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DNA viewed as an out-of-equilibrium structure
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The complexity of the primary structure of human DNA is explored using methods from nonequilibrium
statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is
performed on the DNA data and the results are compared with sequences derived from different stochastic
processes. The use of χ 2 tests shows that DNA can not be described as a low order Markov chain of order up
to r = 6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base
pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not
increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic
sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol,
the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range
characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in
its state through interactions with a constantly changing environment. Based solely on the exit distance distribution
accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct
a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of
the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but
fails to capture spatial correlations and point-to-point details.
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I. INTRODUCTION

The DNA molecule is one of the most complex systems
encountered in nature. By its intricate, aperiodic structure
it constitutes an information source for the synthesis of the
different entities and for the occurrence of the multitude of
delicately balanced processes within living cells. Yet, the
connection between global DNA structure and its various
functions remains to a large extent elusive, particularly in view
of the coexistence of coding and noncoding regions and the
realization of the important role of noncoding sequences in
higher organisms [1–3].

One view of the DNA molecule frequently adopted in
the literature is that of two nested nonoverlapping symbolic
sequences, the coding and noncoding regions, each of which
is expressed in terms of the four-symbol (-letter) alphabet
corresponding to the four bases A, C, G, and T. Alterna-
tive expressions are provided by coarse-grained, two-letter
alphabets. A widely used coarse graining of this kind is the
AG-CT one. It is based on the chemical resemblance of the
two purine (A, G) and pyrimidine (C, T) units, suggesting that
each couple might originate from some primitive “ancestor”
unit. A different coarse graining is provided by the AT-CG
couple, based on the observation that (A, T) are grouped
together to form a weak H-bond group, whereas (C, G)
form a strong H-bond group. Its merit is to account for
the compositional patchiness of CG content observed in
human and more generally vertebrate DNA sequences [4].
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The observed complexity of these nested sequences has been
shaped during evolutionary time based on functional needs.
Processes such as single nucleotide mutations, insertion and
deletion of segments, multiple repetitions of elements acting
simultaneously over different length and time scales have
shaped the complexity of current day genomes producing
intriguing statistical properties [3–9]. In this latter setting,
early investigations have shown that the succession of bases
along coding regions in higher organisms presents short-range
correlations, whereas noncoding regions exhibit long-range
correlations [10–12]. For these organisms, the coding segment
length distribution has an exponentially falling tail, whereas
the noncoding segment one falls off as a power law [13,14].

In this work, the structure of DNA, viewed as a symbolic
sequence, is analyzed from the standpoint of nonequilib-
rium statistical mechanics, dynamical systems theory, and
information theory. A first question raised concerns spatial
asymmetry along the sequence, its signatures, and its role
in information processing. A second question pertains to
the identification and analysis of global indicators of the
underlying complexity, beyond the linear correlations usually
considered in the literature.

The above questions will be discussed using both coarse-
grained two-letter and full four-letter representations of the
genome. To arrive at a quantitative formulation, we view
a DNA chain as the realization of a stationary stochastic
process, i.e., a process where the joint probability distributions
of the sequences generated remain invariant when shifted
along the chain. As a corollary, the probabilities pi of the
individual states (symbols) attain rapidly limiting values as
the sample size is increased. Here, the role of time step in the
traditional setting of stochastic theory is played by a shift in
space.
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The data along with the results of a preliminary statistical
analysis are compiled in Sec. II. Section III is devoted to
a Markov chain analysis, leading to the conclusion that the
data can not be fitted by a low order Markov chain, in
accord with previous studies. The analysis here goes up to
order 6. In Sec. IV, probability fluxes are evaluated and
shown to be significantly different from zero in the four-letter
alphabet, reflecting the breakdown of (generalized) detailed
balance type conditions. The major conclusion drawn from
this analysis is the presence of a systematic spatial asymmetry
along the symbolic sequence defined by the DNA chain. In
Sec. V, this analysis is complemented by the evaluation of
a series of entropy and informationlike quantities, leading to
interesting characterizations of the dynamical complexity as
one advances along the original chain and along its reverse and
of the information transfer between different parts of the chain.
Exit distance and recurrence distance distributions, two global
complexity indicators of special significance, are computed
from the data and analyzed in Sec. VI. The existence of long
tails in the distributions and of long-range correlations in the
associated lengths is established in accord with previous results
on long-range correlations in DNA sequences and is confirmed
further by the evaluation of Hurst exponents. Building on
the information provided by the exit distance distributions,
a construction algorithm of a “model DNA” possessing the
same statistical properties as the natural one, free of extra
assumptions, is outlined in Sec. VII. Different criteria for
comparing model and natural DNAs are also developed. The
main conclusions are summarized in Sec. VIII.

II. DATA AND STATISTICAL ANALYSIS

For the needs of our analysis, we have employed the
genomic data from two large human chromosomes (10 and
14) and two of the smaller ones (20 and 22). In the sequel, we
frequently use as working data set a long contig in chromosome
20 of the Homo sapiens genome. This genomic contig is the
locus N1_011387 (primary assembly) and contains 26 259 569
base pairs (bps), while the entire chromosome 20 contains
∼ 63 × 106 bps. This represents more than one third of
chromosome 20 in a single sequence. This contig is a DNA
entity long enough to ensure good statistics, when addressing
both the short- and long-range spatial properties. Moreover, it
is representative of the entire DNA molecule since it contains
both coding and noncoding sequences and other functional
elements in similar densities as for all other human chromo-
somes. In particular, the nucleotide frequencies for the contig
are pA = 0.289 341, pC = 0.208 691, pG = 0.209 448, and
pT = 0.292 519. Occasionally, unknown bps denoted by N,
which still resist in today’s sequencing techniques, are found
in genomes. The N percentage is very small and does not
contribute significantly to the statistics. We can then choose
either to eliminate all N’s or to replace them randomly with one
of the other four {A,C,G,T}. For both choices, the presented
results are indistinguishable, up to insignificant statistical
errors. Very similar nucleotide frequencies are found in the
other human chromosomes. The empirical frequencies of the
four base pairs are not constant throughout the genome but
vary locally on windows of constant length shifted along
the sequences, depending on evolutionary factors and on

the presence (or absence) of functional units. For example,
the presence of the CpG dinucleotide is associated with the
presence of isochores, DNA regions with high density of
gene-coding regions. This feature seems to be captured by
the AT-CG alphabet, where the frequencies pAT = 0.581 861
and pCG = 0.418 139 are found to differ substantially. In
contrast, coarse graining the alphabet at the AG-CT level,
the frequencies become very close: pAG = 0.498 789 and
pCT = 0.501 211. Thus, information on possible presence of
isochores faints. Alternatively, by refining the alphabet, for
example by considering explicitly the frequencies of doublets,
triplets, etc., information on finer and finer scales emerge,
which can not be adherent from superpositions of previous
levels of observation. This is one of the main elements which
leads one to characterize these molecules as complex since
different levels of complexity appear when varying the scale
of observation.

