Accurate solution of the Dirac equation on Lagrange meshes

Daniel Baye*
Physique Quantique, C. P. 165/82, and Physique Nucléaire Théorique et Physique Mathématique, C. P. 229, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
Livio Filippin ${ }^{\dagger}$ and Michel Godefroid ${ }^{\dagger}$
Chimie Quantique et Photophysique, C. P. 160/09, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium

(Received 12 February 2014; published 10 April 2014)

Abstract

The Lagrange-mesh method is an approximate variational method taking the form of equations on a grid because of the use of a Gauss quadrature approximation. With a basis of Lagrange functions involving associated Laguerre polynomials related to the Gauss quadrature, the method is applied to the Dirac equation. The potential may possess a $1 / r$ singularity. For hydrogenic atoms, numerically exact energies and wave functions are obtained with small numbers $n+1$ of mesh points, where n is the principal quantum number. Numerically exact mean values of powers -2 to 3 of the radial coordinate r can also be obtained with $n+2$ mesh points. For the Yukawa potential, a 15 -digit agreement with benchmark energies of the literature is obtained with 50 or fewer mesh points.

DOI: 10.1103/PhysRevE.89.043305 PACS number(s): 02.70.Hm, 31.15.-p, 03.65.Pm, 02.70.Jn

I. INTRODUCTION

Numerically solving the Dirac equation raises a number of difficulties mostly related to the existence of the Dirac sea. The Dirac equation with a Coulomb potential is of particular interest since the existence of exact analytical results allows precise tests. The variational or Rayleigh-Ritz approximation for the Dirac equation has been discussed in depth by Grant and Quiney [1]. The authors use special spinors based on associated Laguerre polynomials. The B-spline variational or Galerkin method has been applied to the Dirac-Coulomb problem by Froese Fischer and Zatsarinny [2]. An alternative approach is the use of Bernstein B-polynomial basis sets [3], which looks promising for relativistic calculations of atomic properties [4]. The free-complement method also yields accurate results for this problem [5]. Here we use a different numerical method, the Lagrange-mesh method, able to give exact energies and wave functions of this problem up to rounding errors. The exactness of one eigenvalue is not hindered by the much discussed problems of the variational collapse $[6,7]$ and of the kinetic balance of the basis [1,2,7-11].

The Lagrange-mesh method is an approximate variational calculation using a special basis of functions, hereafter called Lagrange functions, related to a set of N mesh points and the Gauss quadrature associated with this mesh [12,13]. It combines the high accuracy of a variational approximation and the simplicity of a calculation on a mesh [14,15]. The Lagrange functions are N infinitely differentiable functions that vanish at all points of this mesh, except one. Used as a variational basis in a quantum-mechanical calculation, the Lagrange functions lead to a simple algebraic system when matrix elements are calculated with the associated Gauss quadrature. The variational equations take the form of mesh equations with

[^0]a diagonal representation of the potential depending only on values of this potential at the mesh points [12,15]. The most striking property of the Lagrange-mesh method is that, in spite of its simplicity, the obtained energies and wave functions can be as accurate with the Gauss quadrature approximation as in the original variational method with an exact calculation of the matrix elements [14,15]. It has been applied to various problems in atomic and nuclear physics.

Until now, most Lagrange-mesh calculations are nonrelativistic. A semirelativistic approach based on the Salpeter equation has been developed in Refs. [16-18]. Here we show that the Dirac equation allows a simple Lagrange-mesh treatment. In the case of hydrogenic atoms, it even provides numerically exact energies and wave functions, with very low numbers of mesh points. For the Yukawa potential, it can be compared with very accurate benchmark calculations [19].

Some properties of the Dirac equation are recalled in Sec. II. The Lagrange-mesh method is summarized in Sec. III, with emphasis on its adaptation to the Coulomb-Dirac problem. In Sec. IV, numerically exact energies and Dirac spinors are derived for hydrogenic atoms with small numbers of mesh points. Accurate results for the Yukawa potential are obtained and discussed in Sec. V. Section VI is devoted to concluding remarks.

For the fine-structure constant, we use the CODATA 2010 value $1 / \alpha=137.035999074$ [20].

II. DIRAC EQUATION FOR THE HYDROGEN ATOM

In atomic units $\hbar=m_{e}=e=1$, where m_{e} is the electron mass, the Dirac Hamiltonian reads [21]

$$
\begin{equation*}
H_{D}=c \boldsymbol{\alpha} \cdot \boldsymbol{p}+\beta c^{2}+V(r) \tag{1}
\end{equation*}
$$

where \boldsymbol{p} is the momentum operator, V is the potential, and $\boldsymbol{\alpha}$ and β are the traditional Dirac matrices. As the cited works use either atomic units, where the speed of light $c=1 / \alpha$
is the inverse of the fine-structure constant, or relativistic units, where $c=1$, we delay the full choice of units till the applications. The eigenenergies of H_{D} are denoted $c^{2}+E$ and the Dirac equation reads

$$
\begin{equation*}
H_{D} \phi_{\kappa m}(\boldsymbol{r})=\left(c^{2}+E\right) \phi_{\kappa m}(\boldsymbol{r}) \tag{2}
\end{equation*}
$$

