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Macroscopically measurable force induced by temperature discontinuities at solid-gas interfaces
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We consider a freely movable solid that separates a long tube into two regions, each of which is filled with
a dilute gas. The gases in each region are initially prepared at the same pressure but different temperatures.
Under the assumption that the pressure and temperatures of gas particles before colliding with the solid are kept
constant over time, we show that temperature gaps appearing on the solid surface generate a force. We provide
a quantitative estimation of the force, which turns out to be large enough to be observed by a macroscopic
measurement.
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I. INTRODUCTION

Macroscopic nonequilibrium phenomena are described by
evolution equations for slow modes associated with con-
servation laws and symmetry breaking [1]. The equations
for standard liquids and gases are well established as the
hydrodynamic equations of mass, momentum, and energy
density fields, and heat conduction and sound propagation
in solids are also well established [2]. The validity of the
description was carefully investigated in small-scale exper-
iments [3], which suggested that the behavior near a solid
wall shows deviations from calculation results based on the
standard hydrodynamic equations. Furthermore, a stimulating
prediction that a liquid droplet is nucleated in a sheared solid
may be another example that is not described by the established
continuum equations [4].

In these examples, nontrivial phenomena occur at the
interface between a solid and a fluid. Indeed, the description of
behavior near the interface has not been established, because its
characteristic length scale is too small for macroscopic phe-
nomenological descriptions. Although imposing appropriate
boundary conditions at the interface for macroscopic equations
often gives a good description, there are cases where the as-
sumptions of the boundary conditions should be seriously con-
sidered. In this paper, we study a phenomenon associated with
temperature gaps at the interfaces between a solid and gases.

In order to demonstrate our findings clearly, we employ the
special-purpose systems shown in Fig. 1. A solid (say, silicon),
which consists of many atoms, is placed in a long tube of
cross-sectional area S. Dilute gases (say, helium) at the same
pressure p but different temperatures TL and TR are contained
in the left and right regions, respectively, at an initial time.
The gases are well approximated by ideal gases and cannot
mix with each other because the solid acts as a separating
wall. It is assumed that the pressure and temperatures of gas
particles before colliding with the solid are kept constant over
time. In this setup, despite the equal pressure, momentum flows
from one gas to the other owing to the energy transfer from
the hot side to the cold side. Recently, a phenomenological
mechanism for the emergence of a force from such cross
coupling has been proposed in Refs. [5,6]. In this paper we
provide a quantitative estimation of the force acting on the
solid on the basis of a microscopic description of the system
under some assumptions. An important finding is that the force
is determined by the temperature gaps at the interface of the
solid and gases.

More precisely, we denote by T ′
L and T ′

R the kinetic
temperatures of the solid particles at the left and right
ends, respectively, which are different from TL and TR in
general. Such a temperature discontinuity at an interface has
been measured in experiments [7–9]. For the mass of gas
particles mG and the mass of solid particles m, we define
ε ≡

√
mG/m, which is assumed to be small. We then show

that the temperature gaps T ′
L − TL and T ′

R − TR generate the
force Fgap given by

Fgap = ε2pS

(
T ′

L − TL

TL
+ TR − T ′

R

TR

)
. (1)

By assuming Fourier’s law in the solid, we can estimate
the temperature gaps in terms of the thermal conductivity
of the solid. Surprisingly, the result shows that Fgap takes
a macroscopically measurable value. It should be noted that
steady-state motion of the solid is observed because the force
Fgap may be balanced with a friction force induced by collision
with gas particles.

In the argument below, we describe the microscopic model
that we employ. We then derive the aforementioned result.
Finally, we discuss the possibility of experimental realization
of the phenomenon in laboratories. Throughout the paper,
β represents the inverse temperature and kB the Boltzmann
constant. The subscripts or superscripts L and R represent
quantities on the left and right sides, respectively.