For conciseness, we denote from now on (A, G) and (C, T)
as states 1 and 2, respectively, in the two-letter purine-
pyrimidine alphabet [or (A, T) and (C, G) as states 1 and
2, respectively, in the alternative two-letter alphabet] and (A,
C, G, T) as states 1, 2, 3, 4, respectively, in the four-letter
alphabet. To obtain the conditional probabilites, we compute
first the probabilities P(i,j ) to find the doublets ij (in this
precise order) in the sequence and the single letter probabilities
P(i). In Table I, the two-letter and four-letter conditional
probabilities

wji = W (j |i) = P(i,j )

P(i)
(1)

obtained by counting the frequencies of adjacent bps i and
j (symbol j following symbol i) averaged over the entire
sequence are provided. Whereas W in the AG-CT case is
nearly symmetric, it is markedly asymmetric in the AT-CG
and the four-letter cases. In particular, w32, the probability of
encountering G after C, is noticeably smaller than the others.
This difference is well known in the biology literature and
is attributed to the specific regulatory function of the CpG
complex in the human genome, being an essential structural
element of the promoters. In spite of such differences, all
wij ’s keep statistically significant values (nonzero values),
suggesting that no configuration of dinucleotides is excluded.
In the language of the theory of stochastic processes, this
is a signature of the property of ergodicity, inasmuch as
time increments are here replaced by spatial shifts along the
structure. Higher order probabilities are obtained in a similar
way (available upon request).

III. MARKOV CHAIN ANALYSIS

In the preceding section, we have drawn inferences about
probabilities of various orders from a long, unbroken data set.
These data are viewed as defining the states of an underlying
system at points n along the sequence, the succession of which
is supposed to be governed by a set of probability laws. A
natural question that comes then to mind relates to the type of
stochastic process defined by these laws. As a reference, and
to set the stage for what will follow later on, we briefly present
in this section strong evidence that the data can in no way be
expressed for all practical purposes as a low order Markov
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TABLE I. Conditional probabilities wij as obtained from the DNA data.

AG-CT

Two-letter alphabet: w11 = 0.559 964 w12 = 0.437 910 w21 = 0.440 036 w22 = 0.562 090

AT-CG

Two-letter alphabet: w11 = 0.559 836 w12 = 0.612 510 w21 = 0.440 164 w22 = 0.387 490

w11 = 0.324 143 w12 = 0.353 3467 w13 = 0.286 9938 w14 = 0.210 9355
w21 = 0.173 548 w22 = 0.259 233 w23 = 0.210 515 w24 = 0.206 090

Four-letter alphabet:
w31 = 0.245 801 w32 = 4.575 338 × 10−2 w33 = 0.259 181 w34 = 0.254 663
w41 = 0.256 508 w42 = 0.341 667 w43 = 0.243 310 w44 = 0.328 311

chain. This point has been addressed in the past by several
authors [15–19]. The reason it is taken up again here is first
that we dispose of data sets that are more extended and more
reliable; second, that the type of test that we propose to apply
has a firm theoretical foundation going back to the pioneering
work of Billingsley [20]; and third, that it is applied to different
alphabets.

A stochastic process {in}, in the form of a sequence of size
n, is a Markov chain of order r if the conditional probability

W (in|i1,i2, . . . ,in−1) = P (i1,i2, . . . ,in)

P (i1,i2, . . . ,in−1)
(2)

is independent of im for m < n − r . As stated in Sec. II,
it is understood throughout that all these probabilities are
considered as characterizing a stationary process. The simplest
setting is that of a first order Markov chain s = 1. Suppose
that the conditional probability matrix W (j |i) = wji has been
evaluated from some model. We denote by pi the frequency
of symbol i within the sequence of size n, while with pij

we denote the frequency of occurrence of the doublet ij in the
same sequence. Estimating the singlet and doublet frequencies
npi and npij from the data by different independent counts
leads then one to test the legitimacy of the model as a first order
Markov chain on the basis of the smallness of the differences
pij − piwji . A fundamental result in this context is that the
random vector (matrix) Vij ,

Vij = (npij − npjwij )/(npj )1/2,

converges to the normal distribution with covariance matrix
determined by wij . Keeping in mind the independence of the
different samples, it follows [20] that the sum V ,

V =
∑
ij

(npij − npjwij )2

(npjwij )
, (3)

obeys asymptotically, in the limit of large n, to the χ2

distribution. This opens the way to testing the order of the
Markov chain within a certain confidence interval by χ2 type
tests. These results can be extended rather straightforward to
higher order Markov chains.

In many cases, including the problem addressed in this
work, one disposes of no reliable model for estimating, a
priori, the conditional probabilities wij . The question thus
arises as to whether χ2 type tests for the order of the Markov
chain can still be conducted on the sole basis of the data.

As suggested in Refs. [21–23], the answer is in the affirmative
provided that the following χ2 tests are used for the hypothesis
that the chain is of the order r:

χ2 =
∑

i1,i2...is

[
pi1,i2...is − pi1,i2...is−1W (is |is−r . . . is−1)

]2

pi1,i2...is−1W (is |is−r . . . is−1)
, (4)

where the W ’s are estimated from the data as ratios of fre-
quencies of i1,i2 . . . is−1 and i1,i2 . . . is , s being the maximum
order considered.

To apply this test to our data, we need to prescribe a
confidence interval, which we have chosen to be 5%, and
compare the corresponding χ2 value as given in the tables to
the value (4) obtained from the data. This requires specifying
each time the number of degrees of freedomF , which is related
to s,r and the number of states N by

F = number of degrees of freedom

= Ns − Ns−1 − (Nr − Nr−1). (5)

The order of the process is then estimated to be the smallest
value of r which produces a nonsignificant test statistics
[15–19].

Tables II and III summarize the results from our data
obtained using the χ2 test for the purine-pyrimidine (AG-CT)
and for the four-letter alphabets, respectively. In all cases
tested, the χ2 values obtained by applying (4) to the data
turn out to be much larger than the confidence level ones for
processes of order up to 6. In other words, the DNA data can
not be fitted by a low order Markov chain. Similar conclusions
hold for the AT-CG coarse-grained alphabet. For comparison,
by simulating a first order Markov chain having the same pi’s
and wij ’s as the data and by applying the test leads to a value of
0.182 155 × 106 for the first row of Table II and subsequently

TABLE II. χ 2 test (4) for the DNA data in the purine-pyrimidine
(AG-CT) alphabet.