The Dirac spinors are defined as

$$
\begin{equation*}
\phi_{\kappa m}(\boldsymbol{r})=\frac{1}{r}\binom{P_{\kappa}(r) \chi_{\kappa m}}{i Q_{\kappa}(r) \chi_{-\kappa m}} \tag{3}
\end{equation*}
$$

as a function of the large and small radial components, $P_{\kappa}(r)$ and $Q_{\kappa}(r)$, respectively. The spinors $\chi_{\kappa m}$ are common eigenstates of $\boldsymbol{L}^{2}, \boldsymbol{S}^{2}, \boldsymbol{J}^{2}$, and J_{z}, with respective eigenvalues $l(l+1), 3 / 4, j(j+1)$, and m, where

$$
\begin{equation*}
j=|\kappa|-\frac{1}{2}, \quad l=j+\frac{1}{2} \operatorname{sgn} \kappa . \tag{4}
\end{equation*}
$$

The coupled radial Dirac equations read, in matrix form,

$$
\begin{equation*}
H_{\kappa}\binom{P_{\kappa}(r)}{Q_{\kappa}(r)}=E\binom{P_{\kappa}(r)}{Q_{\kappa}(r)}, \tag{5}
\end{equation*}
$$

with the Hamiltonian matrix

$$
H_{\kappa}=\left(\begin{array}{cc}
V(r) & c\left(-\frac{d}{d r}+\frac{\kappa}{r}\right) \tag{6}\\
c\left(\frac{d}{d r}+\frac{\kappa}{r}\right) & V(r)-2 c^{2}
\end{array}\right) .
$$

The Dirac spinors, (3), are normed if

$$
\begin{equation*}
\int_{0}^{\infty}\left\{\left[P_{\kappa}(r)\right]^{2}+\left[Q_{\kappa}(r)\right]^{2}\right\} d r=1 \tag{7}
\end{equation*}
$$

We assume that the potential behaves at the origin as

$$
\begin{equation*}
V(r) \underset{r \rightarrow 0}{\rightarrow}-\frac{V_{0}}{r}, \tag{8}
\end{equation*}
$$

where V_{0} is positive or null. At the origin [19,21], the radial functions behave as

$$
\begin{equation*}
P_{\kappa}(r), Q_{\kappa}(r) \underset{r \rightarrow 0}{\rightarrow} r^{\gamma}, \tag{9}
\end{equation*}
$$

with the parameter γ defined by

$$
\begin{equation*}
\gamma=\sqrt{\kappa^{2}-\left(V_{0} / c\right)^{2}} \tag{10}
\end{equation*}
$$

i.e., the wave functions $\phi_{\kappa m}$ are singular for $|\kappa|=1$ if $V_{0} \neq 0$. This singularity is weak for the hydrogen atom but can be important for hydrogenic ions with high charges Z or for other potentials.

An important particular case is the relativistic hydrogenic atom, for which the potential is

$$
\begin{equation*}
V(r)=-\frac{Z \alpha c}{r} \tag{11}
\end{equation*}
$$

i.e., $V_{0}=Z \alpha c$. As a function of the principal quantum number n, the energies are given analytically as [21]

$$
\begin{equation*}
E_{n \kappa}=c^{2}\left\{\left[1+\frac{\alpha^{2} Z^{2}}{n-|\kappa|+\gamma}\right]^{-1 / 2}-1\right\} \tag{12}
\end{equation*}
$$

They can be written in a form minimizing rounding errors as

$$
\begin{equation*}
E_{n \kappa}=-\frac{(Z \alpha c)^{2}}{\mathcal{N}(\mathcal{N}+n-|\kappa|+\gamma)} \tag{13}
\end{equation*}
$$

with the effective principal quantum number

$$
\begin{equation*}
\mathcal{N}=\left[(n-|\kappa|+\gamma)^{2}+\alpha^{2} Z^{2}\right]^{1 / 2} \tag{14}
\end{equation*}
$$

This number is equal to n when $|\kappa|=n$.

III. LAGRANGE-MESH METHOD

The mesh points x_{j} are defined by [12]

$$
\begin{equation*}
L_{N}^{\alpha^{\prime}}\left(x_{j}\right)=0, \tag{15}
\end{equation*}
$$

where $j=1$ to N and $L_{N}^{\alpha^{\prime}}$ is a generalized Laguerre polynomial [22]. This mesh is associated with a Gauss quadrature

$$
\begin{equation*}
\int_{0}^{\infty} g(x) d x \approx \sum_{k=1}^{N} \lambda_{k} g\left(x_{k}\right) \tag{16}
\end{equation*}
$$

with the weights λ_{k}. The Gauss quadrature is exact for the Laguerre weight function $x^{\alpha^{\prime}} e^{-x}$ multiplied by any polynomial of degree, at most, $2 N-1$ [23]. The regularized Lagrange functions are defined by $[14,15,24]$

$$
\begin{equation*}
\hat{f}_{j}(x)=\frac{x}{x_{j}} f_{j}(x)=(-1)^{j}\left(h_{N}^{\alpha^{\prime}} x_{j}\right)^{-1 / 2} \frac{L_{N}^{\alpha^{\prime}}(x)}{x-x_{j}} x^{\alpha^{\prime} / 2+1} e^{-x / 2} \tag{17}
\end{equation*}
$$