II. MODEL

We provide a three-dimensional mechanical description
of the solid in Fig. 2. We take the x axis along the axial
direction of the tube. We assume that the solid consists of
N × M particles of mass m, where N and M are the number
of particles along the x direction and in a plane perpendicular
to the x axis, respectively. A collection of the positions and
momenta of N × M solid particles, which we distinguish
by subscripts i and j (1 � i � N , 1 � j � M), are denoted
by � = (r1,1, . . . ,rN,M ; p1,1, . . . , pN,M ), which gives the
microscopic state of the solid. The x components of r i,j

and pi,j are denoted by xi,j and pi,j , respectively, and
the corresponding velocity is given by vi,j ≡ pi,j /m. The
position and velocity of the center of mass of the solid in the
x direction are denoted by X and V , respectively.
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FIG. 1. (Color online) Schematic illustration of the experimental
systems. The solid separates two gases at the same pressure but
different temperatures. The pressures and temperatures are kept
constant over time. Temperature gaps appear on the solid surface.

The Hamiltonian of the solid, H (�), is given by

H (�) =
∑
i,j

[ | pi,j |2
2m

+Uw(r i,j )

]
+

∑
〈i,j ;i ′,j ′〉

Uint(r i,j ,r i ′,j ′ ),

(2)

where 〈i,j ; i ′,j ′〉 represents the nearest- and second-nearest-
neighbor pair of solid particles. Uint is the interaction potential
between two solid particles, and Uw is the potential between a
solid particle and the tube wall. The tube wall is assumed to be
frictionless, and Uw(r i,j ) does not depend on xi,j . The motion
of solid particles except for left and right ends is described by
the Hamiltonian equations.

Next, we provide an effective description of the gases. We
focus on the gas on the left side; the gas on the right side can
be described similarly. Employing a dilute gas that consists of
particles of mass mG, we may assume that the characteristic
time of the dissipation process inside each gas is much longer
than the time during which we observe the steady-state motion
of the solid. Therefore, gas particles that have yet to collide
with the solid are in equilibrium at the temperature TL, the
pressure p, and the number density nL = pβL. We also assume
that gas particles elastically and instantaneously collide with
the solid only once. More precisely, the instantaneous collision
means that the characteristic time of the solid-gas interaction
is much shorter than the relaxation time of all solid particles.
It should be noted that this situation is completely different
from a case where the solid is effectively described as a wall

FIG. 2. (Color online) Schematic illustration of a cross section of
our model in three dimensions. The solid particles are connected by
a spring. Gas particles collide with the solid particles according to a
Poisson process.

TABLE I. Characteristic time scales.

Symbol Definition

τ1 Relaxation time of the dissipation process inside gas
τ2 Relaxation time of V

τ3 Relaxation time of all solid particles
τ4 Solid-gas interaction time

with one degree of freedom. For convenience, we make a list of
characteristic time scales in Table I. Our assumption means that
τ1 � τ2 > τ3 � τ4. Furthermore, for simplicity, we assume
that the tangent plane at the collision point is perpendicular to
the x axis, so that the x component of the velocity of each solid
particle at both ends is independent of the other components
at the collisions.

For this setup, the interaction between the solid and the gas
on the left side can be described by random collisions with
the collision rate λL(vG,v1,j ) per unit area for the gas particle
velocity vG and the solid particle velocity v1,j . The collision
rate is explicitly written as

λL(vG,v1,j ) = nL(vG − v1,j )θ (vG − v1,j )f L
eq(vG), (3)

where θ represents the Heaviside step function and f L
eq(vG) =√

βLmG/2π exp(−βLmGv2
G/2) is the Maxwell-Boltzmann dis-

tribution.
The lth collision time of a gas particle and the j th solid

particle at the left end is determined according to the Poisson
process. Suppose that a gas particle with a velocity in the x

direction v
L,l
G,j collides with the j th solid particle at t = t

L,l
j .

