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Relation between the psychological and thermodynamic arrows of time
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In this paper we lay out an argument that generically the psychological arrow of time should align with the
thermodynamic arrow of time where that arrow is well defined. This argument applies to any physical system
that can act as a memory, in the sense of preserving a record of the state of some other system. This result follows
from two principles: the robustness of the thermodynamic arrow of time to small perturbations in the state, and
the principle that a memory should not have to be fine-tuned to match the state of the system being recorded.
This argument applies even if the memory system itself is completely reversible and nondissipative. We make the
argument with a paradigmatic system, and then formulate it more broadly for any system that can be considered
a memory. We illustrate these principles for a few other example systems and compare our criteria to earlier
treatments of this problem.
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I. INTRODUCTION

The question of why the future is distinguished from the
past has been of interest ever since the nineteenth century,
when physicists began to explore the fact that the equations
governing dynamics are invariant under time reversal, while
our environment obviously is not. In modern physics, we say
that any local, Lorentz invariant quantum field theory with
positive energy is invariant under time reversal, if you also
reflect in space, and interchange particles and antiparticles;
together those operations generate the so-called CPT transfor-
mation. Though we now know that C and P can sometimes be
violated, in most practical applications, those violations play
no role, and so the dynamics will be invariant under T.

Despite the interchangeability of past and future with
respect to the laws of microscopic physics, we humans have
no trouble distinguishing whether time is moving forward or
backward. Smoke rises and disperses from chimneys, but never
gathers and returns; dropped eggs splatter on the floor, but
once dropped they never jump back into their shell. This time
asymmetry can be understood as a result of the second law
of thermodynamics: it follows from the equations of physics
governing time evolution that if a system is confined to a small
region of phase space at some time, then with virtual (but not
total) certainty it will occupy a much larger region of phase
space at other times. The observed asymmetry of past and
future can therefore arise due to a boundary condition that, in
one direction of time, near the big bang, the universe was in
a state of low entropy. Given that situation, we can define the
“past” of any given moment as those times that are closer to
the big bang, when the entropy of the universe was lower, and
the future as those times that are further from the big bang,
and in which the entropy of the universe is higher. This is the
“thermodynamic arrow of time.”
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Beside watching whether eggs are splattering into messes
or cleaning themselves up, there is another way we can
define a direction in time: we remember the past, but not
the future. From the point of view of human psychology, this
is perhaps the key to our feeling for past and future. After
all, though it would cause raised eyebrows if we observed
smoke retreating into chimneys, most of us would be far more
surprised if a memory of that chimney turned out to reflect
the chimney’s future state rather than its past. Because of this,
physicists sometimes refer to the direction of our memory
as the “psychological arrow of time” (see, for instance,
Refs. [1,2]).

The thermodynamic and psychological arrows of time
obviously agree, but why should they? If the equations that
govern a system are agnostic with regard to which way is
the future, then why do systems (memories) arise in nature
that reflect the state of other systems (the systems being
remembered) in one direction of time, but not the other?
Why do streaks in mica correlate with cosmic rays that
traversed them in the past (as defined by the thermodynamic
arrow) but not the future? Why do we see contrails from
planes past, but not planes yet to come? Why do we
remember the thermodynamic past, but not the thermodynamic
future?

Imagine that our universe were in a state such that, at some
time T in the future (i.e., further in time from the big bang
than we are today), the entropy were to start to decrease. It is
extremely unlikely that we would be in such a state, but it does
not violate the fundamental laws of physics. Then for times
greater than T , entropy would decrease with time rather than
increasing. For t > T would people the world over marvel at
chimneys sucking back plumes of smoke, and broken eggs
jumping into their shells, or would the psychological arrow of
time also reverse itself, with the result that we perceived time
to run in the reverse direction, and the second law still held
true? Our answer is the latter. In what follows, we will show
that the psychological and thermodynamic arrows must point
in the same direction: the psychological arrow follows from
the thermodynamic one.
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That the psychological and thermodynamic arrows must
align has in the past been argued on the basis of Landauer’s
principle [3], which states that the total entropy of a closed
system must increase upon the erasure or reinitialization of
a memory record. According to that argument [1,2,4–7] a
realistic memory must allow for the erasure of records. Erasure,
Landauer showed, is in essence like the smashing of an egg:
it is a process whose time reversal violates the second law. A
memory, in that view, must therefore be a dissipative, hence
irreversible, system, and so to remember the future would be
a feat akin to orchestrating the remnants of a smashed egg to
jump back and reassemble inside its shell. We will argue, on
the other hand, that the principle that the psychological and
thermodynamic arrows of time must align actually arises from
a combination of the fundamental microscopic laws of physics
and a reasonable requirement of what it means for a system to
function as a memory. Therefore, the two arrows must align
even for systems that are time reversible.