In this expression, $f_{j}(x)$ is a standard Lagrange function [12]. The functions $f_{j}(x)$ are polynomials of degree $N-1$ multiplied by the square root of the Laguerre weight $x^{\alpha^{\prime}} \exp (-x)$. The squared norm $h_{N}^{\alpha^{\prime}}$ of the generalized Laguerre polynomials reads

$$
\begin{equation*}
h_{N}^{\alpha^{\prime}}=\frac{\Gamma\left(N+\alpha^{\prime}+1\right)}{N!} . \tag{18}
\end{equation*}
$$

The Lagrange functions satisfy the Lagrange conditions

$$
\begin{equation*}
\hat{f}_{j}\left(x_{i}\right)=f_{j}\left(x_{i}\right)=\lambda_{i}^{-1 / 2} \delta_{i j} \tag{19}
\end{equation*}
$$

While the explicit form of the Lagrange functions will be useful to choose the optimal value of α^{\prime}, it does not play any role in the determination of energies and mean values. These functions are useful when the wave functions must be known explicitly.

The nonregularized functions $f_{j}(x)$ form an orthonormal set satisfying conditions (19) but have the drawback that the matrix elements of $d / d x$ and $1 / x$ are not given accurately by the Gauss quadrature because the integrals contain a nonpolynomial factor $1 / x$. Though the exact matrix elements are available $[25,26]$, they lead to a variational calculation. The elegant simplicity of the Lagrange-mesh method is lost and singular potentials such as the Yukawa potential cannot be described accurately. For this reason, in the following we use the regularized functions $\hat{f}_{j}(x)$, for which, as shown below, the Gauss quadrature is exact for matrix elements of $d / d x$ and $1 / x$. This basis is, however, not exactly orthonormal [14]:

$$
\begin{equation*}
\left\langle\hat{f}_{i} \mid \hat{f}_{j}\right\rangle=\delta_{i j}+\frac{(-1)^{i-j}}{\sqrt{x_{i} x_{j}}} \tag{20}
\end{equation*}
$$

Nevertheless, thanks to condition (19), these functions are orthonormal at the Gauss-quadrature approximation denoted
by the subscript G,

$$
\begin{equation*}
\left\langle\hat{f}_{i} \mid \hat{f}_{j}\right\rangle_{G}=\sum_{k=1}^{N} \lambda_{k} \lambda_{i}^{-1 / 2} \delta_{i k} \lambda_{j}^{-1 / 2} \delta_{j k}=\delta_{i j} \tag{21}
\end{equation*}
$$

In the following, we treat the basis as orthonormal. This apparently rough approximation will be shown to have no effect on the physically interesting eigenvalues and significantly simplifies the calculations.

The matrix elements of $d / d x$ are given at the Gauss approximation by

$$
\begin{align*}
D_{i \neq j}^{G} & =\lambda_{i}^{1 / 2} \hat{f}_{j}^{\prime}\left(x_{i}\right)=(-1)^{i-j} \sqrt{\frac{x_{i}}{x_{j}}} \frac{1}{x_{i}-x_{j}} \tag{22}\\
D_{i i}^{G} & =\lambda_{i}^{1 / 2} \hat{f}_{i}^{\prime}\left(x_{i}\right)=\frac{1}{2 x_{i}} .
\end{align*}
$$

They are not exact since the integrands $\hat{f_{i}} \hat{f}_{j}^{\prime}$ involve the weight function multiplied by a polynomial of degree $2 N$. But $\int_{0}^{\infty} \hat{f}_{i}\left(\hat{f}_{j}^{\prime}+\frac{1}{2} \hat{f}_{j}\right) d x$ can be calculated exactly with the Gauss quadrature. With (20), the exact expressions are thus

$$
\begin{equation*}
D_{i j}=\left\langle\hat{f}_{i}\right| \frac{d}{d x}\left|\hat{f}_{j}\right\rangle=D_{i j}^{G}-\frac{(-1)^{i-j}}{2 \sqrt{x_{i} x_{j}}} \tag{23}
\end{equation*}
$$

or explicitly,

$$
\begin{equation*}
D_{i \neq j}=(-1)^{i-j} \frac{x_{i}+x_{j}}{2 \sqrt{x_{i} x_{j}}\left(x_{i}-x_{j}\right)}, \quad D_{i i}=0 . \tag{24}
\end{equation*}
$$

This matrix is antisymmetric as expected.
The crucial property of the Lagrange-mesh method is that the potential matrix elements calculated at the Gauss approximation are diagonal:

$$
\begin{equation*}
\left\langle\hat{f}_{i}\right| V\left|\hat{f}_{j}\right\rangle_{G}=\sum_{k=1}^{N} \lambda_{k} \hat{f}_{i}\left(x_{k}\right) V\left(x_{k}\right) \hat{f}_{j}\left(x_{k}\right)=V\left(x_{i}\right) \delta_{i j} \tag{25}
\end{equation*}
$$

This property also applies to matrix elements of powers of x, for example. Note that the Gauss quadrature is exact for x^{-1} and x^{-2} because the integrand is then a polynomial of degree $2 N-1$ or $2 N-2$ multiplied by the Laguerre weight function [23].