The equation of motion for the j th solid particle in the x

direction is written as

dp1,j

dt
= −∂H (�)

∂x1,j

+ FL,j , (4)

with

FL,j =
∑

l

I
(
v

L,l
G,j ,ṽ1,j

)
δ
(
t − t

L,l
j

)
, (5)

where FL,j is the force exerted by the elastic collisions of
the gas particles, I (vG,v) = 2mGm(vG − v)/(mG + m) the
impulse of the collision, and ṽ1,j (t) ≡ limt ′↗t v1,j (t ′) the
velocity just before the collision when t = t

L,l
j . Similarly,

the collision rate of the gas on the right side is given
by λR(vG,vN,j ) = nR(vN,j − vG)θ (vN,j − vG)f R

eq(vG), and the
equation of motion for the solid particles at the right end is
determined as well.

The Hamiltonian equations in combination with the Poisson
processes yield a unique steady state. The expectation value in
the steady state is denoted by 〈 · 〉. We then have 〈vi,j 〉 = 〈V 〉
for any i and j , and we assume that the statistical properties
in the steady state are homogeneous in the vertical direction.

III. ANALYSIS

We consider the equation of motion for the center of mass.
From the law of action and reaction, the equation in the
x direction is written as mNMdV/dt = ∑M

j=1[FL,j + FR,j ].
Thus, the total force acting on the solid in the x direction is
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generated by the elastic collisions of the gas particles, where
the collision rate depends on the velocity of the solid particles.
Because d〈V 〉/dt = 0, we have the force balance equation in
the steady state as

∑M
j=1[〈FL,j 〉 + 〈FR,j 〉] = 0. Here, we note

that

〈FL,j 〉 =
〈∫

dvGλL(vG,v1,j )I (vG,v1,j )

〉
S

M
. (6)

We then expand the total force
∑M

j=1[〈FL,j 〉 + 〈FR,j 〉] in

ε ≡
√

mG/m. Defining γL ≡ εnL

√
8mkBTL/π and γR ≡

εnR

√
8mkBTL/π , we obtain

M∑
j=1

[−γL〈v1,j 〉 − γR〈vN,j 〉 + ε2pβLm
〈
v2

1,j

〉

− ε2pβRm
〈
v2

N,j

〉]
S/M + O(ε3) = 0. (7)

See Appendix A for the derivation. The first and second
terms in (7) are interpreted as the friction force that originates
from the change in the collision rate due to the motion of
the solid particles. The terms proportional to ε2 in (7) are
expressed in the form (1), where T ′

L ≡ m(〈v2
1,j 〉 − 〈v1,j 〉2)/kB

and T ′
R ≡ m(〈v2

N,j 〉 − 〈vN,j 〉2)/kB are different from TL and
TR, respectively. By using Fgap given in (1), we rewrite (7) as

−(γL + γR)S〈V 〉 + Fgap + O(ε3) = 0. (8)

It should be noted that 〈vi,j 〉 = 〈V 〉 = O(ε).
We now derive the temperature gaps for the model we

consider. First, we shall find a relation connecting the
temperature gap with the heat flux. Let JL,j be the heat
flux transferred from the gas to the j th solid particle at
the left end, and K̇L,j be the increasing rate of the kinetic
energy per unit area of the j th solid particle at the left end.
The energy conservation law leads to JL,j = K̇L,j − pv1,j .
Similarly, JR,j = K̇R,j + pvN,j [10]. We denote by �K(vG,v)
the change in the kinetic energy of a solid particle for
the collision of a solid particle of velocity v with a gas
particle of velocity vG, which is given by �K(vG,v) =
2mGm(vG − v)(mGvG + mv)/(mG + m)2. We then calculate
〈JL,j 〉 as 〈∫ dvGλL(vG,v1,j )�K(vG,v1,j )〉 − p〈v1,j 〉. Expand-
ing this expression in ε, we obtain

〈JL,j 〉 = γL

m
kB(TL − T ′

L) + O(ε2), (9)

〈JR,j 〉 = γR

m
kB(TR − T ′

R) + O(ε2). (10)

See Appendix A for the derivation. These equations mean that
the heat flux is related to the temperature gap [11,12]. The
average heat flux through the solid from the left to the right is
written as 〈J 〉 ≡ 〈JL,j 〉 = −〈JR,j 〉 for any j .

