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Ensemble inequivalence in systems with wave-particle interaction
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The classical wave-particle Hamiltonian is considered in its generalized version, where two modes are assumed
to interact with the coevolving charged particles. The equilibrium statistical mechanics solution of the model
is worked out analytically, both in the canonical and the microcanonical ensembles. The competition between
the two modes is shown to yield ensemble inequivalence, at variance with the standard scenario where just one
wave is allowed to develop. As a consequence, both temperature jumps and negative specific heat can show up
in the microcanonical ensemble. The relevance of these findings for both plasma physics and free electron laser

applications is discussed.
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Systems with long-range interactions are characterized by
a pair potential which decays at large distances as a power
law, with an exponent smaller or equal to space dimension.
Examples include globular clusters [1], two-dimensional and
geophysical flows [2], vortex models [3], quantum spin models
[4], cold atom models [5], as well as non-neutral plasmas
[6]. For these systems energy is nonadditive implying that
entropy could be nonconcave in some range of values of
macroscopic extensive parameters [7]. This is at the origin
of ensemble inequivalence, which in turn instigates peculiar
thermodynamic properties, such as negative specific heat and
temperature jumps in the microcanonical ensemble. Ensemble
inequivalence has been reported to occur in the past for
gravitational systems [8], spin models [9], and two-
dimensional flows [10]. These are extremely interesting
models per se, as well as for their theoretical implications, but
in general they do not allow for a straightforward experimental
verification of the predictions drawn.

A paradigmatic example of a long-range interacting system
is represented by the so-called wave-particle Hamiltonian,
which describes the self-consistent interaction of N charged
particles with a coevolving wave [11]. This is a rather general
descriptive scenario, often invoked in different fields of in-
vestigations where the mutual coupling between particles and
waves proves central, as, e.g., in plasma physics [12] and the
free electron laser (FEL) [13]. The equilibrium statistical me-
chanics solution of the celebrated wave-particle Hamiltonian
has been so far solely carried out for the simple setting where
just one isolated wave is allowed to exist [14,15]. Working
under this limiting, and in many respects, unrealistic assump-
tion, it can be shown that the canonical and microcanonical
solutions coincide [16]. In real experiments, however, several
modes are simultaneously present and interact with the bunch
of coevolving particles. Motivated by this observation and to
eventually bridge the gap between theory and experiments,
we here consider the generalized equilibrium solution of the
reference wave-particle Hamiltonian when a second harmonic
is allowed to self-consistently develop. As we shall analytically
demonstrate, the insertion of an additional wave causes the
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ensemble inequivalence to rise, within a specific range of the
coupling constants which yield a first order phase transition
in the canonical ensemble. This conclusion is reached for a
model of marked experimental value, paving the way to direct
verifications and, possibly, exploitations of the general concept
of ensemble inequivalence.

The starting point of our discussion is the universal wave-
particle Hamiltonian which can be cast in the general form
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where I, = N|A,|? stands for the intensity of the sth harmonic
[11]. Here, (6;, p;), the positions and momenta of the particles,
are canonically conjugated variables, as well as the intensity
and phase of the waves, namely, (I;,¢;). The quantity §;
is called the detuning parameter in the context of FEL, and
measures the average relative deviation from the resonance
condition. Fj are the coupling constants that determine the
relative weights of the harmonics. In general, for plasma
physics applications, the coupling constants depend on the
details of the dielectric function and the morphology of the
Langmuir waves. For the case of the FEL, they are determined
by the adopted experimental setup. In the following, and to
keep a general view on the scrutinized problem, we will
treat Fj as constant control parameters and investigate the
response of the systems as they get tuned. We recall that, in
addition to the energy, the total momentum of particles and
waves P =Y. p; + >, I, is also a conserved quantity of the
dynamics. In the following analysis, we will truncate the sum
over the harmonics to account for the first two terms, 4 = 1 (the
first mode) and & = m (the next harmonic). In plasma related
applications m = 2. Undulators in planar configurations allow
only odd harmonics to develop and therefore m = 3 for a single
pass FEL [17]. Let us start by constructing the microcanonical
equilibrium solution of the model [18].