Orders compared F χ 2 value (4) χ 2 value at 5% level

0 1 1 0.391 189 × 106 3.84
1 2 2 0.936 032 × 105 5.99
2 3 4 0.840 413 × 104 7.81
3 4 8 0.244 684 × 105 9.48
4 5 16 0.341 158 × 105 11.07
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TABLE III. χ 2 test (4) for the DNA data in the four-letter alphabet.

Orders compared F χ 2 value (3.3) χ 2 value at 5% level

0 1 9 0.143 217 × 107 17
1 2 36 0.361 137 × 106 51
2 3 144 0.165 965 × 106 150
3 4 576 0.227 638 × 106 633
4 5 2304 0.322 366 × 106 2417

for the second row to a value 0.392 362 × 101, smaller than
the χ2 value of 5.99 at the 5% level.

IV. SPATIAL ASYMMETRY AND PROBABILITY FLUXES

The failure of the Markov property established in the
preceding section leads us to search for alternative ways
to characterize DNA viewed as a symbolic sequence or,
alternatively, as a text written in the four-letter alphabet
provided by the four nucleotides or in the restricted AG-CT or
AT-CG coarse-grained alphabets. Now, a common syndrome
of all languages is irreversibility in the form of spatial
asymmetry, i.e., reading a text written in the language from,
say, left to right produces a different result from reading it
from right to left. In principle, spatial asymmetries in DNA
sequences may be expected due to the extensive presence of
repetitive elements and to large scale patchiness [8,9]. On
the other hand, the second Chargaff parity rule [24–26] states
that in a single DNA strand, oligonucleotides are present in
equal frequencies with their reverse complements. This rule,
recently shown to hold for oligonucleotides of size up to 3
in most organisms (excluding mitochondrial DNA) in coding
and noncoding sequences alike [26,27], points on the contrary
to the existence of some underlying symmetry. In this section,
we address the issue of irreversibility and asymmetry for the
DNA from the standpoint of the theory of stochastic processes
and nonequilibrium statistical mechanics on the basis of the
data summarized in Sec. II.

At the microscopic level of description, irreversibility and
asymmetry are associated with the breakdown of the property
of detailed balance, i.e., that in a given system the probability
of an event leading from an initial state i to a final state j is
counteracted by the probability of the reverse event leading
from state j to state i. Transposed from the time domain to
the one of the DNA symbolic sequence as it unfolds in space,
the simplest expression of this property amounts to the joint
probability p(i,n; j,n + 1) of two states i and j in adjacent
positions n and n + 1 along the chain satisfying the space
reversal relation:

p(i,n; j,n + 1) = p(j,n; i,n + 1) (6a)

or using the definition of conditional probabilities

wjipi = wijpj . (6b)

Here, i,j run from 1 to 4 in the case of the four-letter
alphabet defined by the nucleotides and from 1 to 2 for
the two-letter AG-CT alphabet. Alternatively, the probability

flux J
(2)
ij ,

J
(2)
ij = wjipi − wijpj , (7)

vanishes if the detailed balance condition is satisfied. In a
similar vein, higher order space reversal conditions involving
more than two sites can be introduced, e.g.,

p(i,n; j,n + 1; k,n + 2) = p(k,n; j,n + 1; i,n + 2) (8a)

or, equivalently,

wkjipij − wijkpkj = piwjiwkji − pkwjkwijk = 0 (8b)

expressing the vanishing of the probability flux

J
(3)
ijk = wkjipij − wijkpkj . (9)

Notice that for an alphabet of more than two letters, there is
more than one probability flux and more than one detailed
balance conditions. For instance, in the four-letter alphabet
there are six fluxes J

(2)
ij . If the process were first order Markov,

these fluxes would be related by the stationarity condition

pj =
∑

i

wjipi

or, using the normalization property
∑

i wij = 1,∑
i

(wjipi − wijpj ) =
∑

i

J
(2)
ij = 0. (10)

There would then be only three independent fluxes, say
J

(2)
12 , J

(2)
13 , and J

(2)
23 . One may also define composite fluxes,

e.g., the flux from state 1 to the pyrimidines (C or T)

J1,CT = (w21p1 − w12p2) + (w41p1 − w14p4) = J
(2)
12 + J

(2)
14

(11)

and the AG-CT flux as

JAG,CT = J
(2)
12 + J

(2)
14 + J

(2)
32 + J

(2)
34

= J1,CT + J3,CT. (12)

The latter would be strictly zero had the process been a first
order Markov.

We now proceed to the evaluation of the probability fluxes
from the data and to the testing of the detailed balance
condition. Table IV summarizes the main result for fluxes
J (2) and J (3) in the case of the two-letter alphabets. As
can be seen, the fluxes are very small. Actually, they are
indistinguishable from those obtained from a random sequence
of the same length and with probabilities pi fitted from the
data (not shown). Detailed balance holds therefore true in
this case or, to put it differently, there is no overall spatial

TABLE IV. Probability fluxes J (2) and J (3) in the two-letter
alphabets.

J (2) AG-CT J (2) AT-CG
12 2.9802 × 10−8 12 0.000000

J (3) AG-CT J (3) AT-CG
112 5.2154 × 10−8 112 0.000000
212 3.7252 × 10−8 212 −7.450580 × 10−9
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TABLE V. Probability fluxes J (2) and J (3) in the four-letter
alphabet.

J (2) J (3)

12 −2.3525 × 10−2 123 1.1347 × 10−2

14 1.2515 × 10−2 124 7.7443 × 10−3

32 3.4543 × 10−2 134 6.6033 × 10−4

34 −2.3533 × 10−2 213 −1.2467 × 10−2

214 −3.7790 × 10−3

234 1.2393 × 10−2

312 1.2358 × 10−2

314 −3.6969 × 10−3

412 7.8714 × 10−4

413 7.5745 × 10−3

asymmetry and irreversibility. For the purine-pyrimidine (AG-
CT) alphabet, this is compatible with the symmetry of the
associated conditional probability matrix pointed out in Sec. II.
Furthermore, in this alphabet the existence of patches of
CpG-rich regions is masked. It comes, on the contrary, at
first sight, as a surprise in the case of the AT-CG alphabet,
for which the corresponding matrix is markedly asymmetric
and the CpG patchiness is not smeared out. In actual fact,
since in a two-state system there exists only one flux, detailed
balance is bound to be satisfied as a corollary of the property
of stationarity.

Table V summarizes the results for J (2) and J (3) in the
case of the four-letter alphabet. The results are now definitely
significant, much larger than those obtained from a random
sequence. We conclude that detailed balance does not hold
here, in other words, there is an overall irreversibility in the
form of spatial asymmetry. This hitherto unnoticed property
clarifies further the status of DNA strings as a natural language.
Furthermore, as we see in the next section, it is directly related
to the role of DNA as an information source.

