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Conjugate heat and mass transfer in the lattice Boltzmann equation method
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An interface treatment for conjugate heat and mass transfer in the lattice Boltzmann equation method is
proposed based on our previously proposed second-order accurate Dirichlet and Neumann boundary schemes.
The continuity of temperature (concentration) and its flux at the interface for heat (mass) transfer is intrinsically
satisfied without iterative computations, and the interfacial temperature (concentration) and their fluxes are
conveniently obtained from the microscopic distribution functions without finite-difference calculations. The
present treatment takes into account the local geometry of the interface so that it can be directly applied to curved
interface problems such as conjugate heat and mass transfer in porous media. For straight interfaces or curved
interfaces with no tangential gradient, the coupling between the interfacial fluxes along the discrete lattice velocity
directions is eliminated and thus the proposed interface schemes can be greatly simplified. Several numerical tests
are conducted to verify the applicability and accuracy of the proposed conjugate interface treatment, including
(i) steady convection-diffusion in a channel containing two different fluids, (ii) unsteady convection-diffusion
in the channel, (iii) steady heat conduction inside a circular domain with two different solid materials, and
(iv) unsteady mass transfer from a spherical droplet in an extensional creeping flow. The accuracy and
order of convergence of the simulated interior temperature (concentration) field, the interfacial temperature
(concentration), and heat (mass) flux are examined in detail and compared with those obtained from the
“half-lattice division” treatment in the literature. The present analysis and numerical results show that the
half-lattice division scheme is second-order accurate only when the interface is fixed at the center of the
lattice links, while the present treatment preserves second-order accuracy for arbitrary link fractions. For
curved interfaces, the present treatment yields second-order accurate interior and interfacial temperatures
(concentrations) and first-order accurate interfacial heat (mass) flux. An increase of order of convergence by
one degree is obtained for each of these three quantities compared with the half-lattice division scheme. The
surface-averaged Sherwood numbers computed in test (iv) agree well with published results.
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I. INTRODUCTION

Conjugate heat (mass) transfer with the continuity of tem-
perature (concentration) and heat (mass) flux at the fluid-solid
interface or at the interface of two solids or fluids of different
thermal (mass diffusion) properties have been extensively
studied for their scientific and engineering significance [1–8].
The problems of conjugate heat (mass) transport across an
interface occur in a wide range of applications, such as cooling
of turbine blades, heat exchangers and electronic devices,
thermal insulation on heat pipes and chemical reactors, heat
conduction in composite materials, and heat and mass transfer
between solid particles and their surrounding fluids. Efficient
and accurate implementation of conjugate heat and mass
transfer conditions is also of great importance in the study
of transport phenomena on micro-/mesoscopic levels, such
as pore-scale determination of effective thermal conductivity
and diffusivity of porous structures and chemical reactions in
microchannels and microreactors [9–12].

When using conventional computational fluid dynamics
(CFD) methods such as finite-difference, finite-volume, and
finite-element methods for conjugate heat and mass trans-
fer [1–8], a popular approach to implement the conjugate
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interface condition is to apply iterative schemes, in which
a Dirichlet interface condition is imposed for one phase and
a Neumann interface condition for the other (two solids or
fluids of different thermal or mass diffusion properties are also
considered as two phases in this study). The heat and mass
transfer in each phase is separately solved and the continuity
condition at the interface is satisfied after multiple iterations.
In these iterative schemes, extrapolation is usually required
to obtain the temperature (concentration) and their fluxes at
the interface. For conjugate transport problems with complex
interface geometry, the iterative schemes may become difficult
to implement and they normally necessitate a considerable
amount of computational effort.

The lattice Boltzmann equation (LBE) method has become
an attractive alternative numerical method for the convection-
diffusion equation (CDE) for heat and mass transfer [see
Refs. [13–15] and references therein]. The most well-known
features of the LBE method include its inherent explicit
algorithm and the capability to treat complex geometry.
Boundary condition treatment is essential to the integrity of the
LBE method for heat and mass transfer since the kinetics-based
LBE method deals directly with the microscopic distribution
functions rather than the macroscopic temperature or con-
centration. Based on their second-order accurate boundary
treatments proposed for both the Dirichlet and Neumann
conditions, Li et al. [14,15] have established a general
framework for heat and mass transfer simulations using
the LBE method with direct extension to curved boundary
situations. In their framework, explicit analytical expressions
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were developed to relate the macroscopic quantities, such as
boundary temperature (concentration) and their fluxes and
interior temperature (concentration) gradients, to the micro-
scopic distribution functions solved in the LBE model. To
enrich that framework and make the LBE method an effective
numerical method for conjugate heat and mass transport
modeling, an accurate and efficient interface treatment is
desired.

An interface, when assumed to have zero thickness, is
essentially a common boundary for the two adjacent phases
or subdomains. While different from the standard Dirichlet
and Neumann boundary conditions where the respective
boundary temperature (concentration) and boundary flux are
explicitly prescribed, the boundary conditions at an interface
are conjugate ones pertaining to the continuity of the unknown
interfacial variable and its flux. The first work that explicitly
addressed the fluid-solid interface condition in the LBE
method was conducted by Wang et al. [9]. They proposed
a simple “half-lattice division” treatment for conjugate heat
transfer simulations. No special treatment is required in their
interface scheme and the continuity condition at the interface
can be automatically satisfied for steady cases. Their scheme
was numerically verified with steady-state tests when the
straight interfaces were fixed at the center of the lattice links.
This half-lattice division treatment was applied in [10,11] to
predict the effective thermal conductivity of various porous
structures. It was also employed by Tarokh et al. [16] to
simulate the conjugate heat transfer between two fluid streams
at different temperatures and separated by a solid layer of
finite thickness. Meng et al. [17] theoretically analyzed the
continuity of temperature and heat flux at a fluid-solid interface
in the LBE method. They derived a closed system of equations
for the unknown distribution functions at the interface for both
the fluid and the solid domains. It is noticed that, different
from the half-lattice division treatment in [9], the interface
scheme in [17] requires that the interface be located exactly
on the lattice nodes. This “lattice node on the interface”
scheme was also applied by Imani et al. [18] to simulate
the conjugate heat transfer from heated obstacles mounted
in a channel. Seddiq et al. [19] also modeled conjugate heat
transfer with the LBE method by fixing the interface on a
row of lattice nodes and further assuming that the ratio of the
gradients of the microscopic distribution functions for the two
phases at the interface is inversely proportional to their thermal
conductivity ratio. The applicability of their interface scheme
was demonstrated with two numerical tests, although they
did not provide any theoretical proof for their assumption of
proportionality on the microscopic distribution function level;
in addition, the continuity of temperature and heat flux at the
interface was not verified in [19].

It is realized that the existing interface schemes in the LBE
method for conjugate heat and mass transfer are limited to
straight-interface geometry, and the location of any interface
node in the lattice is fixed either halfway between two lattice
nodes [9,19] or right at a lattice node [17,18]. Thus, those
interface schemes are not directly applicable to conjugate
transport problems involving curved interface geometry, where
the lattice links are intersected by the curved interface with
irregular link fractions. In addition, the order of accuracy of
the conjugate interface schemes has not been investigated in

previous studies. It is the objective of the present study to
develop a general interface treatment that is applicable to
curved interfaces in conjugate heat and mass transfer modeling
with the LBE method. The exactness of the local interface
geometry is preserved in the present treatment based on
our previously proposed Dirichlet and Neumann boundary
condition treatments in the LBE method [14]. The schemes
used to evaluate the interfacial temperature (concentration)
and interfacial fluxes are also presented. The accuracy of the
present interface treatment is systematically investigated. The
investigation includes the convergence orders of the interior
temperature (concentration) fields and the interfacial values
and their fluxes.

The rest of this paper is organized as follows. In Sec. II, the
multiple-relaxation-time (MRT) LBE model for the general
CDE is introduced. Section III summarizes our previous
Dirichlet and Neumann boundary treatments, which serve
as the basis for the present interface treatment development.
The general interface treatment for conjugate heat and mass
transfer is derived in Sec. IV, in which a decoupled treatment
for special cases such as straight interfaces and zero-tangential-
gradient curved interfaces is also provided. Four numerical
tests are presented in Sec. V to verify the applicability
and accuracy of the present interface schemes. Section VI
concludes the paper.

II. LATTICE BOLTZMANN MODEL FOR THE
CONVECTION-DIFFUSION EQUATION

The governing equation for heat and mass transport can be
considered as a general CDE

∂φ

∂t
+ ∂

∂xj

(vjφ) = ∂

∂xi

(
Dij

∂φ

∂xj

)
+ G, (1)

where the scalar variable φ can be either temperature or
concentration in heat or mass transfer problems, respectively,
t is the time, vj is the velocity component in the xj direction,
Dij is the diffusion coefficient, and G is the general source
term.

There have been various LBE models proposed (see
Refs. [13–15] and references therein) for the CDE (1). The
MRT D3Q7 and D2Q5 (DnQm denotes m discrete lattice
velocities in n dimensions) models proposed by Yoshida
and Nagaoka [13] are used in the present work for their
simple implementation, second-order accuracy in space and
first-order accuracy in time, and the capability to simulate
anisotropic diffusion problems.

To recover the macroscopic CDE (1), the following LBE
for the evolution of the microscopic distribution function,
g(x, ξ , t), was proposed in [13]

gα(x + eαδt,t + δt) − gα(x,t) = [Lg(x,t)]α + ωαG(x,t)δt,

(2)

where gα(x,t) ≡ g(x, ξα, t), x is the spatial vector, ξ is the
particle velocity vector in the phase space (x,ξ ) and it is
discretized to a small set of discrete velocities {ξα|α =
0, 1, . . . , 6}, eα is the αth discrete velocity vector [{eα} =
(0, 0, 0), (±1, 0, 0), (0, ±1, 0), and (0, 0, ±1) for D3Q7 and
{eα} = (0, 0), (±1, 0), and (0, ±1) for D2Q5], δt is the time
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step, L is the standard collision operator in the LBE method,
and ωα is the weight coefficient.