Let us now apply the method to the Dirac equation. To this end the radial functions $P_{\kappa}(r)$ and $Q_{\kappa}(r)$ are expanded in regularized Lagrange functions (17) as

$$
\begin{align*}
& P_{\kappa}(r)=h^{-1 / 2} \sum_{j=1}^{N} p_{j} \hat{f}_{j}^{\left(\alpha^{\prime}\right)}(r / h), \tag{26}\\
& Q_{\kappa}(r)=h^{-1 / 2} \sum_{j=1}^{N} q_{j} \hat{f}_{j}^{\left(\alpha^{\prime}\right)}(r / h), \tag{27}
\end{align*}
$$

where h is a scaling parameter aimed at adapting the mesh points $h x_{i}$ to the physical extension of the problem. The superscript added to the Lagrange functions corresponds to the superscript of the generalized Laguerre polynomials in Eq. (17).

Before choosing the parameter α^{\prime}, it is important to first analyze the behavior of the wave functions at the origin. The Lagrange functions, (17), behave as

$$
\begin{equation*}
\hat{f}_{j}^{\left(\alpha^{\prime}\right)}(x) \underset{x \rightarrow 0}{\rightarrow} x^{\alpha^{\prime} / 2+1} \tag{28}
\end{equation*}
$$

Hence rather than choosing $\alpha^{\prime}=0$ as in the nonrelativistic case, it is convenient to choose

$$
\begin{equation*}
\alpha^{\prime}=2(\gamma-1) . \tag{29}
\end{equation*}
$$

If nonregularized Lagrange functions were used, the optimal choice would be $\alpha^{\prime}=2 \gamma$ like the one adopted in Refs. [1] and [19] for the B-spline expansions.

Let us introduce expansions (26) and (27) in the coupled radial Dirac equations, (5). A projection on the Lagrange functions leads to the $2 N \times 2 N$ algebraic system of equations

$$
\begin{align*}
& \left(\begin{array}{ll}
H^{(1,1)} & H^{(1,2)} \\
H^{(2,1)} & H^{(2,2)}
\end{array}\right)\binom{\left(p_{1}, p_{2}, \ldots, p_{N}\right)^{T}}{\left(q_{1}, q_{2}, \ldots, q_{N}\right)^{T}} \\
& =E\binom{\left(p_{1}, p_{2}, \ldots, p_{N}\right)^{T}}{\left(q_{1}, q_{2}, \ldots, q_{N}\right)^{T}} \tag{30}
\end{align*}
$$

where T means transposition. Note that, thanks to the Gauss approximation, (21), on the scalar product of Lagrange functions, the energies are simply given by the eigenvalues of the Hamiltonian matrix. According to (21) and (25), the diagonal $N \times N$ blocks read

$$
\begin{equation*}
H_{i j}^{(1,1)}=V\left(h x_{i}\right) \delta_{i j}, \quad H_{i j}^{(2,2)}=\left(V\left(h x_{i}\right)-2 c^{2}\right) \delta_{i j} \tag{31}
\end{equation*}
$$

For the nondiagonal blocks, the term $c \kappa / r$ is given exactly by the Gauss quadrature and is diagonal. For the matrix elements of the first derivative $d / d r$, several options are possible. One can use the exact expressions, (24), or use the Gauss approximation in the spirit of the Lagrange-mesh method. The exact representation of $d / d r$ is antisymmetric, as it should be, and leads to a symmetric Hamiltonian matrix. It is thus more instructive to exemplify the case of the Gauss quadrature because the matrix representation of $d / d r$ is not antisymmetric. One must impose the symmetry of the Hamiltonian matrix. Thus, the Gauss quadrature is used either in block $(2,1)$ or in block $(1,2)$ and the remaining block is constructed by symmetry. Choosing the Gauss quadrature in $(2,1)$, one obtains

$$
\begin{equation*}
H_{i j}^{(2,1)}=\frac{c}{h}\left(D_{i j}^{G}+\frac{\kappa}{x_{i}} \delta_{i j}\right), \quad H_{i j}^{(1,2)}=H_{j i}^{(2,1)}, \tag{32}
\end{equation*}
$$

where $D_{i j}^{G}$ is given by (22). Choosing (1,2), one obtains

$$
\begin{equation*}
H_{i j}^{(1,2)}=\frac{c}{h}\left(-D_{i j}^{G}+\frac{\kappa}{x_{i}} \delta_{i j}\right), \quad H_{i j}^{(2,1)}=H_{j i}^{(1,2)} \tag{33}
\end{equation*}
$$

which is different. As we shall see in Sec. IV, using the Gauss approximations leads to negligible differences with respect to using the exact expression.

The norm, (7), is calculated with the Gauss quadrature as

$$
\begin{equation*}
\sum_{i=1}^{N}\left(p_{i}^{2}+q_{i}^{2}\right)=1 \tag{34}
\end{equation*}
$$

Hence normed solutions of the algebraic system (30) provide the coefficients of expansions (26) and (27) of the large and small components. As explained below, in the hydrogenic cases, Eq. (34) is numerically exact.

TABLE I. Eigenvalues E_{i} of the $\kappa=-1$ Hamiltonian matrix in Eq. (30) for a hydrogen atom with $N=2$ and $N=3$ mesh points for $\alpha^{\prime}=-5.325206347372990 \times 10^{-5}$ and the optimal value, (35), of h. Three cases are considered: Gauss approximation in block $(2,1)$ [Eq. (32)], Gauss approximation in block (1,2) [Eq. (33)], and exact values of the matrix elements $D_{i j}$ [Eq. (24)].