Second, we consider the heat flux. In general, the heat
flux depends on the interaction potential between solid
particles, and it is difficult to calculate it from a microscopic
description. Nevertheless, by selecting a proper short-range
interaction between solid particles in our model, we may
phenomenologically assume Fourier’s law in the form

〈J 〉 = κ(T ′
L − T ′

R)/L, (11)

where κ and L represent the thermal conductivity and the
axial length of the solid, respectively, and the temperature
dependence of κ is ignored. From (9), (10), and (11), we
obtain

〈J 〉 = κ(TL − TR)/L

1 + κm(1/γL + 1/γR)/(kBL)
+ O(ε2), (12)

and

T ′
L − TL = γR/(γL + γR)

1 + kBLγLγR/[κm(γL + γR)]
(TR − TL) + O(ε).

(13)

By substituting this result into (1), we obtain an expression
for Fgap in terms of the experimental parameters. Further-
more, (1), (8), (9), and (10) lead to the simple relation

〈V 〉 = −π〈J 〉
8p

+ O(ε2), (14)

which connects the moving velocity with the heat flux passing
inside the solid. See Refs. [5,6] for an intuitive explanation of
the result.

In order to directly demonstrate the validity of our theory,
we performed numerical experiments by solving the Hamilto-
nian equations in combination with the Poisson process. Here,
for simplicity, we consider the case that the system is defined in
two dimensions. Concretely, we use the potentials Uint(r,r ′) =
k(|r − r ′| − √

da)2/2 for the dth nearest neighbor pair of solid
particles (d = 1,2) and Uw(r) = 1/|r − rw(r)|6, where k is the
spring constant,

√
da the natural length, and rw(r) the nearest

position of the tube wall from r . All the quantities are converted
into dimensionless forms by setting k = a = m = 1. We then
set the parameter values as kBTL = 0.07, kBTR = 0.1, and
ε = √

1/10. Because the equations are nonlinear, we observed
the temperature gradient inside the solid and the temperature
gaps at the surface of the solid. We then measured 〈V 〉 and 〈J 〉
for several values of p and N = M , and plotted (−〈J 〉/p,〈V 〉)

FIG. 3. (Color online) Steady-state velocity 〈V 〉 versus the heat
flux over the pressure −〈J 〉/p for p = 0.1,N = 3,4 (square, red),
p = 0.2,N = 3,4 (circle, green), p = 0.4,N = 3,4 (triangle, blue),
and p = 0.8,N = 3,4 (diamond, pink). The dotted line represents
〈V 〉 = −π〈J 〉/(8p).
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in Fig. 3. We find that the obtained data is consistent with the
nontrivial relation (14).

IV. EXPERIMENTS

Let us discuss the experimental feasibility of the phe-
nomenon under consideration. As one example of laboratory
experiments, we consider silicon and helium of atomic weight
28 and 4, respectively, where ε = √

1/7. The thermal conduc-
tivity of silicon at room temperature is κ 	 149 J/(m · s · K),
and the density of silicon is ρ 	 2.33 g/cm3. We set TL =
293 K, TR = 303 K, p = 1 atm, S = 7 cm2, and L = 1 cm.
By using (1), (12), (13), and (14), we obtain the velocity
of the solid 〈V 〉 	 3.9 × 10 cm/s, the temperature gap T ′

L −
TL 	 1.6 K, and the temperature-gap-induced force Fgap 	
1.1 × 10−1 N. These estimated values are large enough to be
measured in careful experiments. We next consider several
possible difficulties that may arise in experiments.