As shown in [14], the collision operator can be represented
in the moment space as

Lg(x,t) = −M−1S[m(x,t) − m(eq)(x,t)], (3)

where M is a matrix to transform the distribution functions
g to their moments m by m = Mg, S is a matrix of
relaxation coefficients τij , and the equilibrium moments of
the distribution functions are explicitly defined as m(eq) =
(0,uφ,vφ,wφ,aφ,0,0)T, with u, v, and w being the macro-
scopic velocity components in the Cartesian coordinates and
a being a constant related to the weight coefficients ωα [14].

The asymptotic analysis in [13] showed that when the
relaxation coefficients, τij , in the relaxation matrix S are
related to the diffusion coefficients, Dij , as

τij = 1

2
δij + δt

εD(δx)2
Dij , (4)

the leading-order solution of the CDE (1) is obtained from the
moment of the distribution functions

φ(x,t) =
m∑

α=0

gα(x,t), (5)

with second-order accuracy in space and first-order accuracy
in time. In Eq. (4), δij is the Kronecker’s δ and εD is a constant
related to the weight coefficients ωα .

For efficient computations, the evolution equation (2) with
the MRT collision operator in Eq. (3) is usually solved in two
steps: collision step,

ĝα(x,t) = gα(x,t) − {M−1S[m(x,t) − m(eq)(x,t)]}α
+ωαG(x,t)δt, (6)

and streaming step,

gα(x + eαδt,t + δt) = ĝα(x,t), (7)

where ĝα represents the postcollision state. The specific
matrices M and S and the coefficients ωα for the applied
D3Q7 and D2Q5 LBE models are given in Appendix A for
completeness; more details about the model implementations
can be found in [13,14].

III. BOUNDARY CONDITIONS

The evolution equation (2) governs the behavior of the
microscopic distribution functions g(x,t) in the interior of
a computational domain. Thus, it is necessary to convert
the macroscopic boundary information, such as a Dirichlet
boundary value or a Neumann boundary flux condition, into
appropriate boundary conditions for g(x,t) at the interior lattice
nodes adjacent to the boundary. When one considers the
interface as a common boundary for the two adjacent domains,
the relationship between the interfacial information and the
interior distribution functions in the boundary treatment should
hold in each domain.

The second-order accurate Dirichlet and Neumann bound-
ary conditions proposed by Li et al. [14] based on the
“bounce-back” idea and spatial interpolation are able to
preserve the exact geometry on a boundary and thus can

FIG. 1. (Color online) Illustration of the local geometry of an
interface in the lattice (solid circles, lattice nodes in Domain 1; solid
squares, interface nodes; open circles, lattice nodes in Domain 2).

be extended to curved boundary situations. Their boundary
condition treatments are used in this work and they serve as the
basis for the construction of the present second-order accurate
conjugate interface treatment. For completeness, the Dirichlet
and Neumann condition treatments in [14] are provided in the
following.

A. Dirichlet condition treatment

To formulate the boundary schemes, we consider the
interface in Fig. 1 as a boundary for the interior Domain
1, while Domain 2 is considered as an exterior. Given the
Dirichlet condition φ = 	d at the boundary node xw, the
treatment for the distribution function at the first interior field
node, xf , along the lattice velocity direction eᾱ (see Fig. 1) at
the current time t + δt , can be expressed as [14]

gᾱ(xf ,t + δt) = cd1ĝα(xf ,t) + cd2ĝα(xff ,t)

+ cd3ĝᾱ(xf ,t) + cd4εD	d, (8)

where xff is the second lattice node inside Domain 1
along the eᾱ direction, i.e., xff = xf + eᾱδt , and cd 1-cd 4 are
coefficients related to the local link fraction 
 defined as

 = ||xf − xw||/||xf − xs ||. The asymptotic analysis in [14]
showed that the second-order accuracy is preserved for the
Dirichlet boundary condition with treatment (8) when the
following relationship is maintained, where cd 1 (�1) is an
adjustable variable:

cd2 = −2
cd1 + 1

2
 + 1
, cd3 = cd1 + 2


2
 + 1
,

and cd4 = −cd1 + 1

2
 + 1
. (9)

Three particular schemes were examined in [14] and they are
given in Appendix B.

B. Neumann condition treatment

For the Neumann (flux) boundary condition −Dn
∂φ

∂n
= 	n

at xw in the normal direction (here Dn represents the diffusion
coefficient), the second-order accurate boundary condition
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treatment was given in [14] as

gᾱ(xf ,t + δt) = cn1ĝα(xf ,t) + cn2ĝα(xff ,t)

+ cn3ĝᾱ(xf ,t) + cn4
δt

δx
	nᾱ, (10)

where it should be noted that 	nᾱ is the boundary flux
along the lattice velocity eᾱ direction. The asymptotic analysis
in [14] showed that to maintain second-order accuracy, the
coefficients cn1-cn4 in Eq. (10) are uniquely determined as

cn1 = 1, cn2 = −2
 − 1

2
 + 1
,

cn3 = 2
 − 1

2
 + 1
, and cn4 = 2

2
 + 1
. (11)

As emphasized in [14,15], when the local boundary normal
n is aligned with eᾱ, 	nᾱ = 	n and thus treatment (10) can
be directly applied. When n is not in the eᾱ direction, which is
usually encountered on inclined or curved boundaries, 	nᾱ is
not equal to 	n and it also depends on the unknown tangential
flux. A Cartesian decomposition method was proposed in [14]
to conveniently and accurately obtain 	nᾱ based on 	n. For
details about the Neumann condition treatment for curved
boundaries and its extension to mixed boundary conditions,
please refer to [14].

IV. CONJUGATE CONDITION TREATMENT
AT THE INTERFACE

Based on the Dirichlet and Neumann boundary condition
treatments in Sec. III, an interface treatment for conjugate heat
and mass transfer at the interface in the LBE method can be
derived.

As illustrated in Fig. 1, the conjugate interface conditions,
including the continuity of the macroscopic variable φ (tem-
perature or concentration) and its normal flux at the interface,
can be expressed as

φf = 	d = φs (12)

and

	nf = −Df

∂φf

∂nf

= σDs

∂φs

∂ns

= −σ	ns, (13)

where the indices f and s denote the two different subdomains,
such as the fluid and solid phases, respectively, in conjugate
heat and mass transfer on a fluid-solid interface, 	d is the
interfacial value of φ, 	nf and 	ns are the normal fluxes
related to the diffusivities Df and Ds , respectively [see the
diffusion coefficient in Eq. (1)], nf and ns are the normal
vector components, and the ratio σ = 1 in mass transfer and
σ = (ρcp)s/(ρcp)f in heat transfer problems, with ρ being the
density and cp the heat capacity.

With the interface treated as a boundary of zero thickness
for both subdomains, the following boundary treatments are
readily obtained from the Dirichlet and Neumann condition
treatments in Eqs. (8) and (10), respectively: Dirichlet condi-
tion,

gᾱ(xf ,t + δt) = cd1ĝα(xf ,t) + cd2ĝα(xff ,t)

+ cd3ĝᾱ(xf ,t) + cd4εD	d, (14a)

gα(xs ,t + δt) = c∗
d1ĝᾱ(xs ,t) + c∗

d2ĝᾱ (xss ,t)

+ c∗
d3ĝα(xs ,t) + c∗

d4εD	d, (14b)

Neumann condition,

gᾱ(xf ,t + δt) = cn1ĝα(xf ,t) + cn2ĝα(xff ,t)

+ cn3ĝᾱ(xf ,t) + cn4 (δt/δx) 	nᾱ, (15a)

gα(xs ,t + δt) = c∗
n1ĝᾱ(xs ,t) + c∗

n2ĝᾱ (xss ,t)

+ c∗
n3ĝα(xs ,t) + c∗

n4 (δt/δx) 	nα, (15b)

where 	nᾱ and 	nα are the respective interfacial fluxes along
the discrete lattice velocity directions eᾱ and eα and xs and
xss are the first and second interior lattice nodes along the eα

direction in Domain 2, respectively. The coefficients c∗
di and

c∗
ni(i = 1, 2, 3, and 4) are related to cdi and cni as

c∗
di = cdi(


∗) = cdi(1 − 
)
(16)

and c∗
ni = cni(


∗) = cni(1 − 
),

since the intersection fraction in Domain 2 is 
∗ = ||xs −
xw||/||xf − xs || = 1 − 
.

