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Jamming of frictional particles: A nonequilibrium first-order phase transition
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We propose a phase diagram for the shear flow of dry granular particles in two dimensions based on
simulations and a phenomenological Landau theory for a nonequilibrium first-order phase transition. Our
approach incorporates both frictional as well as frictionless particles. The most important feature of the frictional
phase diagram is reentrant flow and a critical jamming point at finite stress. In the frictionless limit the regime
of reentrance vanishes and the jamming transition is continuous with a critical point at zero stress. The jamming
phase diagrams derived from the model agree with the experiments of Bi et al. [Nature (London) 480, 355 (2011)]
and brings together previously conflicting numerical results.
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Random close packing is the point at which hard
spherical—and frictionless—particles generally jam into a sta-
ble heap. It is now known that the precise close-packing density
ϕrcp depends on the preparation protocol [1]. Nevertheless, this
variability is small when compared to frictional systems, i.e.,
systems where particles not only transmit normal forces but
also tangential forces among themselves. Indeed, frictional
systems can jam at densities anywhere between random-close,
random-loose, or even random-very-loose packing [2,3]. In
this Rapid Communication we deal with the flow properties
of frictional granular systems, where the jamming transition
can be studied by monitoring the flow curves, i.e., the stress-
strain rate relations σ (γ̇ ). Previous simulations performed in
the hard-particle limit [4,5] do not observe any qualitative
difference between frictionless and frictional systems, other
than a mere shift of the critical density from ϕrcp to ϕJ (μ),
which depends on the friction coefficient μ of the particles.
Similar results, accounting for particle stiffness, are presented
in Refs. [6,7]. Quite in contrast, Otsuki et al. [8] recently
observed a discontinuous jump in the flow curves of the
frictional system, which is absent in the frictionless analog [9].
In addition, they find not one but three characteristic densities
for the jamming transition, which degenerate into random close
packing when μ → 0. Similarly, Ciamarra et al. [10] observe
three (but different) jamming transitions. Experimentally, Bi
et al. [11] present a jamming phase diagram with a nontrivial
(reentrance) topology that is not present in the frictionless
scenario.

These latter results hint at friction being a nontrivial
and indeed “relevant” perturbation to the jamming behavior
of granular particles. Unfortunately, several inconsistencies
remain unresolved. For example, the phase diagram in [10]
is different from [11] and does not show stress jumps as
observed in [8]. This points towards a more fundamental
lack of understanding of the specific role of friction in
these systems. What is the difference between frictional and
frictionless jamming? By combining mathematical modeling
with strain- and stress-controlled simulations we propose a
jamming scenario that not only encompasses frictional as well
as frictionless systems, but also allows one to bring together
previously conflicting results.

We simulate a two-dimensional system of N = 8000 soft,
frictional particles in a square box of linear dimension L. The

particles all have the same mass m = 1, but are polydisperse
in size: 2000 particles each for diameter d = 0.7,0.8,0.9,1.0.
The particle volume fraction is defined as ϕ = ∑N

i=1 πd2
i /4L2.

Normal and tangential forces, f (n) and f (t), are modeled with
linear springs of unit strength for both elastic as well as viscous
contributions. (Thereby units of time, length, and mass have
been fixed.) Coulomb friction is implemented with friction
parameter μ = 2 [12]. In the strain-controlled simulations, we
prepare the system with a velocity profile vflow = γ̇ (0)y êx

initially. Subsequently the shear rate is implemented with
Lees-Edwards boundary conditions [13] until a total strain
of 200% is achieved after time T . Whenever the strain rate is
changed to a new value, we wait for a time ∼0.5T to allow for
the decay of transients. In the stress-controlled simulations, a
boundary layer of particles is frozen and the boundary at the
top is moved with a force σLêx , whereas the bottom plate
remains at rest.

In the strain-controlled simulations we impose the strain
rate γ̇ and measure the response, the shear stress σ (γ̇ ), for
a range of packing fractions 0.78 � ϕ � 0.82. Thereby the
system is forced to flow for all packing fractions; the resulting
flow curves are shown in Fig. 1.

