RAPID COMMUNICATIONS

PHYSICAL REVIEW E 89, 050902(R) (2014)

Quantifying uncertainty in state and parameter estimation

Ulrich Parlitz, Jan Schumann-Bischoff, and Stefan Luther
Max Planck Institute for Dynamics and Self-Organization Am Faf3berg 17, 37077 Gottingen, Germany
and Institute for Nonlinear Dynamics, Georg-August-Universitdt Gottingen, Am Fafsberg 17, 37077 Gottingen, Germany
(Received 20 November 2013; published 15 May 2014)

Observability of state variables and parameters of a dynamical system from an observed time series is analyzed
and quantified by means of the Jacobian matrix of the delay coordinates map. For each state variable and each
parameter to be estimated, a measure of uncertainty is introduced depending on the current state and parameter
values, which allows us to identify regions in state and parameter space where the specific unknown quantity
can(not) be estimated from a given time series. The method is demonstrated using the Ikeda map and the

Hindmarsh-Rose model.
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In physics and other fields of science including quantitative
biology, life sciences, and climatology, mathematical models
play a crucial role for understanding and predicting dynamical
processes. In the following we assume that such a model
exists and is known. But even in the ideal case of a model
obtained from fundamental physical laws this model typically
contains some parameters whose values have to be determined
depending on the physical context. Furthermore, not all
state variables of the model may be easily experimentally
accessible. To estimate the unknown parameters and state
variables you may either devise specific experiments focusing
on the quantity of interest or you can try to extract the required
information from a measured time series of the process to
be modeled. Technically, several estimation methods exist,
including observer or synchronization schemes [1-6], particle
filters [7], a path integral formalism [8,9], or optimization
based algorithms [10—12]. However, these methods may fail
and at this point the question arises whether the failure
is due to the specific algorithm used or due to a lack of
information in the available time series. In this article we
address the second option and present a general approach
for answering the question whether a given time series
enables the estimation of parameters or variables of interest
in a given model. The mathematical tool that is used to
answer this question is delay reconstruction [13—17] and
the basic criterion for local observability is the rank of the
Jacobian matrix of the delay coordinates map. This approach
was motivated by work of Letellier, Aguirre, and Maquet
[18-20] who studied the question which state variables can be
estimated or observed from a given time series using derivative
coordinates. Observability of (continuous) dynamical systems
is also a major issue in control theory [21-23] and nonlinear
time series analysis [24]. Here we consider discrete time and
delay coordinates, and we introduce a quantitative measure
of uncertainty, which in general varies on the attractor
and thus indicates where in state space estimation is more
efficient and less error prone. Furthermore, we focus not
only on state variables but also on observability of model
parameters.

Let’s assume, first, that our model of interest is a M-
dimensional discrete dynamical system,

x(n + 1) = g[x(n),p], 1
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given by an iterated function g depending on the state vector
x(n) = [x1(n), ..., xp(n)] € RM at time n and K parameters
p=(pi1,...,px) € RX. This system generates the times
series {s(n)} with s(n) = h[x(n)] (for n =1, ...,N), where
h denotes a measurement or observation function. The time
series {s(n)} can be used to construct a D-dimensional delay
reconstruction [13-17],

y(n) =[s(n),s(n+1),.....s(n + D — 1)]
= G(x(n),p) € R”, )

providing the delay coordinates map G : RM+K — RP,

To uniquely recover the full state x and the parameters p
from the observations represented by the reconstructed state
y, we require the map G to be smooth and locally invertible.
More precisely, let M + K < D and let (x,p) € U where 4 C
RM+X is a smooth manifold. Then G is locally invertible on
the image G(U/) C RP if the D x (M + K) Jacobian matrix
DG(x,p) has full rank M + K (i.e., G is an immersion [15]).