To implement the interfacial flux condition in Eq. (13),
the relationship between the flux in the lattice direction and
that in the normal direction of the interface must be applied
in both Domains 1 and 2. According to [14], the following
relationships exist for two-dimensional (2D) cases:

	nᾱ =
{

1

c′
d4

[(c′
n1 − c′

d1)ĝβ(x′
f ,t) + (c′

n2 − c′
d2)ĝβ(x′

ff ,t)

+ (c′
n3 − c′

d3)ĝβ̄(x′
f ,t)]sin θ − 1

cd4
[(cn1 − cd1)ĝα(xf ,t)

+ (cn2 − cd2)ĝα(xff ,t) + (cn3 − cd3)ĝᾱ(xf ,t)]sin θ

+ c′
n4

c′
d4

δt

δx
	nf

}/[
cn4

cd4

δt

δx
sin θ + c′

n4

c′
d4

δt

δx
cos θ

]
,

(17a)

	nα =
{

1

c′
d4

[(c′
n1 − c′

d1)ĝβ̄(x′
s ,t) + (c′

n2 − c′
d2)ĝβ̄(x′

ss ,t)

+ (c′
n3 − c′

d3)ĝβ(x′
s ,t)]sin θ − 1

c∗
d4

[(c∗
n1 − c∗

d1)ĝᾱ(xs ,t)

+ (c∗
n2 − c∗

d2)ĝᾱ(xss ,t) + (c∗
n3 − c∗

d3)ĝα(xs ,t)] sin θ

+ c′
n4

c′
d4

δt

δx
	ns

}/[
c∗
n4

c∗
d4

δt

δx
sin θ + c′

n4

c′
d4

δt

δx
cos θ

]
, (17b)

where θ is the angle between the lattice vector eᾱ and the nor-
mal n at the interface node xw, ĝβ̄ and ĝβ are the postcollision
distribution functions along the lattice directions eβ̄ and eβ

that are perpendicular to eᾱ and eα, and they are evaluated at
the intersection nodes x′

f = x′
s = xw, x′

ff = xw + eβ̄ δt, and
x′

ss = xw + eβδt (see Fig. 1), with interpolation or extrapola-
tion of the neighboring distribution functions. Specifically, the
distributions ĝβ̄ and ĝβ at x′

f in Domain 1 are obtained from a
quadratic extrapolation of the respective distributions ĝβ̄ and
ĝβ at the three neighboring nodes in Domain 1, and ĝβ at x′

ff is
obtained from a quadratic interpolation or extrapolation of the
three neighboring nodes in Domain 1 depending on whether
x′

ff is located between two nodes in Domain 1 or between a
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node in Domain 1 and an interface node, respectively. The
same procedure applies to the evaluation of ĝβ̄ and ĝβ in
Domain 2 as well. The coefficients c′

di and c′
ni(i = 1, 2, 3,

and 4) are determined from Eqs. (9) and (11) by setting 
=
0; i.e.,

c′
di = cdi(


′) = cdi(
 = 0)
(18)

and c′
ni = cni(


′) = cni(
 = 0).

A. General conjugate interface treatment

The combination of Eqs. (14a) and (14b) gives one equa-
tion for the two unknowns gᾱ(xf ,t + δt) and gα(xs ,t + δt).
Substituting Eqs. (17a) and (17b) into Eqs. (15a) and (15b)
and recalling the relationship in Eq. (13), one obtains another
equation for these unknowns. The solutions to the equations
are

gᾱ(xf ,t + δt)

= A
f

1 ĝα(xf ,t) + A
f

2 ĝα(xff ,t) + A
f

3 ĝᾱ(xf ,t)

+B
f

1 ĝᾱ(xs ,t) + B
f

2 ĝᾱ (xss ,t) + B
f

3 ĝα(xs ,t)

+C
f

1 ĝβ(x′
f ,t) + C

f

2 ĝβ(x′
ff ,t) + C

f

3 ĝβ̄(x′
f ,t)

+ σC
f

1 ĝβ̄(x′
s ,t) + σC

f

2 ĝβ̄(x′
ss ,t) + σC

f

3 ĝβ(x′
s ,t),

(19a)

gα(xs ,t + δt)

= As
1ĝᾱ(xs ,t) + As

2ĝᾱ(xss ,t) + As
3ĝα(xs ,t)

+Bs
1 ĝα(xf ,t) + Bs

2 ĝα(xff ,t) + Bs
3 ĝᾱ(xf ,t)

+ σCs
1ĝβ̄(x′

s ,t) + σCs
2ĝβ̄(x′

ss ,t) + σCs
3ĝβ(x′

s ,t)

+Cs
1ĝβ(x′

f ,t) + Cs
2ĝβ(x′

ff ,t) + Cs
3ĝβ̄(x′

f ,t),

(19b)

where the coefficients are determined from

A
f

i =
[

(σ + 1)c′
d4cdi

cd4c
∗
d4c

′
n4

sin θ +
(

σcdi

cd4c
∗
n4

+ cni

c∗
d4cn4

)
cos θ

]/
P,

B
f

i = σ

(
c∗
ni − c∗

di

c∗
d4c

∗
n4

)
cos θ/P,

C
f

i =
(

c′
d4

c∗
d4c

′
n4

c′
ni − c′

di

c′
d4

)
sin θ/P, (i = 1,2,3) (20a)

and

As
i =

[
(1 + σ ) c′

d4c
∗
di

c∗
d4cd4c

′
n4

sin θ +
(

c∗
di

c∗
d4cn4

+ σc∗
ni

cd4c
∗
n4

)
cos θ

]/
P,

Bs
i =

(
cni − cdi

cd4cn4

)
cos θ/P,

Cs
i =

(
c′
d4

cd4c
′
n4

c′
ni − c′

di

c′
d4

)
sin θ/P, (i = 1,2,3) (20b)

with

P = (σ + 1) c′
d4

cd4c
∗
d4c

′
n4

sin θ +
(

σ

cd4c
∗
n4

+ 1

c∗
d4cn4

)
cos θ. (21)

The present general interface treatment in Eqs. (19a)
and (19b) can be directly applied to curved interface

simulations since the local geometry of the interface is
preserved by using the precise values of the local link fraction

 and the angle θ between the interfacial normal n and the
lattice vector eᾱ . The coefficients cdi , cni , c∗

di , c∗
ni, c′

di , and c′
ni

(i = 1–4) in Eqs. (20a), (20b), and (21) are also related to the
local 
 as given in Eqs. (9), (11), (16), and (18).

With gᾱ(xf ,t + δt) and gα(xs ,t + δt) obtained from the
present conjugate interface treatment, the macroscopic value
φ and its fluxes in the lattice velocity directions eᾱ and eα

at the interface can be solved according to Eqs. (14a), (14b)
and (15a), (15b). Those evaluation schemes are rewritten as

	d = 1

cd4εD

[gᾱ(xf ,t + δt) − cd1ĝα(xf ,t)

− cd2ĝα(xff ,t) − cd3ĝᾱ(xf ,t)] (22a)

or

	d = 1

c∗
d4εD

[gα(xs ,t + δt) − c∗
d1ĝᾱ(xs ,t)

− c∗
d2ĝᾱ(xss ,t) − c∗

d3ĝα(xs ,t)], (22b)

	nᾱ = δx

cn4δt
[gᾱ(xf ,t + δt) − cn1ĝα(xf ,t)

− cn2ĝα(xff ,t) − cn3ĝᾱ(xf ,t)], (23a)

and

	nα = δx

c∗
n4δt

[gα(xs ,t + δt) − c∗
n1ĝᾱ(xs ,t)

− c∗
n2ĝᾱ(xss ,t) − c∗

n3ĝα(xs ,t)]. (23b)

It is worth mentioning that there are special situations, such
as straight interface cases and those with zero-tangential fluxes
along the interface, for which the present conjugate interface
treatment can be greatly simplified by decoupling the interfa-
cial fluxes along the lattice velocity directions. The decoupled
interface treatment is thus presented in the next section.

B. Decoupled conjugate interface treatment

For conjugate heat and mass transfer at straight interfaces,
it is natural to place the lattice in such a way that the lattice
vectors eᾱ and eα are aligned with the normal n of the interface;
thus, the following relationships are readily obtained:

	nᾱ = 	nf and 	nα = 	ns, when eᾱ//n. (24)

When the tangential flux 	t along an interface is known
to be zero, such as that in axisymmetric problems, the simple
projection rule holds (see Fig. 1):

	nᾱ = 	nf cos θ and 	nα = 	nscos θ, when 	t = 0.

(25)

Clearly for these two cases, the coupling of the interfacial
fluxes in the lattice velocity directions eᾱ and eβ̄ can be
eliminated. By replacing Eqs. (17a) and (17b) with the
decoupled relationships in either Eq. (24) or (25) the conjugate
interface treatment in Eqs. (19a) and (19b) is simplified to

gᾱ(xf ,t + δt) = A
f

1 ĝα(xf ,t) + A
f

2 ĝα(xff ,t) + A
f

3 ĝᾱ(xf ,t)

+B
f

1 ĝᾱ(xs ,t) + B
f

2 ĝᾱ(xss ,t) + B
f

3 ĝα(xs ,t),

(26a)
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gα(xs ,t + δt) = As
1ĝᾱ(xs ,t) + As

2ĝᾱ(xss ,t) + As
3ĝα(xs ,t)

+Bs
1 ĝα(xf ,t) + Bs

2 ĝα(xff ,t) + Bs
3 ĝᾱ(xf ,t),

(26b)

with

A
f

i =
(

σcdi

cd4c
∗
n4

+ cni

c∗
d4cn4

)/
P,

B
f

i = σ

(
c∗
ni − c∗

di

c∗
d4c

∗
n4

)/
P,

(27a)

As
i =

(
c∗
di

c∗
d4cn4

+ σc∗
ni

cd4c
∗
n4

)/
P,

Bs
i =

(
cni − cdi

cd4cn4

)/
P, (i = 1,2,3)

and

P = σ

cd4c
∗
n4

+ 1

c∗
d4cn4

. (27b)

C. Present particular conjugate interface schemes

Three particular boundary schemes (see Appendix B) for
Dirichlet conditions were presented in [14] with different
choices of the adjustable coefficient cd 1 in Eq. (8) as a function
of the local 
 value. Their numerical stability and second-order
accuracy were also examined and verified in [14]. Since
cd 1 is also the adjustable coefficient in the present interface
treatment in Eqs. (19a) and (19b) when the relationships in
Eqs. (9), (11), (16), and (18) for the other coefficients are
preserved for second-order accuracy, three particular conjugate
interface schemes are explicitly provided in this work. Their
specific coefficients for 2D problems are listed in Table I.

For the decoupled interface treatment in Eqs. (26a)
and (26b), three corresponding particular schemes are also
obtained. Their coefficients in Eqs. (27a) and (27b) can be
simplified from Table I with a direct substitution of sinθ =
0 and cosθ = 1. For convenience, the coefficients are listed
separately in Table II.

