

dE1

dB
+ p2(B)

dE2

dB

)
dB

=
∫ B2

B1

(
p1(B)

d(E1 − E2)

dB
+ dE2

dB

)
dB.

(A2)

Upon substitution of Eq. (A1) into Eq. (A2), after some algebra
one obtains

Q1→2 = {E2(B1) + [E1(B1) − E2(B1)] p1(B1)}

×
∫ B2

B1

d(E1−E2)
dB

E1(B) − E2(B)
+
∫ B2

B1

E1
dE2
dB

− E2
dE1
dB

E1(B) − E2(B)
dB.

(A3)

The first integral is elementary, and we obtain the expression

Q1→2 = {E2(B1) + [E1(B1) − E2(B1)]p1(B1)}

× ln

[
E1(B2) − E2(B2)

E1(B1) − E2(B1)

]

+
∫ B2

B1

E1
dE2
dB

− E2
dE1
dB

E1(B) − E2(B)
dB. (A4)

In particular, when the azimuthal quantum numbers of both
states are m1 = m2 = 0, then the second integral in Eq. (A4)
trivially vanishes and one has

Q1→2 = {E2(B1) + [E1(B1) − E2(B1)]p1(B1)}

×ln

[
E1(B2) − E2(B2)

E1(B1) − E2(B1)

]
(if m1 = m2 = 0).

(A5)

APPENDIX B

In this appendix, we present the mathematical details to
obtain the partition function for the ensemble of single-particle
systems under consideration. The spectrum for the system,
corresponding to effective Landau levels, is determined by ra-
dial nρ = 0,1, . . . and azimuthal m = 0,±1,±2, . . . quantum
numbers,

Enρ,m(B) = ��(2nρ + |m| + 1) − m
�ωB

2
. (B1)
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It is convenient to reparametrize these quantum numbers in
terms of a pair of integers n+, n−, defined as

n+ = 1
2 (2nρ + |m| − m), n− = 1

2 (2nρ + |m| + m), (B2)

with n± = 0,1, . . . ,∞. Combining both definitions, we obtain

m = n− − n+, nρ = 1
2 (n+ + n−). (B3)

The energy spectrum can be rewritten as

Enρ,m(B) = E(n+) + E(n−), (B4)

where we defined

En± = �ω±
(
n± ± 1

2

)
. (B5)

Here,

ω± = � ± ωB

2
. (B6)

The partition function is then calculated as

Z(B,β) =
∑
nρ,m

e−βEnρ,m (B)

=
∞∑

n+=0

∞∑
n−=0

e−β(En++En−) = Z+Z−. (B7)

Here, we have defined

Z± = 1

2 sinh
(

β�ω±
2

) . (B8)
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