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Shear viscosity and structural scalings in model adhesive hard-sphere gels
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We present experiments and simulations that show a fundamental scaling for both the rheology and
microstructure of flowing gels. Unique flow-SANS measurements demonstrate that the structure orients along
both the neutral and compression axis. We quantify the anisotropy using a single parameter, αn, that scales by a
dimensionless number, M ′, that arises from a force balance on a particle. Simulations support the scalings and
confirm the results are independent of the shape and range of the potential suggesting a universal for colloidal
gels with short-ranged attractions.
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Colloidal suspensions are ubiquitous in both nature and
industrial materials and have bulk properties that are de-
termined by the delicate interplay between interparticle and
external forces and thermal fluctuations [1]. Emergent trends
in materials design manipulate interactions to produce systems
with specific functionality or predefined properties (a case with
infinite technological potential) [2]. While our understanding
of the static behavior of colloidal suspensions is becoming
clearer, much less is known about how flow influences
structure, which is necessary for understanding rheological
modeling and processing of gel-based materials [3].

Below the yield stress, gels exhibit many mechanical
properties similar to that of an elastic solid. At higher stresses
the system flows and a new balance of forces that includes
hydrodynamic interactions defines the state of the system
leading to structural reorganization over a broad range in
length scales. Examples are densification [4,5], fluidization
[6], vorticity-aligned roller structures in the bulk [7,8] and
under confinement [9], shear-induced displacement of the
critical point [10], and structural anisotropy [5,8,11–13] to
name a few. The state of the literature on this subject has
been reviewed [3]. In particular, rheological measurements
provide insight as to how the bulk properties can be scaled by
the forces acting on a colloidal particle [14–16]. Flow small-
angle neutron scattering (flow-SANS) [11] and small-angle
light-scattering [12] measurements reported in the literature
have qualitatively identified shear-induced microstructural
anisotropy in the form of “butterfly” scattering patterns. The
majority of the measurements have been restricted to the
velocity-vorticity plane and ultimately an incomplete view of
how gels rearrange in the plane of flow (velocity gradient).
Furthermore, to date there is no comprehensive experiment or
theory that connects flow and the single-particle properties to
the dispersion morphology.

In this work we present a quantitative analysis of rheology
and scattering experiments complemented by simulations for
the adhesive hard-sphere (AHS) model system, which reveals
a fundamental scaling behavior for both the microstructure and
rheology. The AHS system is of fundamental importance as the

first and simplest system that combines hard-sphere excluded
volume with interparticle attraction and is a reference system
for understanding dispersions with more complex interactions
[17]. Rheological and flow-SANS [18] measurements were
performed on the AHS dispersions for temperatures below
the critical temperature for gelation. We find that under
simple shear flow the colloidal microstructure orients along
both the neutral direction and compression axis of flow.
This microstructural anisotropy is characterized by an order
parameter, αn, that scales with a dimensionless number, M ′,
that arises from a force balance between the flow forces and
interparticle attractions. Dissipative particle dynamic (DPD)
simulations support the measurements and confirm that the
results are indeed independent of the shape of the potential,
suggesting that the measurements are universal to colloidal
gels with interactions similar to the AHS.

For experiments we use the model octadecyl silica (radius
a = 15 nm and polydispersity PD = 0.10) suspended in
n-tetradecane. Details of the particle synthesis and purification
can be found elsewhere [19,20]. For this system �(r) is
temperature dependent and is a direct manifestation of a fluid-
to-solid phase transition of the surface brush layer [19]. This is
in contrast to depletion gels in which aggregation is driven by
entropy and manifests in experiments as an effective attraction.
Previously we characterized the fluid-to-solid phase transition
in direct relation to the �(r) over a wide concentration range of
0.09 � φ � 0.52 using a combination of rheology, fiber-optic
quasielastic light scattering, and SANS [20,21].