We observe three different regimes. For low packing
fraction, the system shows a smooth crossover from Bagnold
scaling, σ = ηγ̇ 2 (called “inertial flow”) to σ ∝ γ̇ 1/2 (called
“plastic flow”). As the packing fraction is increased, we
observe a transition to hysteretic behavior [8]: Decreasing the
strain rate from high values, the system jumps discontinuously
to the lower branch. Similarly, increasing the strain rate from
low values, a jump to the upper branch is observed. A well
developed hysteresis loop is shown in the inset of Fig. 1. The
onset of hysteresis defines the critical density ϕc. We estimate
its value ϕc between 0.7925 and 0.795 by visual inspection
of the flow curves as described in the Supplemental Material
[14]. As ϕ is increased beyond the critical value ϕc, the jump
to the lower branch happens at smaller and smaller γ̇ , until at
ϕσ , the upper branch first extends to zero strain rate, implying
the existence of a yield stress, σyield. For ϕc < ϕ < ϕσ , the
strain rate for the jump to the lower branch, γ̇σ ∝ ϕσ − ϕ,
scales linearly with the distance to ϕσ which allows us
to determine ϕσ

∼= 0.8003. Finally at ϕη, the generalized
viscosity η = σ/γ̇ 2 diverges and for ϕ > ϕη only plastic flow
is observed. The scaling of the viscosity η ∝ (ϕη − ϕ)−4 is
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FIG. 1. (Color online) Flow curves σ (γ̇ ) for different packing
fractions ϕ = 0.78,0.7925,0.795,0.7975,0.79875,0.80,0.82 (from
bottom to top). Main part: Flow curves obtained by decreasing γ̇ .
Inset: Example of a hysteresis loop for ϕ = 0.80.

in agreement with previous results [8] and yields φη
∼= 0.819.

Note that all three packing fractions are well separated, and
furthermore, ϕη is still well below the frictionless jamming
density at random close packing ϕrcp

∼= 0.8433. The scaling
plots γ̇σ and η are shown in the Supplemental Material [14].

All the observations can be explained in the framework of
a simple model, which can be viewed as a phenomenological
Landau theory, that interpolates smoothly between the inertial
and the plastic flow regime:

γ̇ (σ ) = aσ 1/2 − bσ + cσ 2, (1)

where a,b,c are coefficients which in general depend on the
packing fraction. Equation (1) can be taken to result from
a class of constitutive models that combine hydrodynamic
conservation laws with a microstructural evolution equation
[15], or from mode-coupling approaches [16].

The numerical data suggest that the plastic flow regime
is only weakly density dependent for packing fractions
considered here, so we take c to be independent of ϕ for
simplicity. In the inertial flow regime, on the other hand,
we expect to see a divergence of the shear viscosity at ϕη,
implying that the coefficient a of our model vanishes at ϕη and
changes sign, a = a(ϕ) = a0|ϕη − ϕ|(ϕη − ϕ). The coefficient
b is assumed to be at most weakly density dependent.

The simple model predicts a discontinuous phase transition
with a critical point in analogy to the van der Waals theory of
the liquid-gas transition [see Fig. 2(left)]. The critical point is
determined by locating a vertical inflection point in the flow
curve. In other words we require ∂σ γ̇ = 0 and simultaneously
∂σσ γ̇ = 0. These two equations together with the constitutive
equation (1) determine the critical point: bc = 3

2a(ϕc)2/3c1/3

with the critical strain rate given by γ̇c = 3
16

a4/3

c1/3 and the critical
stress σc = 1

4 ( a
c
)2/3. For ϕ > ϕc, the model predicts an unstable

region, where ∂σ γ̇ < 0. This is where the stress jump occurs
in the simulations. The flow curves of the model are presented
in Fig. 2(left), assuming b ≡ bc, and fitting the two constants
c,a0 to the data. The model predicts a yield stress to first occur,
when two (positive) zeros for the function γ̇ (σ ) = 0 coincide.
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FIG. 2. (Color online) Flow curves of the simple model, Eq. (1).
Left: Frictional scenario with range of packing fractions as in Fig. 1;
φc is indicated by the red line, φσ by the blue line, and φη by the green
line. Right: Flow curves for frictionless particles of the simple model
implemented with b = 0 and ϕc = ϕσ = ϕη = 0.8433; critical flow
curve in red.