In Sec. II we present a simple paradigm for a memory
embedded in a system with a well-defined thermodynamic
arrow of time. The dynamics of this system, including the
memory, are reversible, but we argue that the direction of
memory must still match the thermodynamic arrow of time.
In Sec. III we give a more precise definition of what it
means for a system to act as a memory and give a broader
argument that the direction of memory must align with the
arrow of time. In Sec. IV we examine a few other examples
of systems that can function as memories and argue for
generic differences between memory (i.e., correlations with
the past) and anticipation or prediction (i.e., correlations with
the future). In Sec. V we compare our argument to other takes
on this problem and discuss their points of commonality, and
in Sec. VI we conclude.

II. A SIMPLE PARADIGM

Consider the system depicted in Fig. 1. A sealed vessel
is divided into two chambers, separated by a barrier with a
single narrow gap. Within the vessel are N elastic particles
that can collide with each other or the walls but are otherwise
free. In the gap between chambers is a rotor: a reversible
counter or turnstile that rotates one position clockwise or
counterclockwise as a particle moves left or right, respectively.
This system should be considered closed—it is not in contact

FIG. 1. A reversible system with a well-defined arrow of time
and a memory.

with a thermal bath—and all the dynamics are reversible. Nev-
ertheless, generically this system can exhibit a thermodynamic
arrow of time if at some early time, ti, there is an imbalance of
particles between the two chambers, as is depicted in the figure.
From almost all states with such an imbalance, the system will
tend to evolve toward a state in which the number of particles
in the two chambers are roughly equal. A thermodynamic
arrow of time is defined for systems in which coarse-grained
variables, such as, in this case, the total number of particles
on each side, exhibit a preferential direction of evolution. For
times greater than ti, therefore, the thermodynamic arrow of
time of this system will point toward increasing times, which
we will call the future.

The rotor in this system can function as a memory that
records the net number of particles that crossed from the left
chamber to the right. Suppose that the rotor has M positions
labeled 0, . . . ,M − 1, and that (for simplicity) the number of
distinct positions M is much greater than the average number
of particles that will cross between t = ti and a later time t = tf .
We let r(t) be a coarse-grained variable that takes the values
0, . . . ,M − 1 corresponding to the rotor position at time t . We
also assume that the number of particles is sufficiently small
(compared to the size of the vessel) that the probability of more
than one particle crossing at the same time is negligibly small,
and that the average energy of the particles is sufficiently low
that the possibility of fast particles that might transfer enough
momentum to make the rotor spin (rather than just shifting one
position) can also be neglected.

We “read out” the record of the net passing of particles
between time ti and a time t by using a simple function

fread(r(t)) = r(t) − rref mod M, (1)

where rref is the setting of the rotor at the reference time,
rref = r(ti). This read-out function provides a memory of the
past.

Because this whole system is deterministic and reversible,
it seems as if we could equally well choose a reference time
tf > t and interpret the rotor as a memory of the future by
defining a different “read-out” function:

f ′
read(r(t)) = r ′

ref − r(t) mod M, (2)

where r ′
ref = r(tf). At times t < tf , we can now interpret the

rotor as a memory of the net number of particles that will cross
from left to right between now and the later time tf . Our simple
memory seems to have become a memory of the future.

One might object to describing the rotor as a memory
of the future on the grounds that since tf > t we would not
generally know, at time t , the value of r ′

ref , and hence could not
use the rotor as described in (2). That argument depends on
the implicit assumption that “time flows,” which immediately
implies that we cannot remember the future because “it hasn’t
happened yet.” That naive view is unsatisfactory, because the
microscopic dynamics are reversible and give no privileged
role to either direction in time. There is actually no a priori
reason that a rotor coupled as we’ve described should not
reflect the state of the particles at future times, just as it does for
the past. In fact, any system with reversible dynamics encodes
both past and future within in it, as Laplace [8] pointed out
over two centuries ago:
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We may regard the present state of the universe as the effect
of its past and the cause of its future. An intellect which at a
certain moment would know all forces that set nature in motion,
and all positions of all items of which nature is composed, if
this intellect were also vast enough to submit these data to
analysis, it would embrace in a single formula the movements
of the greatest bodies of the universe and those of the tiniest
atom; for such an intellect nothing would be uncertain and the
future just like the past would be present before its eyes.