The steady shear rheology displays a strong temperature
dependence, which has also been studied by others [14,15].
This can be seen in Fig. 1(a) for one dispersion of concentration
φ = 0.21 and temperatures relative to the critical temperature
for gelation T ∗ = 29.4 ± 0.1 °C, �T = (T ∗ − T ) [22].
For T � T ∗ (T > ∼32 °C) the viscosity is Newtonian for
all concentrations and shear rates tested. In this regime
attractions are negligible and the accessible Péclet number,
Pe = 6πγ̇μsa

3/kBT (where γ̇ is the shear rate, μs is the
Newtonian solvent viscosity, and kB is Boltzmann’s con-
stant) is within the range of Pe � 1 where no structural
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FIG. 1. (Color online) (a) The steady shear viscosity as a function
of temperature relative to the critical temperature of gelation,
�T = (T ∗ − T ), and shear rate, γ̇ , for a dispersion of concentration
φ = 0.21. (b) The yield stress σy for all concentrations measured.

anisotropy is expected. For Pe > 1 hydrodynamic interactions
can lead to structural anisotropy for hard spheres, especially
in concentrated dispersions, which can result in nonlinear
rheological phenomena such as shear thinning and thickening
[23]. As the system is quenched, interparticle attractions lead
to particle aggregation and ultimately a strong γ̇ dependence
of the viscosity, η(γ̇ ). For T < T ∗ the viscosity displays shear
thinning behavior over all shear rates. The measured yield
stress, σy , can be found in Fig. 1(b). No measurable σy was
found at temperatures above T ∗, but for T ∗ > T (±0.1 °C) σy

is linear with temperature.
SANS measurements were performed for the first time

using both a horizontal (1–2 plane) and vertical (1–3 plane)
Couette shear cell defined in Fig. 2 [22]. An anisotropic two-
dimensional (2D) scattering pattern, indicating shear-induced
microstructural anisotropy, is observed for the dispersions at
temperatures below T ∗. Figures 2(a) and 2(b) displays the
scattering pattern in the 1–3 plane and 1–2 plane, respectively,
for one dispersion concentration φ = 0.21 and for similar

potential strength and flow conditions. The “butterfly” lobes
lie parallel to the flow direction for the 1–3 plane in agreement
with prior observations [5,11,12]. Because of the inverse
proportionality between Q space and the characteristic length
in real space for a given Q, i.e., Q ∝ L−1, this butterfly
pattern indicates a microstructure that lies oriented along the
neutral direction. The measurements in the 1–2 plane reveals,
for the first time, that the butterfly lobes lie parallel to the
extensional axis such that the structure is oriented along the
compression axis of flow (defined in Fig. 2, bottom left) for
length scales of similar dimension to the particle diameter. The
2D intensity in Figs. 2(a) and 2(b) are quantified by the one-
dimensional sector average scattering intensities displayed
in Figs. 2(c) and 2(d). These measurements clearly show a
preferred structural alignment that extends from a few particle
diameters in both the neutral and compression axis of flow that
is observed for all dispersions measured in the parameter space
where structural anisotropy was observed. Similar anisotropic
microstructure has been reported on thermoreversible gels
using small angle light scattering, which measures much larger
length scales [5]. Various geometric arguments can lead to
the scattering observed in both planes. This includes roller
structures idealized as rods with their long axis aligned in
parallel to the neutral direction and mean center of mass
normal along the compression axis or sheets with a similar
axial orientation.

