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Detection of an intermediate biaxial phase in the phase diagram of biaxial liquid crystals:
Entropic sampling study
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We investigate the phase sequence of biaxial liquid crystals, based on a general quadratic model Hamiltonian
over the relevant parameter space, with a Monte Carlo simulation which constructs equilibrium ensembles of
microstates, overcoming possible (free) energy barriers (combining entropic and frontier sampling techniques).
The resulting phase diagram qualitatively differs from the universal phase diagram predicted earlier from mean-
field theory (MFT), as well as the Monte Carlo simulations with the Metropolis algorithm. The direct isotropic-
to-biaxial transition predicted by the MFT is replaced in certain regions of the space by the onset of an additional
intermediate biaxial phase of very low order, leading to the sequence NB -NB1-I . This is due to inherent barriers
to fluctuations of the components comprising the total energy, and may explain the difficulties in the experimental
realization of these phases.
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The biaxial nematic phase of thermotropic liquid crystals,
the existence of which was predicted quite early [1,2], has been
receiving considerable attention recently, due to its expected
technological advantage in display devices, in particular [3–5].
Though recent analytical treatments based on mean-field (MF)
models [6–9] and Landau expansions [10–12], as well as
computer simulations [13–18], support its feasibility, exper-
imental success in polymeric systems, bent-core materials,
and tetrapodes [19], on the other hand, has been relatively
modest. Even then, interpretation and acceptance of some
of these findings are still debated [20]. For example, an
unsatisfactory aspect of the tetrapode system [21] is the low
biaxial order observed, relative to the expectations (about 7%).
The MF analysis, on the other hand, clearly identifies the
regions of biaxial stability within the Hamiltonian parameter
space, and predicts a universal phase diagram which includes
a biaxial nematic phase with significant biaxial order [9].
The message from these studies is that the condensation of
a biaxial phase under suitable experimental conditions should
have been a rule, rather than an exception. The earlier Monte
Carlo (MC) simulations, largely supporting the qualitative
features of these theoretical predictions, were all carried out
based on Boltzmann sampling. This procedure, however, has
known limitations with systems possibly encountering free
energy barriers. In this context, we report results obtained
from a different sampling technique addressing such issues,
indicating departures from the MF phase diagram.

Interactions among liquid crystal molecules with D2h

symmetry are described by a general quadratic Hamiltonian,
expressed in terms of the orthogonal tensors associated with
molecular axes (e,e⊥,m) as [9] H = −U [ξ q · q ′ + γ (q ·
b′ + q ′ · b) + λ b · b′]. Here, q is a symmetric, traceless and
uniaxial tensor of the molecular major axis (m) and b is a purely
biaxial tensor expressed in terms of the other two molecular
axes (e and e⊥), q = m ⊗ m − I/3, b = e ⊗ e − e⊥ ⊗ e⊥.
Setting the q-q ′ coupling to be attractive (ξ = 1), the region of
stability of the biaxial phase can be compacted to a triangular
region in the (γ,λ) space, the so-called essential triangle
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(OIV in Fig. 1) [8]. All realizable systems of this Hamiltonian
model can be mapped to a point within this triangle, based on
symmetry arguments, by appropriate indexing of the molecular
axes and by a suitable scaling of temperature. This interaction
was studied in great detail within MF approximation ([8,9],
and references therein), and a phase diagram was proposed [9]
as a function of the arc length OIV , represented by λ∗, defined
as λ∗ = λ on the segment OI , and λ∗ = (1 + √

13γ )/3, with
γ = (1 − 3λ)/2 covering the segment IV . The MF phase
diagram predicts for λ∗ � 0.22 (γ = 0, λ � 0.22) a two stage
transition from the isotropic to a biaxial phase, with an
intervening uniaxial nematic phase (resulting in the sequence
of NB-NU -I ). For the rest of the range of λ∗, a direct transition
NB-I is expected, extending up to V in Fig. 1. Predictions of
the onset of a biaxial state in the asymptotic limit of reaching
the point V (i.e., as λ → 0) was noted to be unsatisfactory
keeping in view the biaxial stability criteria [9].