Our key observation is that, despite the fact that the
state of a classical system encodes its time behavior in both
directions, when the system being remembered has a well-
defined thermodynamic arrow of time, the rise of correlations
between the system and memory is not symmetric in both
directions. Perturbing the state of the system at a given time
will alter its “future” behavior, but this does not prevent
accurate correlations developing with the memory, due to
their interactions. Such a memory will record the “past” of
the system. Different perturbations of the system will result in
different records.

By contrast, for a memory to record the “future” of the
system, the states of the system and memory must be correlated
“before” they interact (if they ever do). Perturbing the state of
the system (but not the memory) will therefore in general cause
the memory no longer to reflect the system’s future behavior.
Because of this asymmetry, we can rule out the possibility of a
memory recording its thermodynamic future, because any such
memory could remember only one possible configuration of
that system. If the system changed its state even minutely, the
memory would no longer create an accurate record. We call
the requirement that a memory be capable of remembering
more than one fixed state of a system generality.

Imagine you have a digital camera that contains a chip
capable of recording what the camera’s sensors pick up, but
only for one particular scene. Suppose, further, that every time
you change any aspect of the scene, you have to insert a
new chip designed specifically to record that precise scene.
Heuristically, one would think that a chip of that sort could
hardly be called a memory, for a memory that must be
fine-tuned based on the state of the system being remembered
is hardly of any use. But there is another, more fundamental
reason to require generality: it allows us to rule out, as
memories, systems that are correlated with other systems but
are not causally related.

Consider the system we described above. We can, in theory,
calculate the state of the particles at all times, and hence,
in place of the rotor, we could have set up an independent
meter that is not coupled to the particles at all, but which we
have designed (based on our calculation) to always exhibit the
correct number of net particles crossing between the chambers
as determined by our calculation. A meter such as that, which
we set up to reflect the particle crossings, but which does not
interact with the particles in any way, should not be considered
a memory, yet would have the same correlations with the
system of particles as the rotor. The key difference between
the two is that a small alteration in the state of the particle
system would not destroy their correlation with the rotor,
whereas it would destroy the correlation with the independent
meter we set up. Unless we redid our calculations and made
a compensating alteration in the meter, it would no longer

accurately reflect the passage of the particles. Correlated
systems such as the meter are excluded from the definition
of memories by the principle of generality: a memory should
be capable of remembering more than one thing.

If we apply this idea to our rotor, we immediately see that
there is a sharp distinction between the two functions fread(r(t))
and f ′

read(r(t)), in (1) and (2), that describe the rotor’s read-out.
To see this, let us begin by supposing, in the case of

fread(r(t)), that we slightly alter the state of the particles (but
not the rotor) at ti. We alter the coordinates and momenta
of the particles by a small amount, but such that no particle
changes position from one side of the barrier to the other,
or, more precisely, so that the coarse-grained variable r(ti)
remains unchanged. If we then let the system propagate from
ti until t under the action of the same Hamiltonian as in the
unperturbed case, the system will in general exhibit the same
arrow of time, and though its time evolution will be altered,
the read-out function in (1) will remain an accurate reflection
of the past. In this case, therefore, the rotor functions as a
memory of the past for a large family of states that are in some
sense “near” the unperturbed state we discussed above.

Now let’s consider the other case. In this case, when we look
for a family of “nearby” states for which the rotor continues to
function as a memory of the future, we find that, generically,
we must reject them all because they do not preserve the arrow
of time; that is, even the most minute generic changes in the
coordinates of the system at tf , when propagated back to earlier
times will result in a system with a more equal distribution of
particles than at tf , rather than a more lopsided distribution.

The unperturbed system, due to our assumption of the
existence of the thermodynamic arrow of time, evolves forward
in time from a more lopsided distribution of particles at ti to
a more evenly distributed system at tf ; the time reverse of that
evolution will therefore propagate the system from a more even
distribution to a less even one. But that state of the unperturbed
system at tf was, due to the way it arose, a very special state,
and one that is unstable with respect to perturbation. A system
of particles in a generic state at a time t will lead to a state
with a more even distribution of particles at both later and
earlier times. Hence, when it comes to remembering the future,
there is no family of “nearby” states that is consistent with the
existence of an arrow of time, and hence there are no nearby
states for which the rotor continues to function as a memory
of the future. As a result, a rotor system that remembers the
thermodynamic future would have to be custom built for every
possible state; it cannot satisfy generality.