E_{i}	Gauss (2,1)	Gauss (1,2)	$D_{i j}$ exact
$1 s_{1 / 2}$ with $N=2$ and $h=0.5$			
E_{1}	-37563.230370668 45	-37575.71144201392	-37567.70196457392
E_{2}	-37559.230 15764422	-37558.744 82957028	-37558.757978 19424
E_{3}	-0.500 059907242439	-0.500 006656596554	-0.500 006656596554
E_{4}	-0.500 006656596554	11.495683364290550	3.499354548250311
$1 s_{1 / 2}$ with $N=3$ and $h=0.5$			
E_{1}	-37567.746725 51926	-37592.56872922842	-37576.14959978189
E_{2}	-37560.389 01231535	-37559.894 10614127	-37559.764 94157449
E_{3}	-37558.554602 14643	-37558.206 77066509	-37558.272 50631343
E_{4}	-0.500 006656596554	-0.500 006656596553	-0.500 006656596554
E_{5}	-0.258320031170988	0.132065036600383	0.070690172696772
E_{6}	2.257774354082858	25.846655340028450	9.425471838916183
$2 s_{1 / 2}$ with $N=3$ and $h=0.9999933434699111$			
E_{1}	-37561.22623074784	-37567.64669799570	-37563.503 88400747
E_{2}	-37558.80138024441	-37558.48926076874	-37558.48060877283
E_{3}	-37558.037978 85244	-37557.928 89920434	-37557.956069 20432
E_{4}	-0.739366695081362	-0.467715743773135	-0.488828 609075186
E_{5}	-0.260 654106967512	-0.125 002080189192	-0.125 002080189192
E_{6}	-0.125002080 189193	5.466963065804257	1.363779946938871

IV. HYDROGENIC ATOMS

We first consider the Dirac-Coulomb problem in atomic units, where $V(r)=-Z / r$. With N mesh points, the eigenvalues and eigenvectors of the $2 N \times 2 N$ Hamiltonian matrix, (30), provide the relativistic energies and the coefficients of expansions (26) and (27) of the wave functions. Given the block structure, (31), of the mesh equations, one expects to obtain N large negative eigenvalues with an order of magnitude close to $-2 c^{2}=-37557.73008441865$. The remaining N eigenvalues should lie much higher in the spectrum, i.e., at far less negative (or positive) values. If the eigenvalues are ordered by increasing values, the $(N+1)$ th eigenvalue should approximate the lowest physical energy of the chosen partial wave and the following ones should approximate the energies of excited states.

With α^{\prime} given by (29) and the choice

$$
\begin{equation*}
h=\mathcal{N} / 2 Z \tag{35}
\end{equation*}
$$

the Lagrange-Laguerre expansions, (26) and (27), are able to perfectly reproduce the exact eigenfunctions. One of these eigenvalues can even give the numerically exact result for the level $n \kappa$ if $N>n-|\kappa|+1$. Indeed, in this case, the large and small radial functions $P_{n \kappa}$ and $Q_{n \kappa}$ are polynomials of degree $n-|\kappa|$ multiplied by r^{γ} and an exponential $\exp (-\mathrm{Zr} / \mathcal{N})$. Moreover, the matrix elements of the Hamiltonian between these components are exactly given by the Gauss-Laguerre quadrature even if this quadrature is not exact for individual matrix elements $D_{i j}^{G}$. Let us start by testing the ground-state energy with $N=2$, scaling parameter $h=0.5$, and $\alpha^{\prime}=$ $-5.325206347372990 \times 10^{-5}$. The two mesh points are given by Eq. (15), i.e.,

$$
\begin{equation*}
x_{1,2}=2 \gamma \mp \sqrt{2 \gamma} \tag{36}
\end{equation*}
$$

The four eigenvalues are listed in Table I for three ways of treating the first derivative: (i) Gauss approximation (32) on block (2,1); (ii) Gauss approximation (33) on block $(1,2)$; and (iii) exact expression, (24), of $D_{i j}$ immediately leading to a symmetric matrix. In each case, one obtains two eigenvalues below $-2 c^{2}$ as expected. They correspond to pseudostates in the Dirac sea. One of the other two eigenvalues is identical (with 15 digits!) in the three cases. However, in case (i), a spurious eigenvalue E_{3} appears just below the physical eigenvalue E_{4}. In the other two cases, the physical eigenvalue is E_{3}. Anyway, this is probably the simplest numerical calculation providing 15 significant figures for the ground-state energy of the relativistic hydrogen atom. At any r value, the Lagrange-mesh functions $P_{1 s}$ and $Q_{1 s}$ given by (26) and (27) differ from the exact ones only by the tiny rounding errors on the four coefficients p_{1}, p_{2} and q_{1}, q_{2}, which are the components of the eigenvector corresponding to the physical eigenvalue. These properties remain true for all hydrogenic ions.