In this context we carried out MC simulations of this
model (employing a most commonly accepted cubic lattice
of side L = 20, with periodic boundary conditions), based
on an entropic sampling technique [22] employing the
Wang-Landau algorithm [23] suitably modified for liquid
crystal simulations [24] and augmented by frontier sam-
pling [24,25]. This leads to the collection of an (entropic)
ensemble of microstates distributed uniformly with energy,
facilitated by prior computation of representative density of
states of the system. Equilibrium ensembles at any desired
(reduced) temperatures (T ′) are consequently extracted by a
suitable reweighting procedure (RW ensembles) [26]. These
encompass all permissible microstates consistent with the
equilibrium conditions, overcoming inherent energy barriers,
unlike their Boltzmann counterparts obtained by conventional
Metropolis sampling [27] (B ensembles). We find that the
phase diagram determined from the temperature variation of
macroscopic averages of different observables (derived from
the RW-ensembles) is in qualitative agreement with the MF
predictions (and with the B-ensemble results) along the λ∗ axis
up to a point K (Fig. 1), beyond which present results deviate
qualitatively from the MF predictions. Instead of a single NB-I
transition, we observe an additional biaxial-to-biaxial transi-
tion resulting in the sequence NB-NB1-I . The temperature of
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FIG. 1. (Color online) The essential triangle OIV , with arc
length λ∗ defined along the upper boundary. Points I,K,T ,V are at
λ∗(γ,λ) ≈ 0.33 (0.0,0.333), 0.57 (0.197,0.202), 0.73 (1/3,1/9), and
0.93 (0.5,0.0), respectively. OT (blue dashed line) is the dispersion
parabola (λ = γ 2) which intersects the side IV at T , the Landau point
(LP).

the second transition decreases asymptotically to zero as the
parameter λ∗ tends to V (the limit of biaxial stability).

For the present discussion, the pairwise interaction is
particularly transparent when expressed in terms of tensors
appropriate to the symmetry of the diagonal IV (uniaxial
torque along e) as [9,28]

H = U ′
[
μ

(
e ⊗ e − I

3

)
·
(

e′ ⊗ e′ − I
3

)

− (e⊥ ⊗ e⊥ − m ⊗ m) · (e′
⊥ ⊗ e′

⊥ − m′ ⊗ m′)
]

, (1)

where U ′ = U (1 − λ)/2, μ = (1 − 9λ)/(1 − λ). In this for-
mat, μ = −3 corresponds to the point I (0,0.333) in Fig. 1,
μ = 0 to the Landau point T (1/3,1/9) (LP), and μ = +1 to
V (0.5,0.0). In particular, μ = −1 corresponds to λ∗ 	 0.57
(0.197,0.202) located at K .

RW ensembles are extracted at each λ∗ value (from a total
of 4 × 107 microstates distributed nearly uniformly covering
the energy range of interest) at different temperatures with a
resolution of 0.002 over the range (0.05–2.0). The computed
averages include the energy per site (E) and the specific heat
(Cv), the two relevant order parameters [uniaxial (R2

00) and
biaxial (R2

22) orders [15,29], as well as their susceptibilities],
and the Binder’s energy cumulant V4 [= 1 − 〈E4〉/(3〈E2〉2)],
which is a measure of the kurtosis [30].

We plotted the phase diagram obtained through this pro-
cedure, by choosing 56 values of λ∗ distributed over the arc
OIV (Fig. 1). Data exhibiting the onset of a second Cv peak
for λ∗ � 0.54 (0.172,0.219), and thus differing qualitatively
from the MF prediction, are plotted in Fig. 2. The location
of the peaks of Cv profiles and of Binder’s cumulant at
different λ∗ values, and identification of the liquid crystal
phases from the corresponding order parameter variations
(and their susceptibilities), result in the phase diagram shown
in Fig. 3. The temperature T

′
of the simulation is scaled

to conform to the values used in the mean-field treatment:
1/β∗ = 3T

′
/(9[2U (1 + 3λ)]) [9,31]. The MF and the current

MC phase diagrams differ qualitatively beyond λ∗ � 0.54,
very close to the point K (μ = −1) (Fig. 1). Apart from
the isotropic-to-biaxial transition at TC1, the appearance of
a second Cv peak at TC2 confirms a second biaxial-to-biaxial
first-order transition mentioned above.

FIG. 2. (Color online) Specific heat Cv as a function of reduced
temperature T ′ for various λ∗ values in the range 0.53 (shaded black
line) to 0.733 (unshaded green line) in the region KT of Fig. 1.