These principles can be readily generalized beyond this
simple system, and we do so in the following section. The
conclusion is clear: generically, we expect the “psychological
arrow of time” (broadly defined for any system that can act as
a “memory”) to align with the thermodynamic arrow of time in
any system where that thermodynamic arrow is well defined.

III. WHAT IS A MEMORY?

It is difficult to come up with a simple criterion that is
general enough to capture every example of a system that can
function as a memory. However, we will propose a definition
that seems to apply to many examples and that satisfies the
criterion of “generality” discussed in the previous section.
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Suppose we can divide the world into two subsystems: the
record (or memory) R, whose state is given by a vector r in
some phase space R, and the system S (effectively, whatever
is being recorded plus everything else), whose state is given
by a vector s in some phase space S. We will assume for
the moment that the system and record are classical and
completely reversible. The system and record evolve together.
We can determine (in principle) the values of s(t) and r(t) for
all times t by specifying the values (s0,r0) at any one time T .
At the moment, we make no assumptions about whether T is
in the past of future of any of the other relevant times (e.g.,
tread, t1, and t2 in the conditions below).

For the subsystem R to serve as a memory, it must satisfy
the following requirements:

(1) We can define two vectorial functions fR(r(t)) and
fS({s(t)},t ∈ I ), where fR is a function of r at some time,
and fS is a function of s over some interval or range of times I .

(2) There is some readout time tread and interval I = [t1,t2]
such that fR(r(tread)) ≈ fS({s(t)},t ∈ I ); that is, at the time tread

the state of the record reflects the state of the system at some
time, or range of times.

(3) Generality. Suppose that we change the state of the
system s0 at T while keeping the state of the record subsystem
r0 fixed. We require that there be some nontrivial set of possible
s0s such that condition 2 above remains true, without changing
the definitions of fR or fS , and without changing the time tread

or the interval I . We also require that the functions fR(s(tr ))
and fS({s(t)},t ∈ I ) are not constant over this set of possible
s0s.

(4) Thermodynamic robustness. The read-out and coarse-
graining functions fR(r(t)) and fS({s(t)},t ∈ I ) must be robust
under small perturbations of the microscopic degrees of
freedom (of both the system and the memory) at T . That is, if
r(T ) ≈ r0 then fR(r(tread)) ≈ fS({s(t)},t ∈ I ).

Let us examine these conditions one at a time. In condi-
tion 1, the function fR is a read-out function. It specifies how
the record is encoded in the microscopic degrees of freedom
of the subsystem R. Similarly, fS extracts whatever property
of the system S is being stored. In general, these functions will
involve a great deal of coarse-graining over the fine details of
their respective subsystems.

Condition 2 gives the obvious requirement that the read-out
of the record should indeed correspond to whatever quantity
is supposed to be recorded. In the condition here, we have re-
quired only that this correspondence be approximate. Another
reasonable way of defining this would be to require that the two
functions correspond for many states s0, but not necessarily all.
Note also that we have treated a memory that is read at a single
moment of time. It is straightforward, however, to extend this
definition to memories that operate over a range of times, and
even to memories whose records evolve as they interact with
the system. Here we consider only the simplest case.

We can see how the rotor system in the previous section
satisfies conditions 1 and 2. The function fR(r) is the read-out
function fread(r). We can define the corresponding variable fS
straightforwardly. Let N (s) be the number of particles to the
right of the partition when the underlying variables are s. (This
is a simple example of a coarse-graining.) Then fS({s(t)},I ) is
simply N (s(t)) − N (s(ti)) in the case of remembering the past,
and N (s(tf ))–N (s(t)) in the case of remembering the future.

Condition 3 embodies the assumption of generality. In order
to consider R a memory, it must be capable of recording
different values for different states. The requirement that
fR and fS are not constant guarantees in addition that the
correspondence between fR and fS is nontrivial; that is, we
exclude the possibility that fR is effectively fixed, and s0 is
restricted to a set with some constant property. Condition 3
thus requires that the correlation between S and R is not due
to fine-tuning. That is, the system and memory must actually
interact, and the memory must encode some information
about the system, rather than both being correlated with some
common cause. A broken clock may be right twice per day,
and if you look at it at just the right time, you may be impressed
by its accuracy; but at most times such a clock is not helpful.