D. The modified “half-lattice division” interface treatment

In the previous conjugate interface schemes used in
[9–11,16], the interfaces are straight and located “halfway”
between the lattice nodes (
= 0.5). With the substitution of

 = 0.5 in Table II, the decoupled conjugate treatment in
Eqs. (26a) and (26b) becomes

gᾱ(xf ,t + δt) =
(

1 − σ

1 + σ

)
ĝα(xf ,t) +

(
2σ

1 + σ

)
ĝᾱ(xs ,t),

(28a)

gα(xs ,t + δt) = −
(

1 − σ

1 + σ

)
ĝᾱ(xs ,t) +

(
2

1 + σ

)
ĝα(xf ,t).

(28b)

In each of the above equations, the first term on the right side
represents the bounce-back contribution at the interface and the
second term represents the streaming or transport contribution
from one phase to the other crossing over the interface. It is
also noticed that only the local distributions at xf and xs are

required in this modified half-lattice division (HLD) scheme.
Furthermore, for the most simplified case of 
 = 0.5 and σ =
1, the modified HLD scheme reduces to

gᾱ(xf ,t + δt) = ĝᾱ(xs ,t), (29a)

gα(xs ,t + δt) = ĝα(xf ,t). (29b)

Equations (29a) and (29b) show that no special treatment
is needed for the nodes in Domains 1 and 2 adjacent to the
interface. The standard streaming step in Eq. (7) can be directly
applied to the interior lattice nodes surrounding the interface.
This is the algorithm used in the previous studies in [9–11,16].

According to the asymptotic analysis for boundary condi-
tions in [14], the HLD scheme in Eqs. (29a) and (29b) is first-
order accurate in general and it has second-order accuracy only
for the special case of 
= 0.5. On the contrary, the presently
proposed decoupled interface schemes in Eqs. (26a) and (26b)
with the coefficients determined in Eqs. (27a) and (27b)
are able to preserve second-order accuracy for arbitrary 


values. For curved interfaces with nonzero tangential fluxes,
the accuracy of the general interface treatment in Eqs. (19a)
and (19b) is affected by the curved geometry. Based on the
convergence observations in [14,15] for curved boundary sim-
ulations, the present interface treatment for curved interfaces
should be able to preserve second-order accuracy for the
temperature (concentration) field and first-order accuracy for
their interfacial fluxes. The accuracy of these interface schemes
are verified with numerical examples in Sec. V.

V. NUMERICAL VERIFICATION

Four numerical tests are conducted in this section to verify
the applicability and accuracy of the proposed conjugate
interface treatment. Tests (i) and (ii) study the steady-state
and transient convection-diffusion in a 2D channel containing
two different fluids, respectively. The interface in the channel
is straight and perpendicular to one of the discrete lattice
velocities so that the decoupled conjugate schemes are applied.
The interface is placed at different locations between two
layers of lattice nodes to elucidate the effect of the link
fraction 
 value on the accuracy of the conjugate schemes.
Curved interfaces are encountered in the last two tests, where
test (iii) simulates the steady-state heat conduction within a
circular domain of two solids, and test (iv) is for conjugate
mass transfer simulation between a spherical droplet and the
surrounding fluid. For tests (iii) and (iv), the interfacial fluxes
in different directions are fully coupled; thus, the general
interface treatment must be employed. Analytical solutions
are available for tests (i) to (iii) so that the numerical accuracy
of the interface treatment is fully examined in terms of
the simulated interior temperature (concentration) field, the
macroscopic interfacial values and the interfacial fluxes. The
computed Sherwood numbers for conjugate mass transfer in
test (iv) are compared with published results in [8]. It should be
noted that in each of those tests, the velocity field is prescribed
and not coupled with the heat or mass transfer. The Dirichlet
and Neumann boundary conditions proposed in [14], which
are the basis for the present conjugate interface treatment, can
be extended to the mixed or “third-type” boundary condition
as demonstrated in [14] and their coupling with hydrodynamic
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TABLE II Coefficients in Schemes 1, 2, and 3 for the decoupled conjugate interface treatment in Eqs. (26a) and (26b) for 2D simulations.

Scheme 1 (0 � 
 � 0.5) Scheme 1 (0.5 < 
 � 1) Scheme 2 (0 � 
 � 1) Scheme 3 (0 � 
 � 1)

A
f

1 [−
 (3 − 2
) σ + (1 − 
) (2
 + 1)] /P
(− 3−2


2 σ + 2
+1
2

)
/P

[ 3−2

2 − (1 − 
) (2
 + 1) σ

]
/P − (2
 + 1) (3 − 2
) (σ − 1) /P

A
f

2 (2
 − 1)
[ (3−2
)

2 σ − (1 − 
)
]
/P

( 1−2

2

)
/P (1 − 2
)

[ 3−2

2(2
+1) − 1−2


2 σ
]
/P (2
 − 1) (3 − 2
) (σ − 1) /P

A
f

3 (1 − 
) (2
 − 1) /P (2
 − 1)
( 3−2


2 σ + 1
2

)
/P (2
 − 1)

[ 3−2

2(2
+1) + σ

]
/P (2
 − 1) (3 − 2
) (σ + 1) /P

B
f

1
(3−2
)2

2 σ/P
(3−2
)2

2 σ/P
(3−2
)2

2 σ/P 2 (3 − 2
)2 σ/P

B
f

2 (1 − 
) (2
 − 1) σ/P (2 − 
) (2
 − 1) σ/P

(2
−1)(3−2
)

2
+1 σ/P 2 (2
 − 1) (3 − 2
) σ/P

B
f

3

( 2
−1
2

)
σ/P

( 1−2

2

)
σ/P

(2
−1)(3−2
)
2(2
+1) σ/P 0

As
1

( 3−2

2 σ − 2
+1

2

)
/P [
 (3 − 2
) σ − (1 − 
) (2
 + 1)] /P

[ 2
+1
2 σ − 
 (3 − 2
)

]
/P − (3 − 2
) (2
 + 1) (1 − σ ) /P

As
2

( 2
−1
2

)
σ/P (1 − 2
)

(−
σ + 2
+1
2

)
/P (2
 − 1)

[ 2
+1
2(3−2
) σ − 2
−1

2

]
/P (1 − 2
) (2
 + 1) (1 − σ ) /P

As
3 (1 − 2
)

(
σ
2 + 2
+1

2

)
/P 
 (1 − 2
) σ/P (1 − 2
)

[ 2
+1
2(3−2
) σ + 1

]
/P (1 − 2
) (2
 + 1) (1 + σ ) /P

Bs
1

(2
+1)2

2 /P
(2
+1)2

2 /P
(2
+1)2

2 /P 2 (2
 + 1)2 /P

Bs
2 
 (2
 − 1) /P 
 (1 − 2
) /P

(1−
)(1−2
)(2
+1)
3−2


/P 2 (1 − 2
) (2
 + 1) /P

Bs
3

( 2
−1
2

)
/P

( 1−2

2

)
/P

(1−2
)(2
+1)
2(3−2
) /P 0

P (3 − 2
) σ/2 + (1 − 
) (1 + 2
) 
 (3 − 2
) σ + (2
 + 1) /2 2
+1
2 σ + 3−2


2 (2
 + 1) (3 − 2
) (σ + 1)

problems has been numerically verified in [15,20] with two
different sets of distribution functions defined for the velocity
and temperature (concentration) fields, respectively. It is thus
reasonable to believe that the present conjugate treatment will
also be applicable to coupled problems where the velocity
and the temperature (concentration) are interacting with each
other.

A. Convection-diffusion in a channel filled with two fluids

The configuration of the channel and the square lattice
distributions are schematically depicted in Fig. 2. The channel
has a fixed height H and is separated into two subdomains: the
bottom with a height h (Domain 1) and the top with (H − h)
(Domain 2). To interpret the lattice link fractions intersected
by the interface and the channel boundaries shown in Fig. 2,
one can consider moving the entire lattice structure up and

FIG. 2. (Color online) Schematic layout of the square lattice on
a 2D channel containing two fluids in Domain 1 (0 � y � h) and
Domain 2 (h � y � H ).

down according to the fraction 
 values while the channel
and the interface remain stationary. The fluids in Domains 1
and 2 have different physical properties and they interact with
each other only through the interface at y = h. In order to
obtain analytical solutions, a stratified flow is assumed; i.e.,
both fluids are flowing at a constant horizontal velocity U in
the x direction and a zero velocity in the y direction. The
governing CDEs are thus written as

∂φ1,2

∂t
+ U

∂φ1,2

∂x
= D1,2

(
∂2φ1,2

∂x2
+ ∂2φ1,2

∂y2

)
. (30)

The characteristic Péclet number is defined as Pe =
UH/D1, and a moderate value of Pe = 20 is used in all
simulations. A periodic boundary condition in the x direction
is imposed so that f (x + L) = f (x) is valid for both φ and the
distribution function gα . Both the steady-state and the transient
solutions for Eq. (30) are investigated to assess the spatial
and temporal accuracy of the present conjugate interface
treatment.

1. Steady-state convection-diffusion in the channel

At steady state, the transient term ∂φ1,2/∂t in Eq. (30)
disappears. When a sinusoidal Dirichlet condition is imposed
on each of the boundary walls, the boundary conditions in the
y direction read

φ1(x, y = 0) = φ2(x,y = H ) = cos(kx), with k= 2π/L,

(31)

φ1 = φ2 at y = h, (32)

and

D1
∂φ1

∂y
= σD2

∂φ2

∂y
at y = h. (33)
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FIG. 3. (Color online) Regions of stability and instability in the LBE computation for steady convection-diffusion in the channel for various
fluid diffusivity ratios κ = D2/D1 using different relaxation coefficient τ1 values (a) on log-linear scale and (b) on log-log scale.