The map from delay reconstruction space R? to the state
and parameter space R¥*+X is locally given by the (pseudo)
inverse of the Jacobian matrix DG of the delay coordinates
map G, which can be computed using a singular value
decomposition

DG =USV" 3)

where S = diag(oy,...,opm+x) 18 @ (M 4+ K) x (M + K)
diagonal matrix containing the singular values o >
o> 2oysx =20and U=, ... u™M+O] and V =
[vh, ..., vM+E] are orthogonal matrices, represented by
the column vectors u®) € R? and v\) € RM+K | respectively.
VY is the transposed of V coinciding with the inverse
V~! = V", Analogously, U" = U~! and the (pseudo) in-
verse Jacobian matrix reads DG~! = VS~!U" where S~! =
diag(1/o1, ...,1/om+k). Multiplying by U from the right we
obtain DG~'U = VS~! or

. 1 .
DG 'Y = —vV)  (j=1,...,M +K). 4)

9j

In Fig. 1 the transformation of singular vectors Eq. (4)
is illustrated for the case M =2 and K = 0 (no unknown
parameters). The diagram shows how small perturbations of y
in delay reconstruction space result in deviations from x in the
original state space. Most relevant for the local observability of
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FIG. 1. (Color online) The (pseudo) inverse Jacobian matrix
DG~ !(y) maps perturbations of y in delay reconstruction space to
deviations from the state x whose magnitudes depend on the direction
of the perturbation as described by Eq. (4).

the (original) state x is the length of the longest principal axis of
the ellipsoid given by the inverse of the smallest singular value
05 (see Fig. 1). Small singular values correspond to directions
in state space, where it is difficult (or even impossible) to locate
the true state x given a finite precision of the reconstructed state
y. The ratio opmin/0max Of the smallest and the largest singular
value is a measure of observability at the reference state x. By
averaging on the attractor we define (analogously to a similar
definition for derivative coordinates [18,19]) the observability
index

N
Z Tin(X(1)) 5)
= 02 (x(m)

If the perturbations of y are due to normally distributed
measurement noise then they can be described by a symmetric
Gaussian distribution centered at y,

1,2 try—1/e
.. exp|l—F-V'EF-y
0F) = = 2 ] (6)
V(2m)P det(Xy)
where ¥ is the perturbed state, X, = diag(pz, o ,,02) = ,021D

denotes the D x D covariance matrix (I/p stands for the
D-dimensional unit matrix), and the standard deviation p
quantifies the noise amplitude. For (infinitesimally) small
perturbations Ay = § —y, this distribution is mapped by the
pseudo inverse of the linearized delay coordinates map to the
(nonsymmetrical) distribution

1,3 try—1,g
5 exp|—5;X—x)"E (X —X)
PX) = - ] (7
VQ2r)MHK det(X,)
centered at x with the inverse covariance matrix
' =DG"S;'DG
1 tr 1 2y tr
= —2DG DG = _2VS V. (8)
o 1)

The marginal distribution P; of the jth state variable
centered a x; is given by

Pi(x;) =

M] )

e
——exp|—

pjN 21 20]
where the standard deviation p; is given by the square root of

the diagonal elements of the covariance matrix p; = /Xy j;

that can be obtained by inverting £ ! [given in Eq. (8)]. Since
the noise level p of the observations appears in Eq. (8) as a
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FIG. 2. (Color online) Observability of the state variables x; and
x, of the Ikeda map Eq. (11) from a x; time series (with known
parameters, K = 0, M = 2). (a), (b) Color-coded ratio of singular
values oyin/0max VS. X1 and x, for reconstruction dimension D = 2
(a) and D = 3 (b). The white curves in (a) indicate the location of
zeros of det(DG). (c), (d) Color-coded uncertainties v; (c) and v, (d)
of x; and x, estimates, respectively. Note the logarithmic color axes.
Black dots represent the Ikeda attractor.

factor only we can, without loss of generality, choose p = 1
and use

- \/[vsﬂvtr]j, (10)

as a measure of uncertainty when estimating x ;, which can be
interpreted as a noise amplification factor. The same reasoning
holds for the unknown parameters p.

To illustrate this quantification of observability, we first con-
sider the Ikeda map [25] z(n 4+ 1) = p1 + prz(n)explip; —
ips/(1 + |z(n)|*)] with z(n) = x1(n) + ix2(n) € C that can
also be written as

v = \/[DGtrDG];j‘

x1(n + 1) = p1 + palx1(n) cos 6, — x2(n)sin 6, ]
x2(n+1) = pa[x1(n) sin 6, + x2(n) cos 6,1, (11)

where 6, = p3 — p4/[1 +x12(n) + x%(n)]. For the standard
parameters p; = 1, p» = 0.9, p3 = 0.4, and p4 = 6, this map
generates the chaotic attractor shown in Fig. 2.