When we applied condition 3 to the rotor system, we chose
T to be the reference time, ti (in the case of remembering
the past). That is because if T were chosen to be any other
time, generic perturbations to S at T would alter the number
of particles on either side of the box at ti , and hence the
function fread(r) would have become invalid. As a result, in
that example, in order for the same function fread(r) to work
for different s0s, we chose the reference time T to match the
reference time in Eq. (1).

Condition 4 is a reflection of our assumption that there exist
a thermodynamic arrow of time. The question of whether a
memory can record the future makes no sense otherwise, since
it is the thermodynamic arrow that we use to define past and
future. Condition 4 guarantees this. Consider the first case of
the rotor system and memory, for which Condition 3 required
that t = T = ti . Suppose that, at that time, the system is in
a configuration like that pictured, with far more particles on
the left side of the partition. Almost all such initial conditions
will evolve to a state with a roughly equal number of particles
in each chamber. In particular, for times greater than ti—the
times that interest us here—the thermodynamic arrow of time
of the system points toward increasing times, which we have
called the future.

We should note that, generically, a state with an uneven
distribution of particles between the two chambers will evolve
towards a more even distribution in both directions of time. A
way to see this is to imagine a system in thermal equilibrium
that undergoes a fluctuation towards a more uneven distribu-
tion. Such fluctuations will tend to reverse themselves after
a short time, and these fluctuations away from equilibrium,
and returns, appear time symmetric. After such a fluctuation,
the system will exhibit a weak, short-term arrow of time. But
a fluctuation large enough to produce a strong, long-term,
universal arrow of time that would be extraordinarily unlikely.
Such a configuration strongly suggests a boundary condition
with extremely low entropy.

Though perturbing the system as we just described will
generally not destroy the thermodynamic arrow of time, there
are very special conditions for which such a perturbation would
have that effect. For example, consider a system which, as
time increases from ti , evolves into a state where the numbers
of particles are more unequal. This is not a highly intuitive
choice, but in fact we can find such conditions (in principle)
by following the usual intuitive evolution and then “running
the film backwards.” Because the dynamics are reversible,
this is a legal (albeit unlikely) evolution. We denote this
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time-reversed initial condition s̄T , where we use the bar to
denote the time-reversed version of the phase-space vector
s(T ).

Initial conditions s̄T are analogous to states in which
shattered tea cups fly back together. Starting from s̄T , the
distribution of particles between the two chambers becomes
increasingly more unequal, rather than less. This system
exhibits an arrow of time, but the arrow for such a system
is not robust: almost all states except for a tiny neighborhood
of s̄T will not exhibit this behavior; and the longer we want this
unintuitive behavior to persist, the smaller this neighborhood
must be. Even an initial condition s̄′

T that is very close to s̄T will
tend to exhibit the generic behavior, in which the distribution
of particles becomes more rather than less equal.

For the rotor system, condition 3 thus requires that the
reference time T be chosen to coincide with ti or tf , while con-
dition 4 eliminates the latter. T must be an “initial condition”
in the sense of the thermodynamic arrow of time. So if ti is a
time exhibiting a strong deviation from equilibrium (leading to
a well-defined thermodynamic arrow of time in the direction
of increasing t), then T , the interval I = [t1,t2] over which the
system is recorded, and the read-out time tread, must satisfy

ti � T < t1 < t2 < tread.

In other words, even if the memory subsystem is itself a com-
pletely reversible system, its “psychological” arrow of time
must align with the thermodynamic arrow of time. If it does
not, it will not satisfy the generality or robustness requirements
that we have argued must be part of the definition of a memory.

IV. EXAMPLES OF SYSTEMS THAT FUNCTION
AS MEMORIES

Having introduced the concepts underlying our definitions
with the model system in Sec. II, we can now try to apply these
ideas to other examples of systems that function as memories.
While in most cases we cannot exactly specify the readout
and coarse-graining functions fR(r(t)) and fS({s(t)},t ∈ I ), it
is not difficult to argue for the existence of these functions,
nor is it difficult to argue that they satisfy the requirements
specified in Sec. III.