First, there is the friction between the solid and the tube.
Because the coefficient of static friction of a lubricant is at most
0.5 [13], the static friction force is about 0.5 × 9.8 m/s2 ×
ρSL 	 8.0 × 10−2 N, which is less than Fgap 	 1.1 × 10−1 N.
Thus, the effect of the friction can be mitigated by the use of
a lubricant.

Second, one may worry that the relaxation time of the mo-
tion of the solid is longer than the observation time. However,
since the relaxation time is estimated as mNM/(γL + γR)S =
ρL/(γL + γR) 	 5.7 × 10−2 s, the velocity of the solid is
rapidly relaxed to the steady-state value.

Lastly, the most difficult experimental setup may be the
control of the temperatures of the gases. One method is to
connect the tube with baths of dilute gas, where the length
of the tube is chosen to be shorter than the mean-free path
of the dilute gas as shown in Fig. 4. The mean-free path of
the helium atoms at 1 atm and 300 K is about 200 nm and is
inversely proportional to the pressure. Therefore, when the
length of the tube is 20 cm, we have to set the pressure at
1 × 10−6 atm, and Fgap becomes very small. On the contrary,
when the mean-free path is much shorter than the length of
the tube, a temperature gradient appears in the gases. This
makes TR − TL small, and as a result Fgap becomes small. The
simplest realization is to control the temperatures from the
side wall of the tube. In this case, we immobilize the solid by
linking a spring to it (see Fig. 5). Because the value of the stall
force is equal to Fgap, we can measure its value, whereas we
cannot observe the steady-state motion.

Setting aside the quantitative aspects, we may observe
phenomena to which Fgap makes a dominant contribution.
One example is a Brownian particle under a temperature

FIG. 4. (Color online) Simple realization of the phenomenon
under consideration in an experiment. Large reservoirs of equilibrium
gas are connected to the tube, and the length of the tube is assumed
to be shorter than the mean free path of the gas particles.

FIG. 5. (Color online) Two heat baths are in thermal contact with
two dilute-gas regions, respectively. The solid material is immobilized
by a spring. Fgap can be measured in the experiment, while the steady-
state motion is not observed.

gradient [14–17]. If the thermal conductivity of the particle
is much larger than that of a solution, heat flux passes inside
the particle. Then, because the temperature gap appears on the
solid surface, the force Fgap is generated. It should be noted,
however, that other types of forces appear on the particle under
a temperature gradient [17]. It is a stimulating challenge to
separate Fgap from the total force.

V. CONCLUDING REMARKS

In this paper, we have predicted that the temperature gap at
the interface between a solid and a gas yields the force Fgap.
Because this force is not described by standard continuum
theory such as hydrodynamics and elastic theory, further
experimental and theoretical studies are necessary so as to
obtain a systematic understanding of the nature of the force.
Before ending the paper, we provide a few remarks.

With regard to our setup, similar models were studied in
the context of the so-called adiabatic piston problem [18–21].
Indeed, for the case κ � LkBγLγR/[m(γL + γR)] or N =
1, we obtain 〈J 〉 = kB(TL − TR)/[m(γ −1

L + γ −1
R )] + O(ε2)

and 〈V 〉 = √
π/8ε(

√
kBTR/m − √

kBTL/m) + O(ε2), where
T ′

L = T ′
R. These expressions for 〈J 〉 and 〈V 〉 are identical to

those derived in Refs. [22,23]. Here, it should be noted that
m in the preceding studies was assumed to be the total mass
of the solid, which gives much smaller values of 〈J 〉 and 〈V 〉
than ours.