The spurious eigenvalue probably has two origins. First, the present basis does not satisfy the property of kinetic balance $[1,2,8]$. Second, the Gauss approximation is not exact, at least for the overlap of Lagrange functions, and introduces an error even when exact values of the $D_{i j}$ are used. The differences among the three calculations indicate that the spurious eigenvalue is mainly due here to the Gauss approximation. This is confirmed by a variational calculation using the same regularized Lagrange-Laguerre basis, i.e., a calculation with the exact matrix elements $D_{i j}$ and the exact overlaps $\left\langle\hat{f}_{i} \mid \hat{f_{j}}\right\rangle$ given by Eq. (20). The resulting generalized eigenvalue problem provides the same exact value E_{3} as in Table I and $E_{4} \approx 1.1664515$. Since we are interested in a single eigenvalue which is exact, the existence of spurious eigenvalues is not a big problem. They can easily be detected

TABLE II. Regularized Lagrange-Laguerre-mesh calculations of $n \leqslant 3$ energies of the relativistic $Z=1$ hydrogen atom and $Z=100$ hydrogenic ion calculated for given N and h values, for the optimal value, (29), of α^{\prime} and for $\alpha^{\prime}=0$ ($c=137.035999074$). The exact energies are identical to the values obtained with $\alpha^{\prime}=2 \gamma-2$, except for possibly one or two units on the last displayed digit.

$n l j$	κ	h	N	$\begin{gathered} E_{n k} \\ \left(\alpha^{\prime}=2 \gamma-2\right) \end{gathered}$	N	$\begin{gathered} E_{n \kappa} \\ \left(\alpha^{\prime}=0\right) \end{gathered}$
$Z=1$						
$1 s_{1 / 2}$	-1	0.5	3	-0.500 006656596554	3	-0.500006656714711
$2 s_{1 / 2}$	-1	1	5	-0.125002080 189192	5	-0.125002080 208393
$2 p_{1 / 2}$	+1	1	4	-0.125002080 189192	4	-0.125002080 192885
$2 p_{3 / 2}$	-2	1	4	-0.125000416028976	4	-0.125000416029900
$3 s_{1 / 2}$	-1	1	7	-0.055556295 176422	7	-0.055556295 182736
$3 p_{1 / 2}$	+1	1.5	5	-0.055 556295176422	5	-0.055556295 195238
$3 p_{3 / 2}$	-2	1.5	5	-0.055555 802091367	5	-0.055 555802096072
$3 d_{3 / 2}$	+2	1.5	5	-0.055555 802091367	5	-0.055 555802091398
$3 d_{5 / 2}$	-3	1.5	5	-0.055555637733815	5	-0.055555637733829
$Z=100$						
$1 s_{1 / 2}$	-1	0.005	3	-5939.195 192426652	100	-5932.765
$2 s_{1 / 2}$	-1	0.009175	5	-1548.656111829 165	100	-1545.707
$2 p_{1 / 2}$	+1	0.009175	4	-1548.656111829167	100	-1548.567
$2 p_{3 / 2}$	-2	0.010	4	-1294.626149195190	100	-1294.626143
$3 s_{1 / 2}$	-1	0.013906	7	-657.945 1995216589	100	-656.436
$3 p_{1 / 2}$	+1	0.013906	5	-657.9451995216588	100	-657.890
$3 p_{3 / 2}$	-2	0.014768	5	-582.139 0468401418	100	-582.139 036
$3 d_{3 / 2}$	+2	0.014768	5	-582.139 0468401419	100	-582.139 046829
$3 d_{5 / 2}$	-3	0.015	5	-564.025 8534858450	100	-564.025 853485675

by their instability when increasing the number of mesh points.

When N increases to 3, three values are below $-2 c^{2}$ and the physical eigenvalue is E_{4} in the three cases. Note that while E_{4} is almost identical, the other eigenvalues are quite different and meaningless. If one chooses $h=0.9999933434699111$ with $N=3$ in agreement with Eq. (35), an eigenvalue becomes exactly equal to the $2 s_{1 / 2}$ energy in the three cases, though the rounding errors may be slightly different. It is E_{5} for (ii) and (iii) but E_{6} for (i). Note that when h is rounded to 0.999993 3, the physical eigenvalue does not change but the other ones can be significantly modified.

Although the variational calculation with Lagrange functions does not present difficulties, it is less simple than a Lagrange-mesh calculation because of the nondiagonal overlap matrix of basis functions. The fact that the eigenvalue problem is generalized may even lead to additional rounding errors when N is large. Since the simpler Lagrange-mesh method gives the same exact energies and wave functions, in the rest of the paper we only use this method with the Gauss quadrature on block $(2,1)$.

The energies of the $n \leqslant 3$ levels are listed in Table II for the cases $Z=1$ and $Z=100$. The calculations are performed with small numbers N of mesh points, i.e., $N=n+2$, except for s states $(n>1)$, where a slightly larger value is used to move a spurious eigenvalue to higher energies. With these choices, mean values of powers r^{k} of the coordinate can be calculated exactly from $k=-2$ to 3 as explained below. The first $E_{n \kappa}$ column contains energies obtained with the optimal α^{\prime} defined in Eq. (29). These energies coincide with the exact ones, (13), except possibly for one or two units on the last displayed digit. For $Z=1$, the energies are shown as obtained with
$h=n / 2 Z$, but calculations with the optimal value, (35), lead to exactly the same displayed digits because the difference between the h values is smaller than 10^{-5}. Note that exactly degenerate energies are obtained despite the fact that the meshes are quite different because of different α^{\prime} and/or N values. As in most other applications of the Lagrange-mesh method, the results are not very sensitive to the precise choice of h. Nevertheless, at some higher accuracy level, multiprecision calculations aiming at more digits should be made with (35) to provide the exact values.