Equations (32) and (33) constitute the conjugate conditions
at the interface. Again, σ = 1 in mass transfer and σ =
(ρcp)2/(ρcp)1 in heat transfer problems can be enforced. The
analytical solutions for φ1,2 are

φex,1(x,y) = Re{eikx[γ1e
−λ1y + (1 − γ1)eλ1y]} (0 � y � h),

(34)

φex,2(x,y) = Re{eikx[γ2e
−λ2y + (1 − γ2e

−λ2H )e−λ2(H−y)]}
(h � y � H ), (35)

where

γ1 = λ1
(
a2

3 − a2
2

)+ κσλ2
(
2a1a2a3 − a2

2 − a2
3

)
(λ1 + κσλ2)

(
a2

1a
2
3 − a2

2

)− (λ1 − κσλ2)
(
a2

1a
2
2 − a2

3

) ,
(36)

γ2 = λ1
(
a2

1a3 + a3 − 2a1a2
)+ κσλ2

(
a2

1 − 1
)

(λ1 + κσλ2)
(
a2

1a
2
3 − a2

2

)− (λ1 − κσλ2)
(
a2

1a
2
2 − a2

3

) ,
(37)

and

a1 = e−λ1h, a2 = e−λ2h, and a3 = e−λ2H . (38)

In the above, “Re” denotes the real part of a complex
number, κ = D2/D1 is the diffusivity ratio, and λ1,2 =
k
√

1 + iU
D1,2k

.
The decoupled interface treatment in Eqs. (26a) and (26b)

is applied since the normal of the interface is aligned with
the lattice velocity vectors eᾱ and eα (see Fig. 2). The three
particular interface schemes whose coefficients are listed in
Table II are implemented and the corresponding Dirichlet
schemes for the channel walls are also used; i.e., the same
expression for the adjustable coefficient cd 1 is used in both
the interface and the wall boundary schemes. For brevity, the

basic case with H = 2h and σ = 1 is studied in this section for
steady-state solutions.

The numerical stability of the present conjugate interface
treatment is first examined following the tests in [14,21] for
boundary scheme analysis. It is well known that τ1 > 0.5
is required for stable computation of single phase problems
and for positive diffusion coefficient. Figure 3 shows the
stable and unstable regions based on a large number of the
computational runs with large ranges of diffusivity ratios
κ = D2/D1 and relaxation coefficient τ1 values. The conjugate
interface Scheme 2 is used in Fig. 3 and the simulation
parameters are Pe = 20, H = 32δy, and 
 = 0.0001. Very
close results for using Schemes 1 and 3 and other parameters
Pe = 50, 100, and 
 = 0.9999 are also obtained, indicating
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FIG. 4. (Color online) Contours of φ for steady convection-
diffusion in the channel at Pe = 20 with simulation parameters H =
2h = 64δy, 
 = 0.5, κ = 10, τ1 = 0.55, and τ2 = 1.0.
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FIG. 5. (Color online) Profiles of (a) φ(x, y) and (b) Di∂φi/∂y along vertical lines in the channel at Pe = 20 with H = 2h = 64δy, κ = 10,
τ1 = 0.55, and τ2 = 1.0.

that the numerical stability of the present conjugate interface
schemes is not sensitive to the 
 values. The region of stability
shown in Fig. 3 also imply that the conjugate interface schemes
are stable over a wide range of diffusivity ratios when τ1 is in
the range of 0.5 < τ1 � 4.0, even when τ1 is very close to 0.5.

For illustration purposes, Fig. 4 shows the contours of φ in
the channel from the LBE simulations for κ = D2/D1 = 10
and Pe = 20 using H = 64δy, 
 = 0.5, τ1 = 0.55, and τ2 = 1.0.
The profiles of φ and its flux Di∂φi/∂y (the subscript i denotes
the subdomains) along the vertical lines at x/L = 0.0625, 0.25,
0.50, and 0.75 are presented in Figs. 5(a) and 5(b), respectively.
In addition, both the quantity φ and its flux at the interface
are shown in Fig. 6. Very good agreement between simulated

FIG. 6. (Color online) Profiles of φint(x, y) and (D∂φ/∂y)int at
the interface (y = h) in the channel with the same parameters as in
Fig. 5.

results and analytical solutions is obtained in Figs. 5 and 6
for each 
 value tested. It is emphasized that with the present
conjugate interface treatment, the interfacial values of φ and its
fluxes in the lattice velocity directions at the interface evaluated
from the distribution functions in each subdomain are exactly
the same. Identically same numerical results for φ(x, y = h)
are obtained from using Eqs. (22a) and (22b), and the same
numerical results for Di∂φi/∂y(x, y = h) are obtained based
on Eqs. (23a) and (23b). This has been numerically verified
for all cases in the present work.

To further assess the accuracy of the interface schemes, the
following L2 norm errors are defined:

E2 =
[∑

x,y

(φLBE − φex)2/
∑
x,y

φ2
ex

]1/2

, (39)

E2 tint =
⎡
⎣∑

x,y=h

(φ1,2|LBE − φ1,2|ex)2/
∑

x,y=h

(φ1,2|ex)2

⎤
⎦

1/2

,

(40)

E2 qint =
⎡
⎣∑

x,y=h

(
D1,2

∂φ1,2

∂y

∣∣∣∣
LBE

− D1,2
∂φ1,2

∂y

∣∣∣∣
ex

)2/

∑
x,y=h

(
D1,2

∂φ1,2

∂y

∣∣∣∣
ex

)2
⎤
⎦

1/2

, (41)

where E2 contains the relative errors in the interior domain,
E2 tint and E2 qint evaluate the relative errors of the macroscopic
value φ and its flux at the interface, respectively, that
are obtained from Eqs. (22a), (22b) and (23a), (23b). As
emphasized earlier, the present conjugate interface treatment
yields the same φint values computed from Eqs. (22a) and (22b)
and the same interface flux values from Eqs. (23a) and (23b),
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FIG. 7. (Color online) Relative L2 norm error, E2, for the interior field of φ versus the grid resolution, 1/H , for steady convection-diffusion
in the channel using the present interface schemes with (a) 
 = 0.50, 0.25, and 0.75, and (b) 
 = 0.50, 0.01, and 0.99.

respectively, with the distribution functions in the two sub-
domains. For the HLD scheme used, the interface values
in Eqs. (40) and (41) are computed separately from the
distribution functions in the subdomains. The second-order
accuracy of the Dirichlet schemes for the boundary walls has
been verified in [14] and thus is not discussed here.

Figure 7 shows the results of E2 versus the grid resolution
1/H at different 
 values. The relaxation coefficients are
fixed at τ1 = 0.55 and τ2 = 1.0 so that the diffusivity ratio
is κ = (τ2 − 0.5)/(τ1 − 0.5) = 10. The results of E2 tint and
E2 qint are plotted in Figs. 8 and 9, respectively. The overall
relative errors E2 qint for the interfacial flux are higher than
E2 tint for the interfacial values of φ. Clearly, second-order
convergence with respect to the spatial resolution is observed
for all cases in Figs. 7–9. The second-order accuracy of the
interior distributions of φ, the interfacial φ values, and its

interfacial fluxes is thus verified for straight interfaces with
the present conjugate interface treatment.

To gain more insights into the effect of the link fraction

 value on the accuracy of the conjugate interface schemes,
we also show the results of E2, E2 tint, and E2 qint obtained
from the modified HLD scheme [see Eqs. (28) and (29)] in
Figs. 10, 11, and 12, respectively. The schemes “HLD-S1,
-S2, and -S3” should be interpreted in such a way that the
HLD scheme is used for the lattice nodes adjacent to the
interface on both sides irrespective of the 
 value, while the
actual 
 value is taken into account in the Dirichlet boundary
schemes for the channel walls as well as for computing the
interfacial φ values and the interfacial fluxes. Note that with
the HLD scheme used, the interfacial values of φ(x, y = h)
and D∂φ/∂y (x,y = h) computed from the distribution func-
tions in the two different domains [see Eqs. (22a), (22b)
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FIG. 8. (Color online) Relative L2 norm error, E2 tint, for the interfacial value of φ versus 1/H for steady convection-diffusion in the
channel using the present interface schemes with (a) 
 = 0.50, 0.25, and 0.75, and (b) 
 = 0.50, 0.01, and 0.99.
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FIG. 9. (Color online) Relative L2 norm error, E2 qint, for the interfacial flux versus 1/H for steady convection-diffusion in the channel
using the present interface schemes with (a) 
 = 0.50, 0.25, and 0.75, and (b) 
 = 0.50, 0.01, and 0.99.

and (23a), (23b)] are not conserved as shown in Figs. 11 and 12.
As expected, only first-order convergence is obtained for each
case in Figs. 10–12. This observation serves as a foundation for
the error analysis in curved interface simulations when using
the HLD schemes that are discussed in Secs. V B and V C.

Before moving on to curved interfaces, an unsteady
problem involving the same channel flow configuration is
studied next to verify the applicability and first-order temporal
accuracy of the present interface treatment for time-dependent
problems.

2. Unsteady convection-diffusion in the channel

For the present unsteady problem, the Dirichlet boundary
conditions in Eq. (31) are replaced with

φ1(x,y = 0,t) = φ2(x,y = H,t) = cos(kx + ωt), (42)

where ω = 2π/� is the frequency and � is the period of
the imposed boundary conditions. In addition to the Péclet
number, another characteristic number, the Stokes number,
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FIG. 10. (Color online) Comparison of E2 obtained using the
present interface Scheme 2 with that from the HLD scheme for steady
convection-diffusion in the channel.

St ≡
√

H 2ω
2πD1

=
√

H 2

�D1
, is defined for this unsteady problem

following the unsteady numerical tests in [14,15,20]. The
analytical solutions for φ1,2 in Eq. (30) subject to the Dirichlet
conditions in Eq. (42) and the conjugate conditions in Eqs. (32)
and (33) are

φex,1(x,y,t) = Re{ei(kx+ωt)[γ1e
−λ1y + (1 − γ1)eλ1y]}

(0 � y � h), (43)

φex,2(x,y,t) = Re{ei(kx+ωt)[γ2e
−λ2y + (1 − γ2e

−λ2H )

× e−λ2(H−y)]} (h � y � H ), (44)

where the coefficients γ1 and γ2 have the same expressions
as in Eqs. (36) and (37), respectively, and the substitutions

λ1,2 = k
√

1 + i ω+Uk
D1,2k2 should be made in all related equations.