This happens at a density ϕσ determined implicitly by a(ϕc) =
a(ϕσ )

√
2 and the yield stress is given by σyield = [a/(2c)]2/3.

The flow curves can be fitted better, if we allow for weakly
density dependent coefficients b and c. However, we refrain
from such a fit, because even in its simplest form the model can
account for all observed features qualitatively: a critical point
at ϕc, the appearance of a yield stress at ϕσ , and the divergence
of the viscosity at ϕη, ordered such that ϕc < ϕσ < ϕη. The
flow curves for these three packing fractions are highlighted
in Fig. 2 and further illustrated in the Supplemental Material
[14].

The limiting case of frictionless particles can be reached by
letting μ → 0. Simulations indicate that in this limit hysteretic
effects vanish [8,9] and the jamming density is increased
approaching random close packing. Within the model this
transition can be understood in terms of the variation of two
parameters: First b(μ) → 0 in Eq. (1) implies that the three
densities (ϕc,ϕσ ,ϕη) coincide and second ϕη(μ) → ϕrcp

∼=
0.8433. While a μ-dependent ϕη simply shifts the phase
diagram towards higher densities, the parameter b accounts
for the more important changes of the topology of the phase
diagram. The flow curves in this limit are presented in
Fig. 2(right). They present a continuous jamming scenario
consistent with previous simulations in inertial [9] as well as
overdamped systems [17,18].

What happens in the unstable region? Naively one might
expect “coexistence” of the inertial and the plastic flow regime,
i.e., shear banding. However, this would have to happen
along the vorticity direction [15,19], which is absent in our
two-dimensional setting. Alternative possibilities range from
oscillating to chaotic solutions [20,21]. We will see that,
instead, the system stops flowing and jams at intermediate
stress levels. Interestingly, this implies reentrance in the (σ,ϕ)
plane with a flowing state both for large and small stress, and
a jammed state in between.
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FIG. 3. (Color online) Time series of the strain rate with packing
fraction ϕ = 0.7975 and different, but fixed, stresses σ1 < σ2 < σ3 <

σ4 < σ5 (stress values are indicated in Fig. 6). Lower right corner:
Schematic picture of the jamming time being cut off at the simulation
time T .

To address the unstable regime in more detail, we have
performed stress-controlled simulations: The shear stress is
imposed and we measure the strain rate as a function of
time. The initial configurations are chosen with a flow profile
corresponding to the largest strain rate in the inertial flow
regime, which was observed previously in the strain-controlled
simulations. For a fixed ϕ, several time series are shown in
Fig. 3, representing the different regimes. The lowest value
of σ1 is chosen in the inertial flow regime, so that the system
continues to flow for large times. Similarly σ5 is chosen in the
plastic flow regime and the system continues to flow as well.
The intermediate value σ3 is chosen in the unstable region and
the system immediately jams. Between the jamming and the
flow regime we find intermediate phases with transient flow
that ultimately stops [10].

To quantify the different flow regimes, we introduce the
time τjam the system needs to jam. Schematically we expect the
result shown in the lower right corner of Fig. 3: In the jammed
phase τjam = 0, whereas in the flow phase τjam is infinite. In
between τjam is finite implying transient flow before the system
jams. We expect τjam to go to zero as the jammed phase is
approached and to diverge as the flow phases are approached.
Given that the simulation is run for a finite time, the divergence
should be cut off at the time of the simulation run, T , indicated
by the horizontal (red) line in the schematic in the lower right
corner of Fig. 3.