In the theory of stochastic processes and nonequilibrium
statistical mechanics, asymmetry and deviation from detailed
balance are attributed to the presence of a global constraint
driving the system out of the state of thermodynamic equilib-
rium. This may, at a first sight, sound in contradiction with the
usual view of DNA as a stable molecule in thermodynamic
equilibrium with its environment. But, the contradiction is
only apparent inasmuch as living matter in general, and
DNA in particular as we observe it today, is to be viewed
as the outcome of a primordial nonequilibrium evolutionary
process that was eventually stabilized in a “fossil” form as
a result of the action of local short-ranged intermolecular
interactions. Otherwise, the waiting time to see this event
happen spontaneously would be exceedingly large owing to the
combined effects of detailed balance and of the explosion of the
number of possible combinations of the constituting subunits
among which only a small subset would possess the desired
biological functions [28–30]. In this view, nonequilibrium is
manifested at the level of the four-letter alphabet, but does
not show up explicitly at the level of the coarse-grained
two-letter alphabets. More work is needed to elucidate further
the origin of this feature. For instance, it would be interesting
to investigate how coarse-grained states of dynamical systems
defined by various phase space partitionings respond in a

different way to a nonequilibrium constraint acting on the
system as a whole.

V. ENTROPY ANALYSIS AND INFORMATION TRANSFER

In this section, we introduce and analyze a set of quantities
aiming to characterize the complexity of the DNA symbolic
sequence, while accounting for its central role as information
source [31–33] as well as for the spatial asymmetry and irre-
versibility established in the preceding section. The simplest
quantity in this family is the information (Shannon) entropy

SI = −
∑

i

pi ln pi (13)

describing the amount of choice exercised by the information
source and the associated uncertainly of the message recipient.
By its static character, this quantity does not provide insights
on the overall structure of the sequence. To handle this aspect,
we divide the sequence into blocks of symbols i1,i2, . . . ,in of
length n and extend Eq. (13), which defines essentially the
entropy per symbol, to the entropy per block of symbols over
a window of length n:

Sn = −
∑

i1,i2,...,in

P (i1,i2, . . . ,in) ln P (i1,i2, . . . ,in), (14)

where the sum runs over all nonoverlapping windows of
size n.

Now, suppose that the source has sent a message in the
form of a particular n sequence. What is the probability that
the next symbol will be in+1? Clearly, we are dealing here
with a conditional event. The entropy excess associated with
the addition of an extra symbol to the right of the n block
(“word”) is then [29,31]

hn = −
∑

i1,i2,...,in,in+1

P (i1,i2, . . . ,in)W (in+1|i1,i2, . . . ,in)

× ln W (in+1|i1,i2, . . . ,in). (15)

The first nontrivial value h of hn describes the amount of
information obtained when one moves along the chain one step
ahead of the initial state i1:

h = h1 = −
∑
i,j

piwji ln wji. (16)

Actually, hn would be n independent and equal to h had the
sequence been compatible with the Markov property, which,
as shown in Sec. III, is not the case. In spite of this failure, (16)
keeps its significance whatever the nature of the process and
will be referred to, in the sequel, as the Kolmogorov-Sinai
(KS) entropy. To capture the asymmetry property analyzed in
Sec. IV, it is also useful to introduce the reverse process in
which the order of the states visited is running backwards, and
to define the associated KS entropy as

hR = −
∑
i,j

piwji ln wij . (17)
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FIG. 1. (a) Information entropy Sn for blocks of size n for the DNA data in the four- and two-letter AG-CT alphabets. (b) Entropy excess
hn for blocks of size n for the DNA data in the four- and the two-letter AG-CT alphabets.

One can easily check that if the Markov property holds, hR is
larger than or equal to h. Indeed,

σI = hR − h =
∑
ij

piwji ln
wji

wij

(18)

or using the normalization and stationarity properties dis-
cussed in Sec. IV [29,34–36],

σI = hR − h = 1

2

∑
ij

(wjipi − wijpj ) ln
wjipi

wijpj

� 0. (19)

We can express this property by the statement that the direct
sequence is more ordered than the reverse one as long as the
probability flux J

(2)
ij [Eq. (7)] does not vanish, i.e., as long as

detailed balance does not hold. For this reason, we will refer
to σI , which can be regarded as a distance from the regime
of detailed balance, as the information entropy production.
Conversely, in absence of the Markov property but knowing
that J

(2)
ij is different from zero, one may wonder whether hR

is still larger than h. As we see shortly, this is indeed the case
for the DNA sequence in the four-letter alphabet.

Let now n be gradually increased. As stated earlier in a
Markov process h would remain constant, entailing that Sn

would increase linearly in n. Figure 1 depicts the dependence
of Sn and hn as defined from Eqs. (14) and (15) for the DNA
data of Sec. II. As can be understood from the n dependence
of the information excess hn [Fig. 1(b)], the Sn versus n

dependence is not strictly linear. Indeed, hn varies (weakly
but systematically) with n from a value 1.339 for n = 1 to
1.273 for n = 8, in the case of the four-letter alphabet (solid
lines in Fig. 1). This is in accord with the conclusion drawn
in Sec. IV on the non-Markovian character of the sequence
and suggests the presence of long-range correlations (see also
Sec. VI below).

Table VI summarizes the results of evaluation of h, hR ,
and σI , using Eqs. (16)–(18), for the four-letter alphabet. For
comparison, the corresponding values from a random sequence
of the same length are also given. In this case, as expected h

and hR are both equal to the maximum entropy h = hR = ln 4
of the sequence and σI = 0.

The evaluation of the quantities in Table VI for the
DNA sequence in the two-letter purine-pyrimidine (AG-CT)

alphabet leads to the quite different conclusion that h ∼
hR = 0.686 and thus σI ≈ 0, the corresponding h value for
the random sequence being h ∼ ln 2 = 0.693. On the other
hand, Sn and hn still depend on n in a nontrivial way (see
dashed lines in Fig. 1). For the alternative two-letter AT-CG
grouping, the corresponding values are h ∼ hR = 0.678 and
thus σI = hR − h ≈ 0.

On the basis of the above comparison between the two
alphabets and between the DNA data and those associated to
the random sequence, one is tempted to conclude that revealing
the asymmetry of the DNA sequence in the four-letter alphabet,
as established already in Sec. IV, has also some interesting
signatures at the level of information processing: Information
is being produced (in the sense σI > 0) as long as one advances
along a preferred direction in sequence space, and this requires
reading the “text” in a four-letter alphabet.