Specific heat profiles derived from the B and RW ensembles
are depicted in Fig. 4(a), along with V4 as an inset at λ∗ =
0.65 (0.264,0.158). The corresponding order parameters, and
their susceptibilities are shown in Fig. 4(b). The two order
parameters exhibit a jump in their values coincident with the
second low-temperature Cv peak. Specific heat derived from
the B ensembles in contrast exhibits a broad hump below the
high-temperature Cv peak [Fig. 4(a)]. It may be noted from
Fig. 2 that this scenario persists at the Landau point also.

We depict the contours of the distribution of microstates in
the entropic ensemble collected at LP plotted as a function of
their energy and order parameters in Fig. 5. Superimposed on
them are similar contour maps of microstates of B and RW
ensembles equilibrated at the same temperature very close
to TC2. While the average values and widths of the energy
distributions from the two canonical ensembles are seen to
be comparable, distributions of the microstates with respect
to the order parameters are very different. Relative to the B
ensemble, the microstates belonging to the RW ensemble have
different contour peak positions with larger fluctuations, with
R2

00 visiting much higher values and R2
22 correspondingly much

lower values. The observed differences in the thermal behavior
of their respective averages are also shown [solid black line
and dotted red lines in Figs. 5(a) and 5(b)].

FIG. 3. (Color online) Phase diagram as a function of λ∗ from
RW ensembles. The transition temperature 1/β∗ is scaled to conform
to mean-field values as mentioned in the text. Specific points along
OIV in Fig. 1 are indicated on the λ∗ axis for reference. An additional
biaxial-biaxial transition is observed in the region KT V in place of
a single transition (to the biaxial phase) predicted by the mean-field
theory.
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FIG. 4. (Color online) Temperature variation of (a) specific heat
Cv (with energy cumulant V4 as an inset), and (b) order parameters
(with their susceptibilities as an inset), obtained from RW (thick black
line) and B ensembles (thin red line) at λ∗ = 0.65 (0.264,0.158). The
susceptibility of R2

00 (empty squares) shows the signatures of both
transitions, whereas the susceptibility of R2

22 (full circles) shows a
single peak at TC2. Clear signature of the second transition, and its
first-order nature, may also be inferred from the V4 data.

We examined the decomposition of the total energy of an
approximate microcanonical ensemble into its components in
the neighborhood of the second transition. For purposes of
analysis, we now rewrite the Hamiltonian in terms of con-
tributions from pairwise interactions between corresponding
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FIG. 5. (Color online) Contour plots of the distribution of mi-
crostates in the entropic ensemble at λ∗ 	 0.73: (a) microstate
energy versus its uniaxial order and (b) microstate energy versus
its biaxial order. The contour maps of the distributions from RW and
B ensembles equilibrated at temperature close to TC2 are superposed.
The dotted red and thick black lines are the corresponding variations
of thermal averages obtained from these ensembles, respectively.

FIG. 6. (Color online) Microcanonical data at λ∗ = 0.65 as a
function of energy per site: (a) microstate energy distribution, (b)
G11 distribution, (c) G22 distribution, (d) G33 distribution, (e) order
parameters versus G22, and (f) index of the eigenvector of maximum
order of the microstates, �.

molecular axes [28], as

H = ε[μG11 + (−2G33 − 2G22 + G11)]. (2)

Here, the indices N = 1, 2, and 3 represent the molecular
axes e,e⊥,m, respectively, and Gjk = P2(fjk) where P2(·)
denotes the second Legendre polynomial. In a lattice model,
fjk represents the inner product of the j th axis of a molecule
with the kth axis of a nearest neighboring molecule. We
present our analysis of this ensemble in Figs. 6(a)–6(f). The
distribution of the total energy (per site) of the microstates
within a narrow range (−2.25 ± 0.0015) is shown in Fig. 6(a),
while distributions of energy components G11(0.37 ± 0.01),
G22 (0.60 ± 0.07), and G33 (0.60 ± 0.07) are successively
shown in Figs. 6(b)–6(d). Clearly the fluctuations of these
components occur so as to conserve the total energy within
its width. The interaction energies of the two molecular axes
e⊥ and m with the corresponding axes of the neighboring
molecules are seen to fluctuate more widely relative to the
e axes coupling energies. Figure 6(e) shows the variation of
uniaxial and biaxial order parameter values of the microstates
with respect to G22 (similar plots result with respect to G33