Initial conditions for the distribution functions are cru-
cial in unsteady simulations. In this test, the treatment for
the initial condition gα(x,y,t = 0) = (ωα + δtvj

δxεD
eαjωα)φ0 −

δx
∂φ0

∂xj
(M−1S−1Mejω)α proposed in [13] is applied, where

φ0 = φ(x, y, t = 0) is obtained from Eqs. (43) and (44) by
setting t = 0. Following [14,20], the time-averaged relative
errors for φ in the channel, the interfacial values of φ and
its interfacial fluxes are defined in the following to assess
the spatial and temporal accuracy of the present conjugate
interface treatment

E2 =
{

1

�

∫ �

0

[∑
x,y

(φLBE − φex)2/
∑
x,y

φ2
ex

]
dt

}1/2

, (45)

E2 tint =
⎧⎨
⎩ 1

�

∫ �

0

⎡
⎣∑

x,y=h

(φ1,2|LBE − φ1,2|ex)2/

∑
x,y=h

(φ1,2|ex)2

⎤
⎦ dt

⎫⎬
⎭

1/2

, (46)
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FIG. 11. (Color online) E2 tint versus 1/H obtained using the HLD scheme for steady convection-diffusion in the channel with (a) 
 =
0.25 and (b) 
 = 0.75.

E2 qint =
⎧⎨
⎩ 1

�

∫ �

0

⎡
⎣∑

x,y=h

(
D1,2

∂φ1,2

∂y

∣∣∣∣
LBE

−D1,2
∂φ1,2

∂y

∣∣∣∣
ex

)2/∑
x,y=h

(
D1,2

∂φ1,2

∂y

∣∣∣∣
ex

)2
⎤
⎦dt

⎫⎬
⎭

1/2

.

(47)

The results of E2, E2 tint, and E2 qint defined in the above
versus the grid resolution 1/H at Pe = 20 and St = 1 are shown
in Figs. 13, 14, and 15, respectively. The diffusion coefficient
ratio is again at κ = 10 (τ2 = 0.55, τ1 = 1.0) and three cases
with σ = (ρcp)2/(ρcp)1 = 0.1, 1.0, and 10 are computed. Only
the results from using conjugate Scheme 2 are presented in
Figs. 13–15 since all three schemes give similar results as
demonstrated in the steady-state test.

Second-order convergence is observed for each case in
Figs. 13–15. It should be noted that the errors contain both
temporal and spatial contributions. As discussed in [20], when
the spatial resolution H/δy is doubled, in order to keep the

same characteristic Stokes number, St =
√

H 2

�D1
, the period

of the Dirichlet boundary condition, �, must be quadrupled,
which equivalently leads to a reduction in the dimensionless
time step, δt/�, by a factor of four. Thus, although the
temporal accuracy is only first order in the LBE method as
verified by the asymptotic analysis in [13], the doubling in
H leads to a fourfold decrease in both the spatial and the
temporal errors, and thus the overall second-order convergence
is obtained in Figs. 13–15. This unsteady test demonstrates that
the proposed interface treatment can be effectively applied to
simulate transient conjugate heat and mass transfer problems,
and the second-order spatial accuracy and first-order temporal
accuracy are preserved.
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FIG. 12. (Color online) E2 qint versus 1/H obtained using the HLD scheme for steady convection-diffusion in the channel with (a) 
 =
0.25 and (b) 
 = 0.75.
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FIG. 13. (Color online) Time-averaged L2 norm error, E2, versus
1/H for unsteady convection-diffusion in the channel using the
present interface Scheme 2.

B. Steady heat conduction in a circular domain with two solids

The computational domain and the lattice layout are
schematically depicted in Fig. 16. The curved geometry at the
interface and the outer boundary is preserved by calculating the
exact link fractions 
x and 
y for the lattice nodes adjacent
to the interface and the outer boundary (see P1 and P2 in
Fig. 16). After the local link fractions are calculated, the
present interface treatment at r = R1 and the outer boundary
treatment at r = R2 can be implemented.

We consider the steady-state conduction with an outer
Dirichlet boundary condition

φ2(r = R2) = f (ϕ) = cos(nϕ); n = integer, (48)
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FIG. 14. (Color online) Time-averaged L2 norm error, E2 tint,
versus 1/H for unsteady convection-diffusion in the channel using
the present interface Scheme 2.
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FIG. 15. (Color online) Time-averaged L2 norm error, E2 qint,
versus 1/H for unsteady convection-diffusion in the channel using
the present interface Scheme 2.

and the conjugate conditions at the interface

φ1 = φ2 at r = R1, (49)

and

k1
∂φ1

∂r
= k2

∂φ2

∂r
at r = R1. (50)

The exact solutions for the temperatures are

φex,1 (r,ϕ) =a1r
ncos (nϕ) (0 � r � R1), (51)

φex,2 (r,ϕ) =(a2r
n + a3r

−n)cos (nϕ) (R1 � r � R2),

(52)

FIG. 16. (Color online) Schematic depiction of the lattice in a 2D
circular domain with a curved interface and a curved outer boundary.
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FIG. 17. (Color online) Profiles of (a) φ(r, ϕ) and (b) qr = − Di∂φi/∂r along the lines with constant φ = 0 and φ = π /4, respectively, in
the circular domain with R2 = 2R1 = 32.5δx, κ = 10, τ1 = 0.55, τ2 = 1.0, and n = 4.

where

a1 = 2(k2/k1)R−2n
1 R−n

2

[(k2/k1) + 1]R−2n
1 + [(k2/k1) − 1]R−2n

2

, (53a)

a2 = [(k2/k1) + 1] R−2n
1 R−n

2

[(k2/k1) + 1] R−2n
1 + [(k2/k1) − 1] R−2n

2

, (53b)

a3 = [(k2/k1) − 1] R−n
2

[(k2/k1) + 1] R−2n
1 + [(k2/k1) − 1] R−2n

2

. (53c)

For present steady-state heat conduction simulations, the
governing equation of CDE (1) becomes a pure diffusion
equation; thus, the diffusion coefficients are set to be equal
to the thermal conductivities, i.e., D1,2 = k1,2, and σ =
(ρcp)2/(ρcp)1 = 1 can be directly used. In addition, the
macroscopic velocities in the equilibrium moments m(eq) in
Eq. (3) are set to zero. For the Dirichlet condition at the
outer boundary r = R2, the boundary schemes in [14] (also
given in Appendix B) are used. For the conjugate condition
at r = R1, the presently proposed coupled interface treatment
in Eqs. (19a) and (19b) with the coefficients determined in
Table I for the particular Schemes 1, 2, and 3 are implemented
and their simulation results are compared with that from the
HLD scheme in Eq. (29).

First, the profiles of φ and its flux qr = − Di∂φi/∂r along
the lines starting at the origin O with φ = 0 and π/4 are
examined in Figs. 17(a) and Figs. 17(b), respectively. The
simulated results agree very well with analytical solutions
[qr,LBE = (	2

nx,LBE + 	2
ny,LBE)1/2 is used in Fig. 17(b)]. The

interfacial values of φint and flux qint versus φ are shown in
Figs. 18(a) and 18(b), respectively. Note that the interfacial
fluxes qint = − Di∂φi/∂x and −Di∂φi/∂y directly evaluated
from the present interface treatment are in the Cartesian lattice
velocity directions. For the curved interface it is also verified
that the numerical values of φint and qint evaluated from the
distribution functions in the two subdomains are exactly the

same. It can be observed in Figs. 18(a) and 18(b) that the
numerical errors for the interfacial flux qint are relatively larger
than that for φint. The numerical accuracy for those interfacial
quantities as well as the interior distribution of φ with curved
interfaces is further investigated next.

Figures 19, 20, and 21 show the L2 norm errors E2, E2 tint,
and E2 qint defined in Eqs. (39), (40), and (41), respectively,
versus the grid resolution 1/R1 at R2/R1 = 2 and n= 4 in
Eq. (48). It should be noted that in the present case E2 is
evaluated in the circular domain 0 � r � R2, E2 tint and
E2 qint are evaluated at the interface r = R1, and both �φ/�y
and �φ/�x are included in the evaluation of E2 qint. For
comparison purposes, the simulation results from using the
previous conjugate interface schemes in [9–11,16], which are
denoted as the HLD scheme in Eq. (29), are also included
in Figs. 19–21. Again, “Domain 1” and “Domain 2” in
Figs. 20 and 21 represent the interfacial temperature and flux
computations from the distribution functions at the lattice
nodes in Domain 1 (0 � r � R1) and Domain 2 (R1 � r �
R2), respectively. It is emphasized that even for the cases
with the HLD scheme used for the interface, the interfacial
temperature and fluxes are also obtained from the evaluation
techniques in Eqs. (22) and (23), which include the local 


values. The results in Figs. 19–21 indicate that the computed
interior temperature field and interfacial temperature values
are second-order accurate and the interfacial flux (temperature
gradient) is first-order accurate when the present interface
Schemes 1, 2, and 3 are used. The quadratic convergence of
the interior temperature field and the linear convergence of
the interfacial flux are consistent with the results reported
in [14,15] for the interior temperature distributions and the
boundary fluxes, respectively, in Dirichlet problems with
curved boundaries. The degradation of the convergence orders
from quadratic to linear for the boundary and interfacial fluxes
is attributed to the irregularly distributed link fraction 
 values.
In contrast, only first-order accurate interior and interfacial
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FIG. 18. (Color online) Profiles of (a) φint(r, ϕ) and (b) qint = − (D∂φ/∂x)int or −(D∂φ/∂y)int at the interface in the circular domain with
the same parameters as in Fig. 17.

temperatures are obtained in Figs. 19 and 20, respectively,
when the HLD scheme is used for the interface condition and
for which a zeroth-order accurate interfacial flux is noticed in
Fig. 21. In general, the numerically computed interfacial fluxes
have higher relative errors than that for the interfacial values
of φ for each case tested when one compares the results in
Figs. 20 and 21. The present conjugate interface treatment that
takes into account the local link fractions at a curved interface
is clearly able to improve the order of accuracy of the LBE
results by one degree for each of the three quantities, including
the interior temperature field, the interfacial temperatures, and
the interfacial fluxes compared with the simple HLD scheme
that has been widely used in the literature.
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 HLD−S3slope = 2

slope = 1

FIG. 19. (Color online) Comparison of E2 obtained using the
present interface schemes with that from the HLD scheme for steady
heat conduction in the circular domain with a curved interface.