For all dispersions the one-dimensional scattering intensity
evolves systematically with decreasing temperature at low-Q
(Q<∼0.02 Å−1) from that characteristic of a hard-sphere-like
fluid to self-similar fractal-like clusters. An example can be
seen in Fig. 3 for one dispersion concentration φ = 0.21 in
the fluid state (T = 40 °C) and just below T ∗. The intensity is
dominated by the spatial correlation of particles or structure
factor S(Q) for Q < 0.02 Å −1. The Q range corresponds

FIG. 2. (Color online) Left side displays the Couette shear cell geometries for horizontal and vertical configurations. A schematic of the
sample unit volume suggests the idealized real-space structure. Bottom left defines the axes of compression and extension. Right side: (a) and
(b) are the 2D scattering patterns measured in the 1–3 plane and 1–2 plane, respectively. > and < represent the regions over which the sector
average scattering intensity is plotted in (c) and (d). (c) and (d) depict the sector averaged intensity I< and I> defined in the images above and
the circular averaged intensity Iavg. For all figures (a) to (d) φ = 0.21, and the measurement was performed at �T = 1.4 °C and γ̇ = 237 s−1.
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FIG. 3. (Color online) Selected SANS scattering intensity I ver-
sus momentum transfer vector Q as a function of temperature, T , and
γ̇ , for dispersion concentration φ = 0.21.

to real space structures from the nearest neighbor to ∼20
particle diameters in extent. The scattering at Q >∼ 0.02 Å−1

is largely temperature-independent and reflects the isotropic
primary particle characteristics. Shear flow introduces signif-
icant hydrodynamic forces causing structural reorganization
that follows the general mechanism of cluster densification
followed by fluidization with increasing shear. At γ̇ = 1.0
s−1 the low-Q scattering intensity increases consistent with
densification of the local fractal structure [5,12]. For higher
shear rates the scattering intensity continues to evolve with
increasing intensity at higher Q followed by a decrease (for
all Q < 0.01 Å−1). The latter is a direct consequence of shear
flow breaking up the fractal clusters. At the highest shear
rate tested γ̇ = 1000 s−1 the scattering intensity is similar to
that observed at rest for high temperatures corresponding to
complete fluidization of the local structure. As expected, these
corresponding structural states have similar bulk viscosities as
seen in Fig. 1(a). Structural fluidization is attributed only to
shear forces as the temperature of the sample was directly
monitored through the duration of the measurement and
viscous heating of the sample was negligible.

We quantify the degree of anisotropy in the system through
an order parameter that is calculated by integrating the
static subtracted scattering intensity, �I (Q,θ) = I (Q,θ,γ̇ ) −
I (Q,θ,γ̇ = 0), weighted for twofold symmetry, over the
azimuthal angle as displayed in Fig. 2 [24]:

�HI (Q) = 1

2π

∫ θi+2π

θi

�I (Q,θ)cos (2θ ) dθ. (1)

The angle, θ
i
, is defined by a maximum in the intensity. �HI

quantifies the Q-dependent changes in the scattering intensity.
An equivalent approach has been successfully applied for
analysis of the pair distribution function g(r) [25,26]. A
unique single parameter quantification of the anisotropy can
be defined by integrating �HI over all Q,

α = 1

Qmax − Qmin

∫ Qmax

Qmin

�HIdQ (2)

and normalized by the maximum αn = α/αmax. Qmax is
defined by the length scale associated with the particle

diameter, Q ∼ 0.02 Å−1. For this work Qmin was defined
by the minimum accessible Q. αn is bound between 0 and
1 representing an isotropic structure and the greatest degree of
anisotropy relative to the static structure, respectively.

For the colloidal gels considered in this work we propose
that αn scales by a dimensionless quantity, M ′, defined as the
force due to flow normalized by the maximum interparticle
force [27],

M ′ ≡ 6πμsa
2γ̇

Fmax
, (3)

where μs and Fmax are the solvent viscosity and maximum
interparticle force. By definition Fmax is the maximum slope of
the pair potential Fmax = (d�/dr)max and can only be directly
determined with knowledge of the shape of the potential. An
experimentally accessible quantity is σy , which is directly pro-
portional to Fmax by the relation σy ∼ φ2/a2(d�/dr)max [28].
With substitution, M ′ = Cμsγ̇ φ2/σy (where C is a constant)
and is independent of particle size. Written in this form M ′
is similar to the reciprocal of the dimensionless Bingham
number. Complementary DPD simulations were performed
on dispersions with specified interactions to determine C

by mapping the experimental viscosity onto the simulated
viscosity [22]. We find C = 10 ± 3 for all concentrations
and temperatures measured.