An alternative view of the DNA sequence in connection
with both the presence of correlations and information pro-
cessing is to consider two segments, typically of the same
length: view the leftmost segment (say x) as the “source” and
the second one (say y), as the “receiver” and evaluate the
information transfer from x to y. We define this quantity, also
referred to as mutual information, by [37]

Ix→y =
∑
i,j

P (xi,yj ) ln
P (xi,yj )

P (xi)P (yj )
. (20)

We notice that

Ix→y = SI (y) +
∑
i,j

P (xi,yj ) ln W (yj |xi).

Furthermore, if x and y are two adjacent sites of the
sequence, the second term, which represents the conditional

TABLE VI. Kolmogorov entropy of the direct and reverse
sequence and information entropy production as computed from the
DNA data.

h hR σI

DNA data 1.339 1.416 0.077
Random sequence 1.373 1.373 4×10−7
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FIG. 2. (Color online) Information transfer I (n) between a se-
quence and its shift by n symbols versus n (four-letter representation).
Line with circles depicts the DNA sequence, line with crosses
a random sequence, and line with diamonds a model-generated
sequence (Sec. VI).

entropy of y given the state of x, reduces to the KS entropy
[Eq. (16)]. In the following analysis, a sequence is compared
with its shifts. For a specific shift of n sites, the information
transfer represents then the capacity between adjacent symbols
to interact down the sequence. The upper line in Fig. 2
depicts the dependence of Ix→y on n for two sequences of
the same length: chromosome 20, working contig N1_011387
(in two-letter representation) and its shift by 1, 2, . . . up to
105 symbols. The last excess n symbols in the comparison can
either be reinjected at the beginning of the sequence, or they
can be neglected without changing significantly the resulting I

values. For comparison, the lower line (with crosses) stands for
the results obtained from random sequences of the same length

and bps frequencies as the working contig. The intermediate
line (with diamonds) is associated with the model which will
be discussed in Sec. VII. As can be seen from the figure,
the information transfer as extracted from the DNA data
remains higher with respect to the case of a random sequence
for shifts up to 100, suggesting, once again, the presence
of correlations and information transfer between successive
bps up to the order of ∼ 100. At the level of functionality,
this nontrivial information transfer may refer to cooperations
between successive units related to the presence of codons in
the coding regions and to the multiple presence of poly-A’s, to
frequent appearance of repetitive elements, to the regulatory
elements, to the promoters and to other functional elements in
the noncoding parts [38,39].

A different view of the presence of correlations in infor-
mation transfer between two symbol sequences is provided
by their Hamming distance, which determines the number of
positions at which the corresponding symbols are different
or counts the number of substitutions required to change one
sequence into the other. The classical Hamming distance H1−2

between the two symbol sequences S1 and S2 of the same
length L, as defined by Hamming in 1950 for error detection,
is [40]

H1−2 = 1

L

L∑
i=1

di, where

(21)

di =
{

0 if S1(i) = S2(i),

+1 if S1(i) �= S2(i).

We shall also use a modified Hamming distance H ′
1−2

between S1 and S2, based on the particular nucleotide
grouping. For example, for the purine-pyrimidine (AG-CT)
grouping, the modified Hamming distance is defined as

H ′
1−2 = 1

L

L∑
i=1

di, where

(22)

di =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if S1(i) = S2(i),

+0.5 if S1(i) and S2(i) are both purines (A or G),

+0.5 if S1(i) and S2(i) are both pyrimidines (C or T),

+1 otherwise,

which considers the purine-purine variation as less important
than the purine-pyrimidine one and penalizes by 0.5 if the two
nucleotides belong to the same group and by 1 if they belong
to a different group (similarly for the AT-CG reduction).

In the case of the original Hamming distance, the H distance
between the contig sequence and a random one with the same
symbol frequencies is H (contig-random) = 0.74331. Note
that if the four symbol frequencies were equal, the value would
be 12

16 = 0.75. The H value between two random sequences
is of the same order H (random1-random2) = 0.74329. The
H value between the contig sequence and its shifts shows,

on the contrary, interesting correlations similar to the ones
demonstrated by the information transfer [see Fig. 3(a)].

In the case of the modified Hamming distance, the H ′
distance between the contig sequence and a random one with
the same symbol frequencies is H ′(contig-random) = 0.6216.
The H ′ value between two random sequences are of the
same order H ′(random1-random2) = 0.6220. Again, the H ′
value between the contig sequence and its shifts shows
interesting correlations, similar to the ones demonstrated
by the information transfer and the original H distance
[see Fig. 3(b)].
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FIG. 3. (Color online) (a) The classical Hamming distance H1−2 between the contig sequence and its shifts. The red dashed line denotes
the H value between two random sequences with the same symbol frequencies. (b) The modified Hamming distance H ′

1−2 between the contig
sequence and its shifts. The red dashed line denotes the H ′ value between two random sequences with the same symbol frequencies. All
sequences are represented in the four-letter alphabet.

Figures 3(a) and 3(b) demonstrate overall that there is
a nontrivial information flow between each bps and its
neighbors, while this information decreases as the bps become
more and more distant on the chain.

VI. EXIT AND RECURRENCE DISTANCE
DISTRIBUTIONS

So far, we have been concerned with global properties of
the DNA sequences. In this section, we introduce a new set
of quantities which allow probing features associated with
the local structure. One example of special importance is the
appearance of clusters in which a given symbol, or a given
subsequence of symbols, is repeated for a certain number
of steps, beyond which a transition to different symbols or
subsequences is taking place.

To capture such features, we introduce the exit distance
distribution, a concept analogous to the exit time distribution
familiar from the theory of stochastic processes [41,42].
Distance distributions between single nucleotides and between
oligonucleotides have been introduced and studied extensively
in the past [43–45]. The exit distance distribution considered
in this section provides a general tool to account for different
kinds of transitions and for clusters of all orders. It also
allows for useful comparisons between different alphabets and
different starting states. In a two-letter alphabet, it will actually
suffice to determine all the bulk statistical properties of the
structure, i.e., the properties not related to spatial correlations.
This feature is used in Sec. VII to create artificial DNA
sequences sharing the statistical properties of the native ones.
In the four-letter alphabet, it will not suffice by itself to fully
characterize the structure but will provide, in conjunction with
the conditional probability matrix, a very close approximation
to its bulk statistical properties (again excluding properties
related to spatial correlations).

To construct the exit distance distribution, we start with
a certain state or symbol j , and we ask for the probability

qj,n that an escape from it occurs at the nth step as one
moves along the sequence [46]. If we denote by P(j,1) the
probability to find the current symbol (numbered as 1 and set
as the instantaneous origin of the coordinates) in the state j

and by P(j,1 : j,n), the probability to encounter a symbol
different from j after n symbols, then qj,n, is defined as

qj,n = P(j,1 : j,n)/P(j,1), (23)

where j denotes the set of all allowed states with the exception
of j .