First, we consider a case where all parameters are known
and only the variables x| and x, have to be estimated from the
observable s(n) = x;(n) (i.e., M = 2and K = 0). Figures 2(a)
and 2(b) show (color-coded) the ratio of the smallest singular
value omin = oy and the largest singular value o,,x = o of the
Jacobian matrix DG(x) of the delay coordinates map versus
x1 and x,. Reconstruction dimensions are D = 2 in Fig. 2(a)
and D =3 in Fig. 2(b), respectively. For D = 2, the white
curves indicate the zeros of the determinant of DG(x,p) that
are computed as contour lines. As can be seen, parts of the
Ikeda attractor cross these singularity manifolds or are close to
regions in state space where the ratio oyin/Omax 1S very close to
zero, indicating an almost singular Jacobian matrix DG. There,
state estimation is not possible, a fact that reconfirms previous
results indicating that reconstruction dimensions D > 2 are
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FIG. 3. (Color online) Histograms (color-coded) of uncertainties
v; (a) and v, (b) computed from a x; time series of length N =
1000000 generated on the attractor of the Ikeda map Eq. (11) with
reconstruction dimensions ranging from D = 2 to D = 7. The state
variables x; and x, are estimated (M = 2), while all parameters are
assumed to be known (K = 0).

required for the Ikeda map [26]. For D = 3, the singularities
disappear and only some regions with relatively low ratios
Omin/Omax T€MAain.

Figures 2(c) and 2(d) show v; and v, versus x; and xy,
respectively. For both variables their uncertainties v vary and
there are regions of low v; but relatively large v,.

Figures 3(a) and 3(b) show histograms of v; and v, for
different reconstruction dimensions D, which were obtained
from an orbit of length N = 1000 000 on the Ikeda attractor.
Due to the choice s(n) = x(n) the uncertainty v; of x; is for all
dimensions equal or less than one. For D = 2 the uncertainty
v, of x, reaches very high values >10° when the orbit
passes those regions in state space where the Jacobian matrix
DG is (almost) singular [see Fig. 2(a)]. For reconstruction
dimensions D = 3 the v, histogram is bounded by v, < 103
indicating a significant improvement and for D = 4 the bound
reduces to v, < 10, a value that doesn’t change anymore if
the reconstruction dimension is increased furthermore. This
feature is in very good agreement with previous results
obtained when estimating Lyapunov exponents from Ikeda
time series [26].

To obtain the histograms shown in Fig. 3 and in the
following figures the model equations are used to generate a
trajectory which provides a representative sample and subset of
the attractor (similar to numerical computations of Lyapunov
exponents).

For the results shown in Figs. 3(a) and 3(b) only the state
variables are estimated and all parameters are assumed to be
known (M = 2, K = 0). Figure 4 shows also the uncertainties
V3, Vg, Vs, and vg of the parameters pi, p», p3, and py for
an estimation task where all variables (M = 2) and all pa-
rameters (K = 4) are unknown. For increasing reconstruction
dimension D, the distributions of all uncertainties converge
with monotonically decreasing upper bounds (largest v values
quantifying large uncertainty of estimates at specific locations
on the attractor).

Delay reconstruction can also be applied to observables
s(t) = h[x(¢)] from continuous dynamical systems,

x = f(x,p), (12)
using a suitable delay time t:
y={s@)s( + 1), .5l + (D = Drl} = G(x,p) € R”.

The Jacobian matrix DG(x,p) of the delay coordinates map
G can be computed by solving linearized equations providing
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FIG. 4. (Color online) Histograms (color-coded) of uncertainties
of state and parameter estimates of the Ikeda map Eq. (11) for recon-
struction dimensions ranging from D = 6 to D = 12. Distributions
are computed from a x; time series of length N = 1000 000 generated
on the Ikeda attractor. All variables (M = 2) and all parameters
(K = 4) are assumed to be unknown.

the Jacobian matrices D,¢'(x,p) and D,¢'(x,p) of the flow
¢' generated by the system Eq. (12) [27]. To demonstrate the
application of the proposed uncertainty analysis to continu-
ous time system we use the Hindmarsh-Rose (HR) neuron
model [28]

X = —xf +p1x12 + X3 — X3
do=1—pox? —x; (13)
X3 = p3[x1 + pa(ps — x3)].

For parameter values p; = 3, p» =5, p3 = 0.004, ps = 3.19,
ps = 0.25 the HR model exhibits chaotic bursting of x; and
X and slow variations of x3 [11].