The steady shear viscosity flow curves for all the samples
measured are displayed in Fig. 4(a) and compared against
the simulations. For both the experiments and simulations
we find the viscosity scales by M ′ and is independent of the
shape of the potential for short-ranged attractive systems. As
M ′ → 1 the shear forces become comparable to the force
of attraction between individual particles in the gel and are
where the viscosity tends toward the high shear rate limiting
viscosity. The degree of flow-induced anisotropy shows
strong nonmonotonic dependence on shear rate that further
depends on temperature and concentration. Remarkably, the
microstructural distortion is also found to scale by M ′. This
result is plotted in Fig. 4(b) for all concentrations measured
0.9 < φ < 0.21 and temperature (interparticle potential)
bound by the dynamical arrest transition and the gas-liquid
coexistence region of the phase diagram and includes both
measurements of the 1–3 plane and the 1–2 plane. For all
the varied experiments αn collapses onto a single curve with
maximum αn � 0.005. For M ′ � 0.005 interparticle forces
dominate and maintain the structural integrity within clusters
formed as the system yields to flow. For M ′ around 0.005
flow stretches these clusters along the extension flow axis
and forces them together along the compression axis (leading
to densification) and resulting in butterfly scattering in both
scattering planes. For M ′ > 0.005 the shear forces acting on
the clusters are sufficient to reduce their overall size leading
to a decay in αn. Eventually, the force acting to break up
the structure becomes comparable to the interparticle force,
and the system is able to fully fluidize into dispersed primary
particles at M ′ ∼ 1 causing αn → 0 and η(γ̇ ) → η∞. This
is seen in Fig. 3 for the highest shear rates, where the
angle-averaged scattering intensity corresponds to that of the
primary colloids rather than aggregates.
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FIG. 4. (Color online) (a) Reduced steady shear viscosity, ηred =
η(γ̇ )/μs where μs is the solvent viscosity. Solid lines are Carreau-
Yasuda fits to experimental viscosity, and open triangles are
the DPD simulations for a fixed concentration φ = 0.21 and
three different potentials [22]. Error bars represent estimated percent
error of the DPD simulation. (b) Normalized anisotropy parameter
αn, scaled by M ′. Open symbols represent scattering experiments in
the 1–3 plane, and partially filled symbols were performed along the
1–2 plane. 2D scattering patterns are from a dispersion of φ = 0.21.

The features in Fig. 4(b) in relation to the magnitude of
M ′ are a consequence of deriving M ′ from a force balance

on a particle pair such that the flow force in Eq. (3) scales
with the characteristic size of a particle and not a cluster [29].
As the clusters contain a significant number of particles, the
flow forces acting to disrupt the attractive bonds between
particles will be much larger [30]. A quantitative theory
incorporating the shear forces acting on the cluster should
be able to predict our empirically observed maximum of
the shear-induced anisotropy in the microstructure at M ′ �
0.005 by explicitly including the effects of shear on the
cluster size.

We have identified a common scaling for both the rheology
and the microstructure for a model AHS colloidal gel under
flow. In addition, with the aid of simulations we show that
this behavior is independent of potential shape and supports
the universal behavior of this scaling for colloidal gels
with interactions similar to the AHS. Current microstructural
kinetics constitutive equations used to model the rheology of
particulate suspensions connect the flow to the rate of build-up
and breakdown of structure but do not account for structural
anisotropy. This is the first quantitative experimental work
that connects the shear-induced microstructural anisotropy to
the particle properties and flow strength for the AHS model
system. These results expand the potential for the development
of a predictive constitutive theory.
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