Closely related to the above is the recurrence distance
distribution in which starting again with a state j we ask
what is the probability Fj,n to encounter this state again n

steps down the sequence, with the understanding that the sites
between 1 and n are found in states j , other than j :

Fj,n = P(j,1; j,2; . . . ; j,n)/P(j,1). (24)

For a first order Markov process, both qj,n and Fj,n can
be evaluated explicitly on the sole basis of the conditional
probability matrix W = {wij }. Specifically,

qj,n = (wjj )n−1 − (wjj )n (25)

and Fj,n is expressed in terms of its generating function F̃j (s)
as

F̃j (s) = [sW (I − sW )]−1
jj , (26)

where I is the unit matrix. As a corollary, both qj,n and
Fj,n are superpositions of exponentials in n and thus fall
off exponentially for large n. Equations (25) and (26) can
be extended rather straightforwardly to the case of a second
order Markov process. The calculations are more involved, but
the property of exponential decay for large n is again found to
hold here.

We now proceed to the evaluation of these distributions
from the DNA contig data in Sec. II, starting with qj,n. For
this purpose, the data are being read along the direct sequence.
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FIG. 4. (Color online) Exit distance distributions: (a) four-letter alphabet, C state; (b) two-letter alphabets, AG state (black solid line), AT
state (dotted green line), and CG state (dashed-dotted blue line).

Whenever a state i is first spotted, the origin of coordinates
is set on the corresponding site and the distance from the
origin is recorded when a state different from i first appears
along the sequence. Counting all the distances recorded in this
way for each of the states, one arrives at the exit distance
distribution. In Figs. 4(a) and 4(b), the distributions for state C
and for purines (AG) in the case of the four- and the two-letter
AG-CT alphabets, respectively, are depicted. In both cases,
we observe the tendency for development of long tails (see
also Refs. [47,48]). In particular in the case of the four-letter
alphabet, the state C shows a linear region of low slope (∼−2)
in the intermediate scales which is soon covered by finite size
effects. Interestingly, the exit distributions from states A and T
and from states C and G are indistinguishable. Furthermore, the
distribution of A and T is longer ranged than the one of C and
G (not shown), owing principally to the existence of poly(A)
and poly(T) domains found in the human genome [38,39]. The
tendency for development of long tails is better detected from
comparison with the associated probability for a first order
Markov process indicated in the figures by the dashed lines
as obtained from a direct simulation of a Markov chain with
conditional probabilities equal to those provided by the data.

Coming to the two-letter alphabets, as seen in Fig. 4(b)
the distributions starting from the AG state in the AG-TC
alphabet or from the AT state in the AT-CG alphabet are very
close and are both long ranged, differing significantly from
the associated probability for a first order Markov process. In
contrast, for the CG state in the AT-CG alphabet, the range
is noticeably shorter. This is due, presumably, to the low
frequencies of the C and G states themselves and to the scarcity
of the CpG combination.

An alternative manifestation of the log-log structure de-
picted in Figs. 4(a) and 4(b) is that the individual exit distances
display long-range correlations as illustrated in Figs. 5(a)
and 5(b) for the cases of four and two symbols [45]. If
the exit distances are considered as an individual sequence
ni

1,n
i
2, . . . ,n

i
R , where ni

k denotes the distance (in bps units)
between the kth and the kth + 1 appearance of the symbol or
state i in the original symbol sequence, then the exit distance

correlation function C(r) is defined as

Ci(r) = 1

R

R∑
k=1

(
ni

k − 〈ni〉)(ni
k+r − 〈ni〉), (27)

where 〈ni〉 denotes the average exit distance for the state i.
From Fig. 5, power law decaying exponents close to 1

3 and to
1
2 for the four- and the two-symbol AG-CT cases are observed,
respectively.

Table VII summarizes the means and variances of the exit
distances for the four and for the AG-CT cases as compared
to the corresponding quantities evaluated from the Markov
chain simulation. We see that while the average values in the
two cases are practically indistinguishable [and equal to the
analytic results for a first order Markov chain (1 − wii)−1],
the variances associated to the data are larger than the Markov
ones. This reflects the delocalization of the DNA exit distance
distribution in the state space, a property due among others to
the presence of repeats along the sequence.
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FIG. 5. (Color online) Correlation function: four-letter alphabet
(curve a) and two-letter alphabet (curve b).
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TABLE VII. Means and variances of exit distances for the DNA data and for a first order Markov chain.

DNA Data First order Markov

〈n〉 〈δn2〉 〈n〉 〈δn2〉
1 2.272 5391 3.514 3790 2.271 9333 2.482 8568AG-CT alphabet: 2 2.283 5724 3.726 2988 2.284 3783 2.524 2081

1 1.479 6035 0.956 2388 1.479 1129 0.708 8170
2 1.349 9513 0.459 9166 1.350 2789 0.473 1067Four-letter alphabet: 3 1.349 8576 0.458 8480 1.349 8057 0.472 4476
4 1.488 7851 0.983 2494 1.488 7587 0.727 2797

We turn next to the recurrence distribution Fj,n. We
first observe that in the two-letter alphabet, the recurrence
distribution of one of the two states is fully determined
by the exit distance distribution of the other state. We are
thus again in the presence of long-ranged distributions and
long-range correlations of the individual recurrence distances
(see Fig. 5 and the first two rows of Table VII). Coming
to the four-letter alphabet, as for qj,n, practically identical
recurrence distributions for states A and T and for states C
and G are observed (see Fig. 6). Both distributions are long
ranged with the A and T falling off more slowly than for C and
G for large n (and a crossover between the two distributions
at n ∼ 5). Furthermore, compared to the corresponding exit
distance distributions, they are more delocalized as illustrated
by Table VIII, to be compared with the last four rows of
Table VII.

As was the case of Table VII, the averages 〈n〉 are very close
to those obtained by simulating a first order Markov chain with
a conditional probability matrix provided by the data, as well
as with the well known analytic result 〈n〉 = 1/pi .

Closely related to recurrence is the concept of analogs,
which finds its origin in the classification of atmospheric
circulation patterns in meteorology. Translated in the language
of the (coarse-grained) description of a symbolic sequence, the
issue is to what extent there exist persistent patterns in different
(distant) parts along the sequence, where symbols are found in
a given prescribed order with an appreciable frequency [49].

100 101 102

recurrence distance
10-5

10-4

10-3

10-2

10-1

100

R
ec

ur
re

nc
e 

di
st

an
ce

 d
is

tr
ib

ut
io

n A
C
G
T

FIG. 6. (Color online) Recurrence distributions of the four
symbols.