C. Unsteady mass transfer from a spherical droplet
in an external creeping flow

Conjugate mass transfer from a spherical droplet of radius
R immersed in an ambient fluid of large extent is considered
in this test. With the focus on the conjugate mass transfer on
the droplet boundary (the interface between the droplet and
the outside fluid), the fluid flow far away from the droplet, u∞,
is assumed to be a simple extensional flow represented by

u∞=Ex, E =
⎛
⎝−1/2 0 0

0 −1/2 0
0 0 −1/2

⎞
⎠E, (54)

where x is the spatial position vector, E is the rate-of-strain
tensor, and E is the strength of the extension rate. When scaled
by ER, the analytical solutions for the dimensionless velocity
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|
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Domain 1
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FIG. 20. (Color online) Comparison of E2 tint obtained using the
present interface schemes with that from the HLD scheme for steady
heat conduction in the circular domain with a curved interface.
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FIG. 21. (Color online) Comparison of E2 qint obtained using the
present interface schemes with that from the HLD scheme for steady
heat conduction in the circular domain with a curved interface.

field are [7,8]

u1r =
(

1 − 3

2
sin2θ

)[
r∗ − 5λ + 2

2(λ + 1)(r∗)2
+ 3λ

2(λ + 1)(r∗)4

]
,

u1θ = −3

2
sin θcos θ

[
r∗ − λ

(λ + 1) (r∗)4

]
, (r∗ � 1) (55)

u1ϕ = 0,

FIG. 22. (Color online) Schematic depiction of the computa-
tional domain and the square lattice layout for conjugate mass transfer
across the interface of a spherical droplet immersed in an extensional
creeping flow.

and

u2r =
(

1 − 3

2
sin2θ

)[
− 3r∗

2 (λ + 1)
+ 3 (r∗)3

2 (λ + 1)

]
,

u2θ = −3

2
sin θcos θ

[
− 3r∗

2(λ + 1)
+ 5(r∗)3

2(λ + 1)

]
, (0 � r∗ � 1)

u2ϕ = 0, (56)

where r∗ = r/R, θ is the polar angle and φ is the azimuthal
angle in the spherical coordinate system, and λ is the viscosity
ratio of the fluid inside the droplet (0 � r∗ � 1) to that outside
the droplet (r∗ � 1). Note that only the uniaxial extensional
flow is considered in this work and λ = 1 is used in all
simulations. Assuming that the initial mass concentrations are
uniform at φ01 and φ02 for the exterior fluid and the droplet,
respectively, and the mass transfer process does not affect the
flow field or the shape of the droplet at any time, both the flow
field [see Eqs. (55) and (56)] and the concentration field are
axisymmetric with no variations in the φ direction.

The initial condition, the far-field boundary conditions and
the conjugate interface conditions are written as

φ1 = φ01(r > R) and φ2 = φ02 (0 � r � R) at t = 0, (57)

φ = φ01 (r � R), (58)

φ1 = φ2 at r = R, (59)

and

D1
∂φ1

∂r
= D2

∂φ2

∂r
at r = R. (60)

The characteristic Péclet numbers are Pe1,2 = ER2/D1,2,
and the overall Sherwood number, Sh, for the mass transfer at
the interface is defined as [7,8]

Sh = h̄R

D2
= QR

4πR2D2
φ2
, (61)

where h̄ = −D2
∂φ2

∂r
|r=R/
φ2 is the averaged mass transfer

coefficient at the interface, Q is the total mass transfer rate

Q = 2πR2
∫ π

0

(
−D2

∂φ2

∂r
|r=R

)
sin θdθ, (62)

and 
φ2 denotes the difference between the interior bulk
concentration and the far-field concentration


φ2 = φ2 − φ01 =
∫ R

0

∫ π

0 (φ2 − φ01) r2sin θdθdr∫ R

0

∫ π

0 r2sin θdθdr

= 3

2R3

∫ R

0

∫ π

0
(φ2 − φ01) r2sin θdθdr. (63)

This problem can be simulated with either the standard
D3Q7 model by preserving the geometry at the curved
interface or with the axisymmetric D2Q5 model proposed
in [20]. The present work focuses on the conjugate interface
treatment; thus, the 2D axisymmetric model is used for most of
the simulations to demonstrate the accuracy. For the purpose
of demonstrating the applicability of the conjugate interface
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FIG. 23. (Color online) Dimensionless concentration contours for mass transfer from the droplet in the extensional creeping flow at Fo1 =
5×10−2 and (a) Pe1 = 1, D2/D1 = 1; (b) Pe1 = 100, D2/D1 = 1; (c) Pe1 = 500, D2/D1 = 1; (d) Pe1 = 100, D2/D1 = 0.1; and (e) Pe1 = 100,
D2/D1 = 10.

treatment in a true 3D simulation, the 3D LBE model is
used to compute the mass transfer problem for Pe1 � 100.
In the 2D LBE model, the axisymmetric CDE for mass
concentration in the spherical coordinate system is represented
in the radial-axial cylindrical coordinate system [20]. The
computational domain and the square lattice layout are
schematically illustrated in Fig. 22, where the curved geometry
at the interface r = R is preserved by calculating the lattice
link fractions in both directions, similar to that in Fig. 16.
For the conjugate interface conditions, the coupled interface
treatment in Eqs. (19a) and (19b) with the coefficients from

Scheme 2 in Table I is implemented. The far-field boundaries
are considered as straight boundaries.

To compute the total mass transfer rate Q in Eq. (62) on
the curved interface, the heat and mass transfer evaluation
technique proposed in [15] is employed rather than using any
finite-difference schemes based on the simulated concentration
field. Thus, the mass transfer rate is obtained from

Q = 2πR
∑
xw

∑
ᾱ

	nᾱδxsin θ, (64)
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FIG. 24. (Color online) Profiles of φ∗(r, z) and qr = −Di∂φ∗
i /∂r

along the horizontal line at z = 0 for Cases (d) and (e) in Fig. 23.

where 	nᾱ represents the mass flux in the lattice velocity
direction eᾱ at an interface node xw, δx is the unit lattice
spacing, and θ is the local polar angle at xw. The integral in
Eq. (63) is approximated from the summation of the integrands
evaluated at all the interior lattice nodes within the droplet. As
pointed out in [8] and also observed in present simulations,
the Sherwood number defined in Eq. (61) approaches an
asymptotic value Sh∞ for each case after a long period of
time.

Figure 23 shows some typical transient distributions of the
dimensionless concentration φ∗

1,2 = φ1,2−φ01

φ02−φ01
at different Pe1

and D2/D1 values at Fo1 = 5×10−2, where Fo1 is the Fourier
number defined as Fo1 = D1t/R

2. Since the time step in the
presently used LBE model is δt = 1, the relaxation coefficient
τ = 1

2 + δt
εD (δx)2 D [see Eq. (4)] is chosen in such a way that t =

Fo1R
2/D1 = Nδt , with N being an integer. The diffusivity

ratio is maintained at D2/D1 = 1 in Figs. 23(a)–23(c) at Pe1 =
1, 100, and 500, respectively, while in Figs. 23(d) and 23(e) the
results from D2/D1 = 0.1 and 10, respectively, are compared
at the same Pe1 = 100. The concentration contours in Fig. 23(a)
are almost parallel to the curved interface, representing the
dominating diffusion effect over the weak convection at Pe1 =
1. As Pe1 increases, the effect of convection becomes more
significant and thin boundary layers near the droplet surface
are clearly seen on each side of the interface in Figs. 23(b)
and 23(c). The center of the contours with maximum concen-
tration has shifted from the droplet center in Fig. 23(a) to the
region near the surface along the horizontal r coordinate [see

Fig. 23(b)]. It further splits into two symmetric regions with
local maximum concentrations as observed in Fig. 23(c). The
present concentration distributions agree well qualitatively
with the results shown in [8]. The different thicknesses of
the boundary layers inside and outside the droplet near the
interface in Figs. 23(d) and 23(e) correspond to their diffusivity
difference. Recalling the flux continuity D1