Figures 5(a) and 5(b) show the dependence of probabil-
ity distributions (color-coded) of uncertainties v,, and vs,
respectively, on the delay time 7 chosen for performing the
delay reconstruction. The reconstruction dimension equals
D ="7. With this example, all parameters are assumed to
be known (K = 0) and the first state variable is chosen as
measured time series s(¢,) = x;(t,) with ¢, = nt. Therefore,
the estimation of x; is not much affected by the choice of
the delay time and v; < 1 (with v; & 1 most of the time, not
shown here). As can be seen, the centers of both distributions
decrease monotonically with 7 indicating an improvement of
the estimation accuracy for larger delay times. Figures 5(c)
and 5(d) show histograms (color-coded) of uncertainties
v, and vy versus reconstruction dimension D for v = 0.1.
Larger D provides lower uncertainties v; and compared to
Figs. 5(a) and 5(b) very large v; do not occur anymore.
Note that corresponding columns of Figs. 5(a) and 5(b)
and Figs. 5(c) and 5(d), respectively, are computed using
delay coordinates covering the same window in time ranging
from 7(D—1)=0.1x6=06 to t1(D—1)=30.1x6=
1806 x 0.1 = 180.6. The more densely sampling (z = 0.1)
underlying Figs. 5(c) and 5(d) provides more information
about the underlying dynamics and results in lower uncertainty
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FIG. 5. (Color online) Probability distributions (color-coded) of
uncertainties v, and v; when estimating the state variables x;, x,,
and x; of the HR model Eq. (13) from a x; time series. In (a) and
(b) the delay reconstruction dimension is fixed at D =7 and the
delay t is varied. (c), (d) Distributions for v = 0.1 and different
reconstruction dimensions D. Corresponding columns (histograms)
of all four diagrams show results for the same window in time (D —
1)t used upon delay reconstruction. (e), (f) Observability index y (5)
(solid curve), o, (dotted curve), and o, (dashed curve) vs. T and
vs. D.

values. Figures 5(e) and 5(f) show the observability index
7 Eq. (5) and mean values of the smallest and the largest
singular values opi, and o, versus T and D, respectively.
While y exhibits a clear peak, o, converges to an asymptotic
value, and oy, increases monotonically, i.e., the lengths of the
ellipsoid axes in Fig. 1 decrease (1 /omax) or converge (1/omin)-

If in addition to the three state variables x;, x,, and x3
also the five parameters py, ..., ps of the HR-model Eq. (13)
are to be estimated from the x; time series then we have
to cope with an estimation task with M + K =3+5=38
uncertainties whose distributions for T = 0.1 are shown in
Fig. 6 for delay reconstruction dimensions ranging from D = 8
to D = 2008. For increasing D the uncertainties vy, ...,V
corresponding to x,x2,X3, 1, P2, p3 decrease to values close
to or below one. The uncertainties v; and vg of parameters
p4 and ps, respectively, remain rather large (>1000) even for
high-dimensional reconstructions. This feature indicates that
it is very difficult to estimate both parameters together. In fact,
if p4 (or ps) is known and only ps (or p4) has to be estimated
(together with x1,x5,x3, p1, p2, p3) then the uncertainty values
of ps (or ps) are much smaller and lie in the range of the
uncertainties of the other parameters. Applying a state and
parameter estimation algorithm [11,29] we also encountered
problems (in terms of large deviations from the true values)
when trying to estimate both parameters p4 and ps together.
These two parameters are to some degree redundant in the
sense that different combinations yield (almost) the same
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FIG. 6. (Color online) Distributions of uncertainties v; vs. recon-
struction dimension D obtained for the HR model Eq. (13) where all
three state variables and all five parameters are estimated from a x;
time series. The delay time 7 = 0.1 is fixed.

x; time series and thus cannot be clearly distinguished using a
X1 time series, only.

The presented approach for quantifying uncertainties of
model-based state and parameter estimation from time series
provides a general criterion whether and how reliably specific
model variables and parameters can be estimated from time
series. This method is independent from any particular
estimation method and it can be extended in several ways,
including unknown parameters in the measurement function
and multivariate time series. High uncertainty implies that the
corresponding quantity of the model has small impact on the
output and may thus be a candidate for reducing the formal
model complexity by pruning. Furthermore, the information
provided by the values of uncertainty can be exploited to
improve state and parameter estimation methods.
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