These expectations are borne out by the simulations: In
Fig. 4 we show a contour plot of τjam as a function of ϕ and
σ . In the dark blue region, τjam is very small, corresponding to
the jammed state. In the bright yellow region τjam exceeds the
simulation time; hence this region is identified with the flow
regime—inertial flow for small σ and plastic flow for large
σ . The intermediate (red) part of the figure corresponds to the
transient flow regimes.

In our simple model, Eq. (1), the jammed state has to
be identified with the unstable region. It seems furthermore
suggestive to identify the transient flow regime with metastable
regions. The phase diagram, as predicted by the simple model
(with finite b) is shown in Fig. 5 (schematic). In the region
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FIG. 4. (Color online) Numerical results for the phase diagram.
The mean flow time τjam is encoded with color. The flow phase is
indicated in yellow (bright) and the jamming phase in blue (dark).
Lines are contours of constant τjam.

within the (thick) red curve, Eq. (1) has no solution: the
system jams. Outside the (thin) blue curve, the solution is
unique corresponding to either inertial flow (low stress) or
plastic flow (high stress). In between, in the shaded region,
the equations allow for two solutions and hence metastable
states. Jamming from these metastable states is discontinuous,
i.e., the strain rate jumps to zero from a finite value. At a
packing fraction ϕσ , a yield stress first appears and grows as ϕ

is increased further, giving rise to a kink in the red curve and
a continuous jamming scenario. Beyond ϕη inertial flow is no
longer possible [22]. In the frictionless limit b → 0 all these
different packing fractions merge with ϕrcp giving the phase
diagram the simple structure well known from previous work
[23] and shown in the inset in Fig. 5.

The presence of long transients is fully consistent with
the results of Ref. [10]. Due to a restricted stress range in
those simulations, however, only the upper part of the phase
diagram is captured and the reentrance behavior is missed.
To get a better understanding of these transients (or possibly

0
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σ

ϕ

plastic flow

jamming

inertial
flow
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plastic flow
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inertial flow

ϕj

flow
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FIG. 5. (Color online) Phase diagram of the model (schematic),
revealing reentrant flow for small and large σ , as well as flow and
jam states in the “metastable” regions for frictional particles (main
panel) and the known jamming phase diagram for frictionless particles
(inset).
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FIG. 6. Flow curves from the stress-controlled simulations. The
unstable branches (decreasing stress) are obtained as time averages
over the transient flow (right axis: stress values used for the time
series in Fig. 3).

metastable states), we have tried to construct the flow curves
in this regime by the following procedure: The monitored
time series are truncated as soon as the system jams. The
(transiently) flowing part of the time series is averaged over
time, giving rise to the flow curves, shown in Fig. 6. These flow
curves show clearly a nonunique relation σ (γ̇ ) or equivalently

a non monotonic relation γ̇ (σ ), which can only be observed
as transient behavior, before the system has settled into a
stationary state.

In conclusion, the goal of this Rapid Communication is
to understand the role of friction in the jamming behavior
of dry granular matter. To this end we present a theoretical
model (supplemented by molecular dynamics simulations)
that can reproduce all the phenomenology of simulated flow
curves (Fig. 2) both for the fully frictional system as well as
for the limiting case of frictionless particles. The jamming
phase diagrams derived from the model agree with recent
experiments [11]. The key result is that the transition between
the two jamming scenarios, frictionless and continuous, and
frictional and discontinuous, can in our model be accounted
for by the variation of just a single parameter (b). The most
important feature of the frictional phase diagram is reentrant
flow and a critical jamming point at finite stress. The fragile
“shear jammed” states observed in the experiments [11] then
correspond to the reentrant (inertial) flow regime in our
theory. Our work allows one to bring together previously
conflicting results [6–8,10] and opens a new path towards a
theoretical understanding of a unified jamming transition that
encompasses both frictionless as well as frictional particles.
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