∂φ1

∂r
= D2

∂φ2

∂r
in

Eq. (60), the concentration gradient ∂φ2/∂r inside the droplet
(r / R < 1) is much higher than ∂φ1/∂r outside the droplet
since D2/D1 = 0.1 in Fig. 23(d), and the opposite case with
D2/D1 = 10 is noticed in Fig. 23(e). This can also be explained
by the plotted profiles of φ∗

i and its flux qr = − Di∂φ∗
i /∂r

along the horizontal line at z = 0 as shown in Fig. 24.
To quantitatively verify the present LBE simulations, the

asymptotic values of the surface-averaged Sherwood number,
Sh∞, are computed and compared with some of the results
reported in [8]. The convergence of Sh∞ is checked with
respect to the grid resolution, the locations of the far-field
boundaries and the time duration. A typical grid resolution
R = 128 with Nr = 3R, Nz = 6R (Nr and Nz denote the grid
numbers in the r and z directions, respectively) is used, and
the number of evolutional time steps is on the order of 105. For
some cases with high Péclet number, higher grid resolution is
used to ensure computational stability and accuracy. For all
cases, the relaxation coefficients τ1 and τ2 are retained in the
range of 0.51 � τ � 2.0. Table III compares the numerical
values of Sh∞ obtained from D2Q5 with those from Ref. [8]
for 1 � Pe1 � 2000 at a fixed diffusivity ratio D2/D1 =
10. The third row includes the results from the D3Q7 model
and the present conjugate interface treatment. The relaxation
coefficients are fixed at τ1 = 0.525 and τ2 = 0.75. For the
computations using the 2D axisymmetric model (denoted as
2D axisym.), the radius and grid numbers are (R, Nr , Nz) =
(25, 251, 513) for Pe1 = 1, (64, 201, 641) for Pe1 = 5 and 10,
(128, 261, 641) for Pe1 = 50, 100, and 200, and (256, 361,
1541) for Pe1 = 500, 800, 1000, and 2000, respectively. For
the 3D results in Table III, (R, Nx , Ny , Nz) = (25.5, 151, 151,
151) for Pe1 = 1, and (25.5, 101, 181, 101) for Pe1 = 5, 10,
50, and 100 are used. Three-dimensional computation for very
high Péclet number Pe1 > 100 is not conducted due to the
large computational time and memory needed to resolve the
very thin boundary layer near the interface. For the low Péclet
number case, Pe1 = 1, the mass diffusion is significant over
the entire domain and a larger domain is needed. Thus, for the
axisymmetric model, R∞/R = 10 is used. The 3D result has a
larger error than that from the 2D axisymmetric model because
the computational domain is smaller with y∞/R = z∞/R =
2.94 in the 3D computation. To demonstrate this more clearly,
two more cases are computed for Pe1 = 1 using the 2D
axisymmetric model with R∞/R = 6/

√
π and R∞/R = 3.

TABLE III. Comparison between present LBE computations with published results for Sh∞ versus Pe1 with D2/D1 = 10.

Average Sherwood number Sh∞

Pe1 1 5 10 50 100 200 500 800 1000 2000

Ref. [8] 0.305 1.046 1.584 3.578 4.872 6.527 9.713 12.10 13.61 18.49
Present (2D axisym.) 0.309 1.059 1.587 3.613 4.920 6.587 9.702 12.15 13.48 18.53
Present (3D) 0.358 1.045 1.521 3.352 4.378

043308-19



LIKE LI, CHEN CHEN, RENWEI MEI, AND JAMES F. KLAUSNER PHYSICAL REVIEW E 89, 043308 (2014)

TABLE IV. Comparison between the results for Sh∞ versus D2/D1 at Pe1 = 100.

Average Sherwood number Sh∞

D2/D1 0.1 0.2 1 2 5 10 20 30 50 100

Ref. [8] 1.311 2.010 3.401 3.811 4.472 4.872 5.136 5.246 5.289 5.366
Present 1.202 1.953 3.433 3.849 4.512 4.920 5.140 5.194 5.234 5.383

The resulting values are Sh∞ = 0.359 and 0.383, respectively.
The first case has the same effective computational domain as
that in the 3D case in Table III for Pe1 = 1 [the volume of
computational domain V = π (6R/

√
π )2(6R) = (6R)3] and

the result of Sh∞ = 0.359 from the axisymmetric 2D model is
in excellent agreement with Sh∞ = 0.358 from the 3D model.
In the second case, a further decrease in R∞/R from 3.39
to 3 results in an increase of Sh∞ from 0.359 to 0.383, thus
clearly demonstrating the effect of the domain size on the mass
transport when the computational domain is relatively small
and Pe1 is low. For large Péclet number cases, the 3D results
have larger errors than the 2D results because of the lower grid
resolution used.

Tables IV and V show the dependence of Sh∞ on D2/D1

at constant Péclet numbers Pe1 = 100 and 1000, respectively.
It should be noted that some extreme cases with high Péclet
number up to Pe1 = 105 were also computed in [8], where grid
stretching was applied; while in this work simulations for very
high Péclet number cases are not conducted since (i) very high
resolution is required to capture the thin boundary layers with
uniformly spaced square lattice used in the present LBE model,
and (ii) with the assumption of creeping flow (low Reynolds
flow, Re � 1) used for the velocity field in [8] as well as in
the present work, high Péclet number flows imply that the
Prandtl number Pr for the fluids should be extremely large
(Pr = Pe/Re), which is impractical for most fluids. Thus, only
the simulation results at moderate Pe1, Pe2, and D2/D1 values
(Pe1/Pe2 = D2/D1) are presented in Tables III–V. Overall,
the present LBE results for the Sherwood number are in good
agreement with those reported in [8], demonstrating that the
present conjugate interface treatment in the LBE method is
capable of simulating mass transfer problems with curved
interfaces.

VI. CONCLUSIONS

A general second-order accurate interface treatment for
conjugate heat and mass transfer simulations using the LBE
method is proposed based on our previous second-order ac-
curate Dirichlet and Neumann boundary condition treatments.
The continuity of the macroscopic variable (temperature in

TABLE V. Comparison between the results for Sh∞ versus
D2/D1 at Pe1 = 1000.

Average Sherwood number Sh∞

D2/D1 2 5 10 20 30 50 100

Ref. [8] 10.74 12.78 13.61 14.24 14.60 15.08 15.52
Present 10.52 12.70 13.55 14.20 14.59 15.00 15.43

heat transfer or concentration in mass transfer) and its flux
at the interface is intrinsically satisfied on the level of the
microscopic distribution functions in the present treatment.
Thus, the iteration on the interface as usually used in traditional
CFD methods based on the macroscopic temperature or
concentration field during each time step is not required. The
interfacial temperature or concentration and their fluxes are
conveniently obtained with no extrapolation needed. Three
particular interface schemes for the general interface treatment
are provided, and they can be greatly simplified for special
cases such as straight interfaces and zero-tangential-gradient
interfaces.

The second-order accuracy of the interior temperature (con-
centration) field, the interfacial temperature (concentration)
and the interfacial fluxes using the proposed interface schemes
is verified with numerical tests for steady and unsteady
convection-diffusion in a channel with a straight interface.
When curved interfaces are encountered, the numerical test
for heat conduction within a circular domain of two solids
demonstrates that the interface treatment is able to give
second-order accurate interior and interfacial temperatures
and first-order accurate interfacial heat flux. An improvement
of order of accuracy by one degree is gained for all of
these three quantities compared with the “HLD” interface
scheme that has been widely used in the literature. Another
numerical test for unsteady mass transfer from a spherical
droplet in an extensional creeping flow demonstrates that
the present interface treatment is robust and can be used
to simulate convection-diffusion problems with conjugate
interface transport and strong boundary layers. The application
of the present conjugate interface treatment to heat and mass
transfer coupled with hydrodynamic fluid flows is an area for
future study.
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APPENDIX A: D3Q7 AND D2Q5 LBE MODELS FOR THE
CONVECTION-DIFFUSION EQUATION

The transformation matrix M for the D3Q7 model is [13]

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1
6 −1 −1 −1 −1 −1 −1
0 2 2 −1 −1 −1 −1
0 0 0 1 1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A1)
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and the relaxation matrix S is [13]

S−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

τ0 0 0 0 0 0 0
0 τxx τxy τxz 0 0 0
0 τxy τyy τyz 0 0 0
0 τxz τyz τzz 0 0 0
0 0 0 0 τ4 0 0
0 0 0 0 0 τ5 0
0 0 0 0 0 0 τ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A2)

As pointed out in [13], the off-diagonal components in
the relaxation matrix can take nonzero values to account for
anisotropic diffusion. The relaxation coefficients are related to
the diffusion coefficient matrix as

τij = 1

2
δij + δt

εD(δx)2
Dij , (4a)

in order to recover the solution of the CDE to the leading
order.

The weight coefficients are [13]

ωα =
{

1/4, (α = 0),
1/8, (α = 1,2,3,4,5,6), (A3)

and the constant εD = 1/4 for the 3D model. As given in [14],
the constant a in m(eq) is related to the coefficients ωα by a =
(7ω0 − 1) = 3/4.

For the D2Q5 model, the details are [13,14]

M =

⎡
⎢⎢⎢⎣

1 1 1 1 1
0 1 −1 0 0
0 0 0 1 −1
4 −1 −1 −1 −1
0 1 1 −1 −1

⎤
⎥⎥⎥⎦ , (A4)

S−1 =

⎡
⎢⎢⎢⎣

τ0 0 0 0 0
0 τxx τxy 0 0
0 τxy τyy 0 0
0 0 0 τ3 0
0 0 0 0 τ4

⎤
⎥⎥⎥⎦ , (A5)

ωα =
{

1/3 (α = 0),
1/6 (α = 1,2,3,4), (A6)

with εD = 1/3 and a = (5ω0 − 1) = 2/3.

APPENDIX B: PARTICULAR BOUNDARY SCHEMES FOR THE DIRICHLET CONDITION

Dirichlet boundary Scheme 1,

gᾱ(xf ,t + δt) =
{

(−2
)ĝα(xf ,t) + (2
 − 1)ĝα(xff ,t) + εD	d (0 � 
 � 0.5),(− 1
2


)
ĝα(xf ,t) + (1 − 1

2


)
ĝᾱ(xf ,t) + ( 1

2


)
εD	d (
 > 0.5),

(B1)

Dirichlet boundary Scheme 2,

gᾱ(xf ,t + δt) = 2(
 − 1)ĝα(xf ,t) −
[

(2
 − 1)2

2
 + 1

]
ĝα(xff ,t) + 2

(
2
 − 1

2
 + 1

)
ĝᾱ(xf ,t) +

(
3 − 2


2
 + 1

)
εD	d, (B2)

and Dirichlet boundary Scheme 3,

gᾱ(xf ,t + δt) = −ĝα(xf ,t) +
(

2
 − 1

2
 + 1

)
ĝα(xff ,t) +

(
2
 − 1

2
 + 1

)
ĝᾱ(xf ,t) +

(
2

2
 + 1

)
εD	d. (B3)
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