as well). Interestingly, the fluctuations on either side of G22

about its average lead to an increase in the uniaxial order of the
microstates, with simultaneous decrease in their biaxial order.
This observation led to an examination of the ordering tensors
( Qee, Qe⊥e⊥ , Qmm) of the three molecular axes, determining
their respective maximum eigenvalues [15]. The eigenvector
corresponding to the maximum of these maxima is then taken
as the primary order direction (calamitic axis). Indexing its
direction as � (� = 1, 2, and 3) for the three possibilities of the
ordering tensors of (e,e⊥,m) defining the calamitic axis of the
sample, respectively, we show the variation of � with G22 in
Fig. 6(f) (a complementary plot obtained with G33). In a small
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FIG. 7. (Color online) The long-range order of the three molec-
ular axes (e,e⊥,m) at λ∗ = 0.65, as a function of temperature. The
order of the e axes (lower thin red line) shows a dramatic increase
at TC2.

central region of G22 (0.60 ± 0.01) a degeneracy of the top
two eigenvalues (corresponding to the ordering tensors of the
e⊥ and m axes) is observed, and hence the calamitic direction
seems to fluctuate with equal probabilities within this narrow
band between the corresponding eigenvectors (as an artifact
of the inevitable rounding off errors during computation).
For fluctuations outside this region, Fig. 6(f) shows that this
degeneracy is lifted, and one of the eigenvectors (of tensors
of e⊥ or m) remains the unique calamitic axis depending on
the sign of the fluctuation, indicating that the corresponding
eigenvalue determines the dominant order, which is mapped
to R2

00 by definition. The observed decrease of the biaxial
order on both sides of the fluctuation [Fig. 6(e)] is a result
of this circumstance. Further insight into the nature of the
second transition could be gained by plotting the temperature
variation of the long-range order of the three axes, represented
by square of the maximum eigenvalues of the corresponding
ordering tensors (Fig. 7). As expected on this diagonal, these
values match for e⊥ and m axes, and progressively increase
on cooling. The long-range order of the e axes, on the other
hand, increases significantly only at the onset of the second
low-temperature transition. It is this enhancement that seems
to be promoting the onset of the second biaxial phase with
observable macroscopic biaxiality.

In conclusion, we argue that, starting from the point K in
Fig. 1, the initial biaxial phase condensing from the isotropic

phase is the manifestation of the cooperative modes induced
by the biaxial coupling of the e⊥ − m axes [second term in
Eq. (1)]. The subsequent biaxial-biaxial transition is mediated
by the stabilizing effect of the long-range order of the molec-
ular e axes [first term in Eq. (1)] brought into play at a lower
temperature. In this context K (μ = −1) appears to be a unique
point where the strength of the effective attractive coupling of
the e axes becomes lower than the attractive biaxial coupling of
the other two molecular axes, a phenomenon which continues
as λ∗ progresses on the diagonal. As the LP is reached, the
former interaction progressively disappears, thereby pushing
the corresponding transition temperature to lower values and
weakening the first-order transition. The existence and descrip-
tion of the intermediate phase with no long-range order of the
e axes seem naturally to be out of the valid regime of the MF
theory. The absence of the signature of the second transition
(Fig. 4) from the B ensembles and limited fluctuations of the
order parameters [Figs. 5(a) and 5(b)], seem to be correlated.
The observed trajectory in the configuration space derived
from RW ensembles is qualitatively different beyond K and is
not accessible to the standard Metropolis sampling due to the
onset of barriers to the energy component fluctuations, origi-
nating from the lack of concomitant onset of long-range order
of the three axes (inhomogeneity). The interesting discussions
on antinematic interactions, covering the curious parameter
region T V [28,32,33] provide complementary arguments as
the Landau point is reached from the opposite side. We also find
similar qualitative differences between RW and B ensembles
in the interior of the triangle for large enough γ values
(to be published). Finally, the existence of an in-principle
intermediate biaxial phase of inherently low order (inhibited
by inhomogeneities) seems to be a pointer to the difficulties in
experimentally realizing a stable, macroscopic biaxial nematic
phase.
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lations are carried out at the Centre for Modeling Simulation
and Design, University of Hyderabad.
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