To this end we first define the microcanonical measure of
the system as

N
dpme = [ [@pnaln) [ [(@bidpi) CE — H)S(Po — P), (2)
h i=1
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where E and Py are the total energy and momentum, respec-
tively. In the following we shall make explicit use of the field
amplitudes Ay, rather than the corresponding intensities 7j,.
For convenience, we will introduce the energy and momentum
per particle, namely, ¢ = E/N and 0 = Py/N. By using the
Fourier representation of the delta function and performing
the integral in the phase space coordinates (6;, p;), one can
rewrite the microcanonical measure (hereafter denoted with
an additional bar to recall that an integral has been performed)
as

o0

o0 o .
djime = / dx eNS(GJS,{¢>/x],[f\/x],lk.1\1)l_ld(phdAh7 (3)
- h

where

S(e.8,{pn} . {AnLiA,N)
2
. 1
=—ik|e—> (;Ai) —ZhjahAﬁ

+1n/ do exp[—iL ®(6,¢,A)]

-7

[ 2w 1

and ®(0,¢,4) = Y, 214 cos(h — ¢y,).

For mathematical convenience and without losing gener-
ality, we operate in Eq. (4) a rescaling of both the energy
and the detuning: € — ¢ — 0?/2 and 8, — 8, + o. In order
to solve the integral in (3) we analytically continue the
integrating function to the complex X plane and we perform a
steepest descent evaluation, which is valid in the large N limit.
Following this strategy, the extremum value of A, hereafter
A* =iy, is found to match the implicit equation:

2
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To proceed in the analysis we compute the total volume
accessible to the system as

T poo -
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For real systems, N is definitely large and it is therefore legit-
imate to invoke in integral (6) the saddle point approximation.
By dropping unimportant contributions in the large N limit,
one can eventually write the equilibrium entropy per particle
s(e,8) as

S(G,(S) = glazl‘lx;, 5(6783{¢h}7{Ah}7y)7 (7)

h s

where, for convenience, we have set the Boltzmann constant
to one. The maximization of this entropy functional gives the
following self-consistent equations:
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Notice that in the limiting case of just one wave (m = 1),
Zn.m(x,y) reduces to the standard Bessel function [15]. Few
comments are mandatory at this point. In the above equations
we have made explicit use of the condition ¢, = 0, which
rigorously follows the maximization procedure because of
symmetry reasons. Moreover, the parameter y can be deter-
mined by combining Eqgs. (5) and (8). A simple calculation
yields the result

-1

2
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By inspection of Eq. (8), one readily finds that A, = 0 (which
implies I, = 0) is always a solution for §;, > 0. When multiple
solutions exist, one should select the values of Aj,, which
correspond to the global maxima of the entropy (7). Indeed,
the intensity of the waves plays the role of the order parameter,
enabling one to distinguish among distinct dynamical regimes
of the scrutinized model [19]. By changing the strength of
the coupling constants, one can go from a configuration with
I, = 0, to a dynamical regime characterized by I;, # 0. As we
shall illustrate in the following, both first- and second-order
phase transition lines materialize in a conveniently chosen
control parameter space.

Before turning to discuss the microcanonical phase dia-
gram, we work out the solution of model (1) in the canonical
ensemble. To this end we introduce the canonical measure

N
due = [ [@gndi) [ [@bidpye™s(po— Py, (11)
h

i=1

where B8 = 1/T is the inverse canonical temperature. Using
again the Fourier representation of the Dirac delta function and
repeating the basic steps of the calculations as detailed for the
microcanonical analysis, one eventually obtains the partition
function

T o0 N
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Hence, for sufficiently large N, the equilibrium free energy
per particle f(B,8) reads

f(8.8) = min F(B,8,{pn} {An)). (14)