Most obvious examples of memories are synthetic; that
is, they are systems deliberately engineered by humans to
store information of a particular type. We will briefly consider
some canonical examples of this below. But certain naturally
occurring systems also satisfy the definition of a memory
given above. Most of these examples depend on irreversible
processes, so it is not surprising that they align with the usual
thermodynamic arrow of time [1,2,4,5]. But in principle this is
not necessary; reversible systems can also function as memo-
ries, and when they do so, their arrows of time will also align
with the thermodynamic arrow, by the argument in Sec. III.

a. Synthetic memories: computer storage. Given the
ubiquity of modern electronic technology, various kinds of
computer memories are all around us. These include computer
RAM; magnetic storage on hard drives (and, still in a few
applications, magnetic tape); flash memory; and charge-
coupled devices (CCDs) and active-pixel sensors (APSs) in
digital cameras.

If we take as an example a single computer bit, the readout
function fR(r(t)) corresponds to a range of average voltages
across the bit. A “high” range might be on the order of 5 V,
the “low” range close to 0 V. The bit stores an input voltage
that was applied at an earlier time, so fS({s(t)},t ∈ I ) in this
case is also an averaged voltage range. It is clear that these
functions satisfy the requirements in Sec. III: the computer bit
can store either 0 or 1, depending on its input, and no fine
tuning between the input and the bit is necessary. Moreover,
the value of the stored bit is correlated with the input at an
earlier time, not with later inputs, as common sense would
suggest.

b. Reversible and quantum computers. Existing computer
technology is emphatically not reversible: anyone who has
held a laptop computer actually on his or her lap is quickly
aware of how much heat such a computer produces. But it
was argued by Landauer [3] and proven by Bennett [9] that
dissipation is not necessary, in principle, for computation.

Bennett’s proof involved first defining a reversible model
of a Turing machine. A Turing machine is an abstract model of
a computer and has two subsystems that could be considered
memories by the above definition. First, the computer has
a tape (or more generally n tapes), divided into unit cells,
each cell containing one symbol from a finite alphabet. The
“read/write head” of the Turing machine is located at a
particular cell at any given time. Second, the computer has
an internal state, which is one of a finite set of possible
settings. The Turing machine is designed with a transition
rule, or program: given the value at the current tape cell and
the current internal state, the machine replaces the symbol with
a new symbol, moves the head at most one position to the left
or right, and transitions to a new state.

In Bennett’s reversible model, the transition rule is invert-
ible: given the current tape symbol, location, and internal state
it is possible to invert the transition rule and return to the state
of the Turing machine at the previous state. He proved that such
a reversible machine could emulate a standard Turing machine,
at the cost of a relatively small overhead in the amount of tape
used.

From the work of Landauer, such a logically reversible
machine can also be made to be physically reversible.
Moreover, in principal such a machine need not dissipate any
power in order to function.

Of course, in practice even such a reversible memory
generally would be used by first setting it in a standard
starting state. For instance, a string of n reversible bits would
be prepared in the 00 · · · 0 state. They could then reversibly
store n input bits x1x2 · · · xn by being XORed with those bits;
this procedure would simply copy the values x1x2 · · · xn into
the memory. This initialization step would be an irreversible
process.

But in principle this initialization step to 00 · · · 0 is not
necessary. Suppose that the reversible bits started instead in
a general state y1y2 · · · yn. Then, after being XORed with
the input bits x1x2 · · · xn, the memory would be left in the
state (x1 ⊕ y1)(x2 ⊕ y2) · · · (xn ⊕ yn). However, it is still quite
possible to recover the stored bit values simply by redefining
the readout function to take the initial state of the reversible bits
into account. The readout function would be fR(z1z2 · · · zn) =
(z1 ⊕ y1)(z2 ⊕ y2) · · · (zn ⊕ yn), where z1z2 · · · zn is the state
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of the reversible bits at the time of readout. We can see that
this readout function satisfies the requirements of Sec. III:
changing the system being recorded (in this case, the input
bits x1x2 · · · xn) while keeping the initial state of the memory
fixed does not require us to change the readout function fR .

Reversible computation may be of practical interest
for classical computers to reduce the problem of power
dissipation; but it is absolutely vital for quantum computers,
whose unitary operation must be intrinsically reversible. While
our definition in Sec. III probably cannot be applied to quantum
systems without alteration (more on this below), we believe
the general principles requiring that memories align with the
thermodynamic arrow of time will apply to quantum memories
as well.

c. Photographic film. Photographic film is a canonical
example of a synthetic, irreversible system designed (unlike
computer memories) to produce a permanent record. To
produce a photograph requires that the film be prepared in
a very special initial state. This preparation step will clearly
be irreversible. The record is produced by exposing the film to
light, thus driving irreversible chemical reactions. Since both
the preparation step and the recording step involve irreversible
processes, the “arrow of time” associated with this record must
clearly line up with the thermodynamic arrow of time. This
type of irreversible record is used as a paradigm in the work
of Wolpert [4].

d. Tracks in mica and contrails in the stratosphere. The
examples considered so far are all synthetic systems, designed
to record and retrieve information. Of course, naturally
occurring systems can also function as memories. Indeed,
any two systems that interact have to potential to exchange
information about their respective states.