To address this question for the DNA symbolic sequence,
we consider all pairs of n subsequences along the full sequence
containing identical symbols in sites 1, . . . up to m, and
compute the “error” (in the sense of the Hamming distance,
see Sec. V) as they start deviating from the (m + 1)st site
and onwards. The result for the two- and four-letter alphabets
and for n = 100, m = 8 is depicted in Fig. 7(a). The dashed
lines in this figure correspond to a random sequence. As
expected, beyond n = 8 the symbols in the two members of
the pair alternate indifferently between being identical (error
0) or being different (error 1), entailing that the error attains
immediately a saturation value. The situation is very different
for the DNA data, represented by the solid lines in Fig. 7(a).
Here, a first stage of abrupt increase of the error is followed
by a stage of very slow increase toward the saturation level,
even though this level is not yet attained for n up to 100. This
indicates a persistence trend or, alternatively, the presence of
long-range correlations and is further confirmed by the plot
of Fig. 7(b), suggesting a power law dependence of the error
on n prior to the final decay to the saturation level with a
power of the order of 0.5. This behavior can be viewed as the
“spatial” analog of the error growth dynamics familiar from
dynamical systems theory where, after an exponential stage
[to be compared with the stage of fast growth in Fig. 7(a)], one
observes a diffusive stage prior to the final stabilization to the
saturation level.

As originally suggested in the early 1990s [10–12], within
the set of quantities which probe the local structure of a
sequence, the Hurst exponent H expresses the tendency of
the future values of a sequence to persist or increase on
average, or to fluctuate between small and large values [50].
In particular, for the range 0 � H < 0.5, the sequence values
tend to alternate, while for 0.5 < H � 1, they tend to persist or
increase on average. The value 0.5 is a border case, where the
values are either completely uncorrelated or their correlations
decay exponentially fast to zero.

TABLE VIII. Means and variances of recurrence distances for
the DNA data and for a first order Markov chain.

DNA Data First order Markov

〈n〉 〈δn2〉 〈n〉 〈δn2〉
1 3.622 1180 12.571 706 3.627 2037 9.004 858
2 5.101 1710 29.414 993 5.105 8583 20.609 692
3 5.078 6543 29.119 154 5.079 6456 20.368 145
4 3.589 6053 12.082 341 3.592 3173 8.781 096
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FIG. 7. (a) Error growth functions for the AG-CT alphabet and the four-letter alphabet; the dashed line represents a random sequence.
(b) Same as (a) with solid lines depicting nonlinear fit.

To apply the concept of the Hurst exponent in DNA
sequences (or any symbol sequence in general), we map the
nucleotides (symbols) to numbers. For the two-letter alphabets
we present here the calculation for the AG-CT grouping but
similar calculations can be conducted for the AT-CG one. The
mapping takes the form

(A or G) → 0,
(28)

(C or T) → 1.

Thus, the symbol sequence turns into a corresponding
numerical sequence, which carries all the information on the
position of symbols. H is then directly calculated from the
numerical series and is a significant measure which expresses
the tendency of symbols to repeat themselves (persistence) or
to alternate (antipersistence) down the sequence.

The calculation of the Hurst exponent is based on the
computation of the range R(n) between the maximum and
the minimum cumulative values as one advances along the
numerical sequence of size n, for various values of n.
Cumulative values are essential in the H estimation because
they keep track of the tendencies along the sequence. One then
needs to rescale R(n) by the standard deviation S(n):

S(n) =
√√√√1

n

n∑
i=1

(xi − 〈x〉)2 (29)

in order to obtain the rescaled range. Once the rescaled range
R(n)/S(n) is calculated, it is averaged over many sequences
(configurations) of the same length n:

E(n) =
〈
R(n)

S(n)

〉
confs

. (30)

The Hurst exponent is then defined as

E(n) = cnH (31)

and is computed from the slope of E(n) versus n in a double
logarithmic scale. When the sequence is characterized by
fractality, with fractal dimension D, it can be shown that
H = 2 − D, where 1 < D < 2.

In Fig. 8, the rescaled ranges E(n) are plotted as a function
of n for the working contig N_011387 of chromosome 20
(solid line), the random sequence (dotted line), and the model
DNA (stars) which will be discussed in the following section.
The value calculated for the Hurst exponent is H = 0.6145
and is clearly distinct from that of the random sequence with
the same letter frequency as the data. Calculations of the
Hurst exponent in other human contigs give very similar H

values. Values of H > 0.5 indicate persistence of the same
symbols along the sequence, or to put it differently, clustering
of similar nucleotides. This effect is a cause of correlations and
can reflect the well known existence of poly(A) and poly(T)
(in the complementary chain) motifs in the primary genomic
DNA sequences that give rise to the corresponding poly(A)
signals in mRNA [38]. Another source of the clustering of
similar nucleotides is the Alu repeats [51,52] in the human
genome which are also known to be associated with poly(A)
sequences [39]. In addition, noncoding gene-poor (desert)
regions are known to be rich in A and T inducing clustering of
these symbols, while CpG-rich regions (isochores) are rich in
genes and induce lower scale clustering [53–57].
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FIG. 8. The rescaled range E(n) as a function of the sequence
size n, for the calculation of the Hurst exponent H .

052105-11



A. PROVATA, C. NICOLIS, AND G. NICOLIS PHYSICAL REVIEW E 89, 052105 (2014)

100 101 102

distance
10-8

10-6

10-4

10-2

100

E
xi

t d
is

ta
nc

e 
di

st
ri

bu
tio

n

Natural DNA
Artificial DNA

(a)

100 101 102 103

distance
10-8

10-6

10-4

10-2

100

E
xi

t d
is

ta
nc

e 
di

st
ri

bu
tio

n

Natural DNA
Artificial DNA

(b)

FIG. 9. (Color online) Exit distance distributions for natural (solid black lines) and artificial DNA (red dashed line): (a) four-letter alphabet,
A state; (b) two-letter alphabet, AG state (purine).

VII. A MODEL DNA

DNA, a complex multicomponent structure which has
evolved during billions of years in close contact with an
ever-changing environment, can not be described or con-
structed based on a closed functional expression with a
limited number of parameters. Statistical constructive methods
or methods based on chaotic dynamics have been used
since the early 1990s to create long nucleotide sequences
with statistical properties mimicking those of specific DNA
molecules [11,13,58–62]. All these attempts predict well some
of the sequence properties but they fail in others and one needs
to add an increasing number of parameters to probe into the
structure’s local details, even from the statistical point of view.
In this section, we propose a “null” model of DNA based on
a global statistical construction method. The method allows
us to generate two- and four-letter sequences with statistical
properties as close as possible to the ones of the original DNA
data, on the basis of the exit distance distribution of the DNA
sequences described in Sec. VI.