In contrast to the interface case, there exists no force due to
temperature differences at the atomic scale in the bulk. In order
to clearly understand the difference between the two cases, we
should derive Fgap on the basis of a mechanical description
of solids and gases. This fundamental question might be
solved by considering hydrodynamics of a binary mixture
fluid in the phase separation state. Because hydrodynamics
may involve the discontinuity of the temperature profile at the
interface between the two materials, the standard assumption
of slowly varying thermodynamic quantities may not be valid.
The derivation may be obtained as an extension of a recent
work [24] in which the hydrodynamic equations for a simple
fluid are derived from a Hamiltonian description of identical
particles. Obviously, the experimental measurement of Fgap

is of great importance even for the theory. By clarifying the
mechanism of nonstandard forces, we hope to develop the
understanding of nonequilibrium systems.
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APPENDIX: DERIVATION OF EQS. (7), (9), AND (10)

By considering f L
eq(v) = ε

√
βLm/2π exp(−ε2βLmv2/2)

and f R
eq(v) = ε

√
βRm/2π exp(−ε2βRmv2/2), we obtain∫ ∞

V

vkf L
eq(v)dv =

∫ ∞

0
vkf L

eq(v)dv + O(ε)

= ε−k

2
√

π

(
2

βLm

) k
2

�

(
k + 1

2

)
+ O(ε),

(A1)

∫ V

−∞
vkf R

eq(v)dv =
∫ 0

−∞
vkf R

eq(v)dv + O(ε)

= (−ε)−k

2
√

π

(
2

βRm

) k
2

�

(
k + 1

2

)
+ O(ε),

(A2)

where k is a non-negative integer. By using (A1) and (A2), we
obtain ∫

λL(v,V )I (v,V )dv

= 2ε2mnL

1 + ε2

∫ ∞

V

(v − V )2f L
eq(v)dv

= (1 − ε2)p − γLV + ε2pβLmV 2 + O(ε3), (A3)

∫
dv λR(v,V )I (v,V )

= −2ε2mnR

1 + ε2

∫ V

−∞
dv(V − v)2f R

eq(v)

= −(1 − ε2)p − γRV − ε2pβRmV 2 + O(ε3), (A4)

∫
λL(v,V )�K(v,V )dv

= 2ε2mnL

(1 + ε2)2

∫ ∞

V

(v − V )2(ε2v + V )f L
eq(v)dv

= pV − γLV 2 + γLkBTL

m
+ O(ε2), (A5)

∫
λR(v,V )�K(v,V )dv

= − 2ε2mnR

(1 + ε2)2

∫ V

−∞
(V − v)2(ε2v + V )f R

eq(v)dv

= −pV − γRV 2 + γRkBTR

m
+ O(ε2), (A6)

where we have used p = nL/βL = nR/βR, γL =
εnL

√
8mkBTL/π , and γR = εnR

√
8mkBTR/π . Here, we

assume that 〈O(εk)〉 = O(εk). Then, (A3) and (A4) lead to

M∑
j=1

[〈FL,j 〉 + 〈FR,j 〉]

=
M∑

j=1

[〈∫
dvGλL(vG,v1,j )I (vG,v1,j )

〉

+
〈∫

dvGλR(vG,vN,j )I (vG,vN,j )

〉]
S

M

=
M∑

j=1

[−γL〈v1,j 〉 − γR〈vN,j 〉 + ε2pβLm
〈
v2

1,j

〉

− ε2pβRm
〈
v2

N,j

〉] S

M
+ O(ε3). (A7)

By using 〈vi,j 〉 = 〈V 〉 = O(ε), (A5), and (A6), we obtain

〈JL,j 〉 =
〈∫

dvGλL(vG,v1,j )�K(vG,v1,j )

〉
− p〈v1,j 〉

= γL

m
kB

(
TL − m

〈
v2

1,j

〉/
kB

) + O(ε2)

= γL

m
kB(TL − T ′

L) + O(ε2), (A8)

〈JR,j 〉 =
〈∫

dvGλR(vG,vN,j )�K(vG,vN,j )

〉
+ p〈vN,j 〉

= γR

m
kB

(
TR − m

〈
v2

N,j

〉/
kB

) + O(ε2)

= γR

m
kB(TR − T ′

R) + O(ε2). (A9)
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