For $Z=100$, the results are computed for the displayed truncated value of the optimal h given by (35) since the dropped digits do not affect the significant digits of the physical energies. The accuracy remains excellent. Tiny differences appear between theoretically degenerate values. The relative error with the nonrelativistic value $h=n / 2 Z$ is about 10^{-10}.

The last column in Table II lists calculations with standard Laguerre polynomials $\left(\alpha^{\prime}=0\right)$. For $Z=1$, the relative difference from the fourth-column values is tiny when the same number of mesh points is kept. It decreases from about 2×10^{-9} to 3×10^{-13} when $|\kappa|$ increases. The singularity induced by the difference between γ and $|\kappa|$ is weak. For $Z=100$ with the same N, the results are very bad (not shown). Even with the much larger $N=100$ value, the accuracy remains poor except when $|\kappa|$ is large, i.e., when α^{\prime} gets closer to an integer value that $\alpha^{\prime}=0$ can better simulate. For $|\kappa|=1$, the relative error is larger than 10^{-3}. For large Z values, a correct treatment of the singularity is crucial, as expected.

The high accuracy obtained in Table II is not restricted to small n values. Some energies for $n=30$ obtained with

TABLE III. Regularized Lagrange-Laguerre-mesh calculations of some $n=30$ energies of the relativistic hydrogen atom $(Z=1)$ and hydrogenic fermium ion $(Z=100)$ for $N=32$ and optimal parameters $\alpha^{\prime}=2 \gamma-2$ and $h=\mathcal{N} / 2 Z$. The relative errors ϵ listed depend on the code implementation but are given for information. Powers of 10 are indicated in brackets.

κ	α^{\prime}	h	N	$E_{n \kappa}$	ϵ
$Z=1(n=30)$					
-1	-5.325 $206347372990[-5]$	14.9999871	32	-0.000 5555565170527009	$2.2[-16]$
+1				-0.000 5555565170527029	$3.8[-15]$
-2	1.999973374234119	14.9999938		-0.000 5555560239721759	$2.0[-15]$
-29	55.99999816374637	15.0000000		-0.000 5555555649068471	-4.4[-16]
+29				-0.000 5555555649068475	4.4[-16]
-30	57.99999822495482	15		-0.000 5555555637733574	0
$Z=100(n=30)$					
-1	-0.6325403776082419	0.14846349	32	-5.672000589766628	$2.0[-15]$
+1				-5.672000589766619	4.4[-16]
-2	1.724237615790889	0.14935517		-5.604466953 036355	$2.4[-15]$
-29	55.98163455628749	0.14999847		-5.556490 981728510	-2.4[-15]
+29				-5.556490981728514	-1.8[-15]
-30	57.98224692205913	0.15		-5.556377578924 101	-3.0[-15]

$N=32$ mesh points are listed in Table III. The values of α^{\prime} and h are also given. The last column contains the relative error ϵ with respect to the exact value, (13). This error depends on the code implementation and may vary from one calculation to another as well as the last one or two digits of $E_{n \kappa}$. Here, for low $|\kappa|$ values, a spurious eigenvalue appears below the energy listed in Table III. In some cases, it is probably related to the problem discussed in Refs. [1,2], and [8-11], i.e., the fact that the basis does not satisfy the kinetic-balance criterion, because it also occurs in the corresponding variational calculation. In the other cases, it disappears when the Gauss approximation is not used. Finally, let us note the large variation of α^{\prime} values as a function of $|\kappa|$. This can be avoided by using

$$
\begin{equation*}
\alpha^{\prime}=2(\gamma-|\kappa|) \tag{37}
\end{equation*}
$$

rather than (29). The meshes are then much more similar for all κ values. The correct behavior, (9), at the origin can still be simulated with a corresponding increase in the number N of mesh points depending on n rather than on $n-|\kappa|$. The accuracy of the results does not change much with this modification.

Tables II and III show that the present method can provide numerically exact energies. The same is true for the corresponding wave functions, as it can be realized from the calculation of the mean values of powers of r. With $N \geqslant n-|\kappa|+3$, the obtained wave functions and the corresponding Gauss quadrature lead to the exact mean values for the operators r^{-2}, r^{-1}, r, r^{2}, and r^{3} with

$$
\begin{equation*}
\left\langle r^{k}\right\rangle_{n \kappa}=\left\langle\phi_{n \kappa m}\right| r^{k}\left|\phi_{n \kappa m}\right\rangle=h^{k} \sum_{i=1}^{N}\left(p_{n \kappa i}^{2}+q_{n \kappa i}^{2}\right) x_{i}^{k} . \tag{38}
\end{equation*}
$$

Indeed, the integrand of the exact matrix element is the weight function times a polynomial of degree $2 n-2|\kappa|+k+2$. The Gauss quadrature is exact for $2 N-1 \geqslant 2 n-2|\kappa|+k+2$ or $0 \leqslant k \leqslant 2(N-n+|\kappa|)-3$. This is thus also valid for the norm (34). Thanks to the regularization, the integrand contains a factor r^{k+2} and the integral is also exact for the negative powers $k=-1$ and -2 . The exact mean values of higher
positive integer powers of r can also be obtained, but with increasing numbers N of mesh points.