The construction method is known as “Monte Carlo
rejection sampling,” or simply rejection sampling, and dates
back to von Neumann. Having calculated the exit distance
distributions for the segments of all symbols in the natural
DNA sequence, we use the rejection sampling method to
create an equivalent model series. For simplicity, the method
is described in the two-letter AG-CT alphabet and is easily
extendable to the AT-CG and to the four-letter ones:

(1) Define first the initial symbol as an AG or CT, either
randomly or as dictated by the contig sequence.

(2) Select an integer random number between [1,Nmax
AG ] or

[1,Nmax
CT ] depending on whether a purine (AG) or a pyrimidine

(CT) segment is to be created. (Nmax
AG and Nmax

CT are the
maximum numbers of juxtaposed purines or pyrimidines
which have been observed in the natural contig.) Call the
selected number n.

(3) Choose a second random number r ∈ [0,1] and com-
pare it to the value of the exit distance distribution qAG,n or
qCT,n depending on the current state on the chain.

(4) If r � qAG,n (or r � qCT,n), then the sequence is
extended by n units of purine (or pyrimidine).

(5) The algorithm returns to step 2 in order to make
alternating additions of purine and pyrimidine clusters. More
specifically, we always switch symbols when the algorithm
passes from step 5 to step 2.

(6) The algorithm stops when the size of the artificially
constructed sequence is equal to the size of the natural DNA
contig.

By construction, the artificial sequences created with the
rejection sampling method produce perfectly the exit distance
distributions of the natural sequence. They possess the natural
sequence’s statistical properties, except those related to spatial
arrangement of the clusters, as the bps clusters are placed in a
random fashion. In particular, exit from a given state implies
automatically entrance to the complementary state in the two-
letter alphabet. The situation is different in the four-letter case.
Here, one more assumption needs to be made regarding the
alternation between the four symbols. Our procedure is based
on the transition probabilities wij between the different letters
as were presented in Table I and implies thus the assumption
that higher order transition probabilities are not accounted for
at this stage.

In Fig. 9, the exit distance distributions for the A symbols
(four-letter alphabet) and the AG coarse-grained symbol
(two-letter alphabet) are shown, both for the original and
the artificial model-based DNA sequences; similar plots are
obtained for the other symbols. As the construction was based
on the reproduction of the exit distances, the native and
model distributions are statistically identical by construction
in the case of the two-letter alphabet [Fig. 9(b)], with small
differences in the tails of the distribution attributed to the
finite size of the sequences. The differences are nontrivial
in the case of the four-letter alphabet [Fig. 9(a)], and this is
attributed to the use of wij ’s which account only for the pair
correlations, while for the juxtaposition of segments of size n,
higher order correlations (of range up to n) need to be taken into
account.
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In Sec. V, Fig. 2, the information transfer I between a
sequence and its shifts was shown, both for the original and
for the model-generated sequences. Both sequences show
the same degree of information transfer in first and second
neighbor positions. However, for more distant positions,
the information transfer in the model-generated sequence
undergoes an abrupt decay as compared with the natural DNA
sequence where the information transfer persists for hundreds
of units. This difference reflects the functional role of natural
DNA sequence, as opposed to the statistical character of the
artificial DNA. The nucleotides in a natural sequence need
to control the information about neighboring positions since
what dictates their functionality is their precise (not statistical)
juxtaposition. In particular, information flow in decades of bps
relates to the turn of the helix, while information flow in a few
hundreds of bps is plausible since these are typical sizes for
coding regions and for repetitive elements.

In a similar vein, the analog analysis shows that the
error values as obtained from the model lie closer to the
saturation level than those obtained from the natural DNA
as depicted in Fig. 7. Interestingly, the Hamming and modified
Hamming distances between the natural and the model
sequences equal to 0.7444 and 0.6222, respectively, and are
close to the values associated with distances between random
sequences.

Finally, in Sec. VI, Fig. 8, the Hurst exponent H is
depicted both for the natural (solid line) and for the model
sequence (stars). By its nature, H is a nonlinear measure
which takes into account size correlations of all orders and
deals simultaneously with all segment sizes. As can be seen
from the figure, the curves E(n) for the natural and the model
sequences are practically indistinguishable and the values of H

are very close. This last result is very interesting and indicates
that although the model fails to reproduce the quantities
which characterize the DNA sequences pointwise (such as
the Hamming distances and information transfer between the
sequence and its nearest shifts), it succeeds in reproducing
global nonlinear characteristics, such as the Hurst exponent
and the details of the distributions.

VIII. CONCLUSIONS

In this study, the structure of global human chromosomal
sequences has been analyzed using ideas and tools from
nonlinear dynamics, information and complexity theories, and
nonequilibrium statistical mechanics. Multiple analyses have
been performed on the DNA data and compared with symbol
sequences with two- and four-letter alphabets produced by
different stochastic processes. In particular, we have shown
that in the four-letter alphabet, DNA data exhibit spatial
asymmetry and suggested on these grounds that the chro-
mosomes can be viewed as out-of-equilibrium structures. We

have established a connection between asymmetry and the
processing of information along DNA sequences, using a
series of entropylike quantities. We have introduced the exit
and recurrence distance distributions, two further indicators of
the complexity underlying the sequences, whose evaluation
revealed a number of interesting features of their global
structure, such as the generation of long-range correlations.
Finally, we have designed an algorithm generating sequences
that share the statistical properties of natural DNA, local as
well as global, other than those related to spatial correlations,
on the sole basis of the exit distance distribution. The results
reported pertain mostly to human chromosome 20. Other
chromosomes have been tested and shown to lead to similar
conclusions.

It is worth stressing that while in the four-letter alphabet
asymmetry coexists with long-range correlations, it can not be
regarded as a prerequisite in the most general case. In fact, in
the two-letter alphabets considered in this work, the sequences
displayed reversibility (in the sense of detailed balance) for all
practical purposes but were still exhibiting clear cut long-range
correlations. Analogous situations are encountered in dynam-
ical systems theory. For instance, autonomous Hamiltonian
(and thus time-reversible) systems operating in the regime of
weak chaos referred to as stochastic web give rise to anomalous
diffusion indicative of the presence of long-range correlations
in time [63,64].

The approach initiated in this work opens some interesting
and worth-exploring perspectives. A first line of approach
would be to apply the ideas of asymmetry, irreversibility, and
information processing considered here in a global perspective
to particular DNA building blocks such as coding DNA,
noncoding DNA, repeats, etc. Another case to consider are
higher eukaryotes, whose genomes share with human genome
the existence of genes separated by long noncoding regions
containing a high concentration of repeats. Similarly, in the
spirit of comparative genomics, it would be interesting to apply
the ideas developed here on organisms with intrinsically differ-
ent genomic structure such as prokaryotes versus eukaryotes.

Finally, a quantitative comparison between the local and
global statistical properties of the human genome derived
in this work and those of the genome of higher mammals
and especially of primates could lead to striking evolutionary
insights.
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