The minima of the free energy functional F(8.8,{¢;},{A})
identify the equilibrium configurations and are determined by
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FIG. 1. Canonical (thick lines) and microcanonical (thin lines)
phase diagrams. T (Ty,) is the canonical (microcanonical) temper-
ature. The dashed (solid) lines refer to the first- (second-) order
phase transitions in both ensembles. The circles (squares) identify
the canonical (microcanonical) tricritical points. When the canonical
phase transition is of second order the ensembles give equivalent
predictions. On the other hand, inequivalence is observed in the
region where a first-order phase transition is predicted to occur in
the canonical ensemble (thick dashed line). The shaded area delimits
the portion of the plane where temperature jumps occur and the inset
shows a zoom of the region of inequivalence in the microcanonical
ensemble. In the region of inequivalence—regions (a) and (b) in the
inset—the predicted values of A differ from the corresponding Aj.

numerically solving the self-consistent equations:

Fy Tin (2B FL A, p2Enta)
A€ Ac)2+51) = — m A (15)
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The apex c has been here introduced to mark the difference
with the analog microcanonical quantities. We remark that the
microcanonical solution could be, in principle, derived from
the above canonical free energy by performing a min-max
calculation as detailed in Ref. [20]. In the limiting case where
just one wave is allowed for, the canonical solution displays
a second-order phase transition, as reported in the literature

2

[11,14,21], with the associated critical temperature 7, = hf’(‘sh .
A question which naturally arises is whether the competition
among different modes (F; # 0 and F,, # 0) can change the
features of the transition, by turning first order the second-order
phase transition. Motivated by this working hypothesis, we
here set m = 2, a choice which amounts to specializing on
plasma physics applications. To proceed in the analysis, we
will further impose the additional constraint F; + F, =1
which allows one to scan a finite interval of possible values of
the couplings. Denoting in particular F; = A, which obviously
implies F, = 1 — A, the parameter A belongs to the interval
[0,1]. The single wave limiting solutions are respectively
recovered for A = Oand A = 1. The canonical phase diagram,
as obtained by solving the set of self-consistent equations (15),
is depicted in the (7', A) plane (see Fig. 1).

Three different phases can be identified. At large tem-
peratures, both I; and I, are identical to zero (region III),
as clearly expected. When the temperature gets reduced, the
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system experiences a phase transition towards an organized
configuration. If A is sufficiently small, only the second
wave develops (region II), while the first gets asymptotically
damped. When A becomes larger than a given threshold, both
I, and I, are different from zero (region I). The transition
from region II to region III (and vice versa) is second order
(thick solid line). The border between regions I and III can
be instead crossed through either a first- (thick dashed line)
or second-order (thick solid line) phase transition. Similar
considerations apply to the adjacent regions I and II. Three
canonical tricritical points can be identified, separating first-
and second-order transition lines. These critical points are
represented as circles in Fig. 1.

To compare the canonical phase diagram to its correspond-
ing microcanonical analog, as predicted by the theory (8), we
introduce the microcanonical temperature. It is straightforward
to see that Ty, = !, where y is defined by Eq. (10). From
a direct inspection of Fig. 1, one clearly realizes that the
canonical and the microcanonical calculations yield different
solutions, in the region where the competition of the waves is
relevant at A >~ 1/3.

Several interesting observations can be made to appreciate
the physical consequences of the predicted inequivalence.
First, we notice that three tricritical points are also found in
the microcanonical setting. Imagine one assigns a value of
A which is smaller than the value for which the leftmost
microcanonical tricritical point is found, but larger than
the value that identifies the location of the intermediate
canonical tricritical point. When starting in the microcanonical
region I and moving vertically (keeping A fixed) in the
microcanonical phase diagram, from small to large T;,., one
induces a smooth transition towards region II. Interestingly,
and at odds with what happens in the canonical setting for
an identical choice of A, region III can also be reached
by acting on the temperature Tj,.. In other words, while in
the canonical ensemble, for dedicated choices of A, only
two adjacent regions can be explored when adjusting the
temperature, in the microcanonical ensemble it is in principle
possible to go through all three, macroscopically distinct
states by continuously changing the energy, and hence the
microcanonical temperature, of the system. This is a striking
conclusion: Canonical and microcanonical predictions are
qualitatively different, an observation that opens up the per-
spective to challenge experimentally the statistical mechanics
predictions of ensemble inequivalence. In panel (b) of Fig. 2
the corresponding caloric curve Tp,. vs € is reported. The
cascade of consecutive transitions yields the two cusplike
points, which in turn imply a punctual discontinuity in the
derivative of T, as a function of the energy. Importantly,
before the first transition line, the system displays negative
specific heat in the microcanonical ensemble, as T, decreases
when € gets increased.