In most cases, however, this information is spread out in
the form of complicated correlations between many degrees
of freedom in a way that makes it impractical to retrieve. Gell-
Mann and Hartle refer to such correlations, perhaps retrievable
in principle but certainly not in practice, as generalized records
[10], to contrast them with the type of synthetic records
described above.

There are at least a few cases, however, where naturally
occurring systems can store information for some length of
time in a form that is robust and not particularly difficult to
retrieve. A classic example is the existence of cosmic ray
and fission product tracks in naturally occurring crystals of
mica [11].

The passage of high-energy particles through regular
crystals of mica disrupts the crystalline structure along the
trajectory of the particle. These tracks can be made visible
by etching the crystal in acid. (In fact, synthetic crystals of
mica have been used as simple particle detectors.) In this case,
both the “preparation of the memory”— that is, the formation
of the crystal—and the recording process are irreversible.
However, the preparation step occurs naturally (attesting to
the nonequilibrium state of the earth’s crust). The read-out
function, i.e., the tracks of disruption, records the number of
high-energy particles and their directions, and perhaps some
information about their energy, but not in general when they
occurred.

e. Ripples in water and other outgoing waves. For com-
pleteness, it would be good to consider a naturally occurring

“memory” system that was also reversible. Most such records
are unfortunately transient in their existence. However, a
familiar phenomenon does illustrate this type of system,
namely, the emission of waves from moving (or reflective)
objects.

The canonical example of this is the spreading of ripples
from a stone tossed into a pond. These ripples are not perfectly
reversible, of course, but dissipation is not essential to their
function. Nor, in principle, does the pond have to be prepared
in an exact state: waves are generically linear and hence could
be separated from a background.

Our own senses make use of sound and light waves to
acquire information about objects outside ourselves. Given
their finite speed of propagation, any wave we intercept is
in reality a record of an earlier event. While in everyday
circumstances, these records are not of long standing, we are
quite capable of seeing light emitted from stars thousands of
years ago, or from other galaxies millions or (with the help of
telescopes) even billions of years ago.

The propagation of waves is generally reversible to a good
or even excellent approximation. In principle, the emission
process is also reversible. Nevertheless, wave emission almost
always exhibits a strong arrow of time. This is because
the universe is far from equilibrium, which in turn is due
to the overall thermodynamic arrow of time arising from the
fact that the universe apparently began in a very low entropy
state.

V. DISCUSSION

A. Memory vs anticipation

As we have pointed out above, it is quite possible for
a system at a given time to be correlated with the state of
another system in their thermodynamic future rather than their
past. We argue that such correlations are inconsistent with
the properties we expect of a “memory,” as defined in Sec. III.
However, even in a system with a well-defined thermodynamic
arrow of time, such correlations can and do arise; we would
term such a correlation with the future state of another system
“anticipation” or “prediction.”

For systems with very regular dynamics the future is highly
predictable; these systems exemplify Laplace’s idea that the
present state reveals the future as well as the past. But even in
less trivial systems, it is possible to anticipate future behavior
up to a point. Such correlations should differ from memories,
however, in a number of respects.

Consider our paradigmatic example from Sec. II. By
counting the net number of particle transitions from the left
half to the right half of the vessel, one can estimate a rough
transition rate between the sides. This, in turn, would allow
one to extrapolate the number of particles on each side in the
future. If the numbers of particles on each side at the reference
time T are NL(T ) and NR(T ), respectively, then we would
project the numbers at some future time t > T to roughly
follow an exponential law:

NL(t) = 1
2 [NL(T )(1 + e−2γ t ) + NR(T )(1 − e−2γ t )],

NR(t) = 1
2 [NL(T )(1 − e−2γ t ) + NR(T )(1 + e−2γ t )].
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The transition rate γ can be estimated from observation.
If we let the system evolve for some length of time �t

and observe n net particle transitions, we would estimate
γ ≈ n/�t[NL(T ) − NR(T )]. We expect, however, that this
estimated rate will not be precisely accurate, and of course even
if it were, the actual behavior will deviate from the expectation.
Thus, we expect the accuracy of this future correlation to fall
off exponentially, while the accuracy of the past correlation
remains precise. (Of course, at very long times the system
will approach equilibrium, with a roughly equal distribution
of particles between the two chambers.)