This is the typical signature of ensemble inequivalence:
Negative specific heat can be measured in the microcanonical
ensemble in the region of the parameter that falls in between
the canonical (thick) and microcanonical (thin) transition lines
in Fig. 1. For comparison, in panel (a) of Fig. 2, the caloric
curve is plotted for a value of A inside the region where the
two ensembles return the same predictions (A = 0.285). The
two cusps bear the imprint of the two consecutive transitions as
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FIG. 2. Microcanonical caloric curves Ty, vs € are plotted for different choices of A. In panel (a) (A = 0.285) both second-order phase
transitions occur in a region where ensembles are equivalent. In panel (b) (A = 0.32) both second-order phase transitions take place inside
the region of ensemble inequivalence. The first phase transition displayed in panel (c) (A = 0.325) is discontinuous and yields a temperature
jump. The subsequent phase transition is continuous. In panel (d) (A = 0.33) just one first-order phase transition takes place from region I to
region III. Panels (b)—(d) show the existence of negative specific heat in the microcanonical ensemble.

experienced by the system, but in this case the microcanonical
specific heat is positive.

Particularly interesting is the region enclosed by the three
microcanonical tricritical points and depicted with a shaded
area in Fig. 1. Here, temperature jumps occur: This is clearly
testified in panel (d) of Fig. 2, where the finite gap opens
in T when progressively tuning the energy amount. Note
also that, by increasing the energy, one experiences a negative
temperature jump, from a hotter to a cooler state. This reflects
in fact the existence of a negative specific heat region which
anticipates the transition. Even more interesting is the situation
schematized in panel (c) of Fig. 2: A is now set to a value that
falls in between the two leftmost microcanonical tricritical
points (see also the zoom in the inset of Fig. 1). Now the
system experiences two nested transitions, respectively, of
first and second order, and presents both temperature jumps
and negative specific heat. In the magnified image of Fig. 1
the microcanonical second-order and first-order lines seem to
cross in one point of the parameter space. Clearly, this is just an
apparent intersection, due to the fact that we project the micro-
canonical phase diagram on the plane (A, Ty,) so as to favor a
comparison with the canonical predictions. The crossing is re-
solved if one operates in the more appropriate parameter space
(A, €), when dealing with the microcanonical solution [22].

As concerns the case with m = 3, which, we recall, proves
adequate to describe the dynamics of a single pass free electron
laser, one obtains a different phase diagram. The details of

the diagram are not given here but again the canonical and
microcanonical predictions differ. This case will be explored
in a future work.

Summing up, we have here considered a straightforward
generalization of the classical wave-particle Hamiltonian. We
have, in particular, analyzed the general case where multiple
modes are simultaneously present, and then specialized, for
pedagogical reasons, on the simple case study where just
two coevolving waves can become unstable. The competition
between different modes drives the emergence of ensemble
inequivalence, a feature which is instead lacking in the limit
where just one wave is solely allowed for. A plethora of
phenomena, including negative specific heat and temperature
jumps in the microcanonical ensembles, is revealed depending
on the strengths of the couplings, assumed as tunable control
parameters. Given the general interest of the investigated
model, bearing in mind its applications to the study of both
plasma instabilities and FEL dynamics, we believe that our
results could constitute an important step forward in the search
for an experimental verification of ensemble inequivalence. It
should be recalled, however, that wave-particle systems can
be trapped in long-lasting out-of-equilibrium states [23-28].
These latter might, at least in principle, coincide with the
experimentally accessible regimes [14], so making it intricate
to eventually sample the equilibrium configurations via direct
measurements. On the other hand, the equilibrium values
of key collective variables, like the laser intensity for the
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FEL [15], are similar to those displayed out of equilibrium.
For this reason, and besides the pedagogical interest of
the results that we have presented, we believe that having
pinpointed to an equilibrium ensemble inequivalence might
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also impact the experimentally sampled, out-of-equilibrium
dynamics.
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