We can compare this difference to our experience of the real
world as well. Information that is stored in a robust record can
be retrieved very well, even after a long period of time; and
how well it can be retrieved is not dependent on the regularity
of the system. For example, we know many details of the
last day of Julius Caesar’s life, more than 2000 years later.
But we are unable to predict in any detail the days of the
most famous of our current citizens even a short time into the
future.

B. When is “Now?”

Our psychological perception of time as “flowing” implies
that there is a special time—the present, or “now”— at which
events in the future undergo a profound transition and become
events in the past. This feeling is so fundamental that it is
difficult to conceive of any other way that time could be
experienced. And yet, the physical description of systems
evolving in time does not include this notion of “now.” All
times are treated with the same status; none is singled out;
and no physical principle seems to imply that time must be
experienced in this way.

The modern interpretation of this dividing line between the
past and the future is that it is psychological in origin. At
all moments, we have memories of the past, but not of the
future, which makes a profound difference to how we regard
past and future. As argued in the previous section, records
of the past can remain robust and reliable for long periods
with little loss, while our ability to anticipate the future falls
off extremely rapidly. Psychologically we make a very sharp
distinction between these two processes, which is no doubt an
adaptive trait.

However, the notion of “now” as an idealized point between
the past and the future does not really hold up to scrutiny [5].
The process of registering and recording a memory will in
general take some characteristic time, so that our conscious
impression of when something happens will in general lag the
actual event by some amount. Our brain does its best to stitch
all its sense impressions together into a seamless whole, so we
are in general not aware of any lag.

Moreover, we have a very good ability to anticipate highly
regular events in the immediate future. Anyone who has
ever caught a ball or stepped onto a moving escalator has
experienced this: to catch, we reach not for where the ball is, but
where it will be. We can therefore think of the moment “now”
as actually being somewhat spread out in time, with some lag
into the (idealized) past and possibly a small extension into
the (idealized) future.

C. Conclusions

One of our deepest observations about nature is that
we remember the past, but not the future: that is, that the
psychological arrow of time aligns with the thermodynamic
arrow of time. In fact, this phenomenon is so deeply embedded
in our experience that it took almost all of history even to
recognize that there was a question to be answered.

Our modern understanding of the arrow of time recognizes
its origins in an unusual, low-entropy state of the universe in
the far past. This leads to the thermodynamic arrow of time,
exhibited by irreversible systems, which includes almost all
systems of sufficient size and complexity. Since almost all
physical systems that can function as memories or records
are themselves irreversible, either in their dynamics, or in the
requirement of an irreversible preparation step, or both, it is
perhaps not surprising that they exhibit an arrow of time that
aligns with the overall thermodynamic arrow.

In this paper, however, we have argued that even completely
reversible systems that can function as memories must exhibit
an arrow of time that aligns with the usual thermodynamic
one. This arises purely from a reasonable notion of what
it means for a system to be a memory: that it must exhibit
correlations with another system; that these correlations must
arise not from careful fine-tuning of the system and memory
together, but from interactions between them; and that these
correlations must be robust to small perturbations in the
system and memory states. A memory is only a memory
if it has the potential to remember more than one thing.
We illustrated this argument with a simple paradigmatic
system and then pointed out how it works in a variety of
examples.

There is a very important open question left in this work.
The models we have chiefly focused on, and our definition
of a memory, take an implicitly classical view of the world:
we assume that the state of the universe can be factorized, so
that the system and memory can each be treated as having a
definite well-defined state at any given time. But, of course,
the universe is actually quantum mechanical. This definition
cannot be applied directly to quantum systems, because of the
phenomenon of entanglement, which implies that the system
and memory states cannot necessarily be factored at all times.
Quantum effects, for example, may alter what we mean by a
thermodynamic arrow of time [12]. We believe that the essence
of this argument will still hold for quantum systems as well
as classical ones; but the technical details of how to make this
argument precise are work for the future.

In the meanwhile, we believe that our current work validates
our intuition about the arrow of time and gives insight into
what it means to remember the past, and to dream about the
future.
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