Mean values obtained with the conditions in Table II for the optimal α^{\prime} and h are listed in Table IV. For $k=-2,-1,1$, and 2, the numerical results agree with analytical expressions from Table 3.2 in Ref. [21] or from Ref. [27]. If the Gauss quadrature is performed on block $(1,2)$ rather than on block $(2,1)$, the mean values are closer to the exact ones for $2 p_{1 / 2}$ and $2 p_{3 / 2}$ but they are slightly less good for $1 s_{1 / 2}$ and $2 s_{1 / 2}$.

All results until now have been obtained with h values varying from shell to shell and, sometimes, from level to level. Several highly accurate eigenvalues can also be obtained simultaneously with a single h value per partial wave or for all partial waves. Relative errors on the nine lowest energies are listed in Table V with $N=30$ mesh points and some average scaling parameter depending on κ. At least six eigenvalues simultaneously have a relative accuracy better than 10^{-10} for the various partial waves. The worst case is $\kappa=-1$ because of the large range of binding energies and thus the large range of asymptotic exponential decreases which must be simulated with a single h. Precise results with a single value of h for all partial waves can be obtained with larger N values. With $N=50$ and $h=3$, the number of eigenvalues with an accuracy better than 10^{-10} increases to at least 10 in all the $|\kappa|=1-3$ partial waves. With $N=100$ and $h=5.5$, this number rises to at least 25 .

V. YUKAWA POTENTIAL

Benchmark values with a 40-digit accuracy are given in Ref. [19] for selected Yukawa potentials:

$$
\begin{equation*}
V(r)=-V_{0} \frac{e^{-\lambda r}}{r} \tag{39}
\end{equation*}
$$

We choose some of them to test the Lagrange-mesh method in that case. Switching to the Yukawa potential requires only changing the potential values $V\left(h x_{i}\right)$ in the Hamiltonian matrix [see Eq. (25)]. The system of units is now $\hbar=m=c=1$.

TABLE IV. Lagrange-mesh calculations of the mean values $\left\langle(Z r)^{k}\right\rangle(k=-2$ to $k=3)$ for the Dirac hydrogen atom and hydrogenic fermium ion with $N=3\left(1 s_{1 / 2}\right), N=4\left(2 p_{1 / 2}\right.$ and $\left.2 p_{3 / 2}\right)$, and $N=5\left(2 s_{1 / 2}\right)$ mesh points.

k	$1 s_{1 / 2}$	$2 s_{1 / 2}$	$2 p_{1 / 2}$	$2 p_{3 / 2}$
$Z=1$				
-2	2.000159766116231	0.250028292269074	0.083342024388253	0.083334627656595
[27]	2.000159766116226	0.250028292269074	0.083342024388253	0.083334627656577
-1	1.000026626740701	0.250008320873086	0.250008320873087	0.250001664121470
[21]	1.000026626740701	0.250008320873086	0.250008320873086	0.250001664121445
1	1.499973373968263	5.999883511521008	4.999883511520941	4.999973374233225
[21]	1.499973373968263	5.999883511521012	4.999883511521012	4.999973374234120
2	2.999906809597867	41.99849564732915	29.99873528081632	29.99970711726871
[21]	2.999906809597866	41.99849564732922	29.99873528081729	29.99970711728425
3	7.499687148380748	329.9832392430763	209.9877123611008	209.9971510555901
$Z=100$				
-2	7.960417675192373	1.542632708400137	0.454380205317436	0.0985638439410601
[27]	7.960417675192391	1.542632708400123	0.454380205317370	0.0985638439410600
-1	1.462566036503436	0.398505472652605	0.398505472652623	0.2685113312211789
[21]	1.462566036503437	0.398505472652604	0.398505472652604	0.2685113312211786
1	1.183729811195878	4.675861781113669	3.675861781113592	4.724237615790892
[21]	1.183729811195879	4.675861781113673	3.675861781113673	4.724237615790889
2	1.993081171511766	26.56270673304636	17.29345120647190	27.04265866624449
[21]	1.993081171511771	26.56270673304646	17.29345120647239	27.04265866624448
3	4.352350770363447	172.5455576665318	98.25648252592266	181.8412626345546

Potential (39) has the singular behavior, (8), at the origin. The parameter γ is thus given by Eq. (10) and α^{\prime} is chosen according to Eq. (29). The scaling parameter h and the number N of mesh points are adjusted for each potential according to the requested goals. Here we want to reproduce simultaneously all the energies listed in Table 9 in Ref. [19] for a given symmetry within the double-precision accuracy. This can be achieved with $N=40$ or 50 and an appropriate h value.

Table VI lists the energies $c^{2}+E_{n \kappa}$ for two cases: $\lambda=$ 0.01 and $V_{0}=0.1$ (corresponding to $\lambda \approx 1.37$ and $V_{0} \approx 13.7$ in a.u.) and $\lambda=0.04$ and $V_{0}=0.7$ (corresponding to $\lambda \approx$ 5.48 and $V_{0} \approx 95.9$ in a.u.). For the first, shallower potential, $h=16$ is a good compromise for a simultaneous treatment of the three $\kappa=-1$ lowest bound states. With $N=30$, the energies of these states perfectly reproduce the benchmark values rounded to 15 digits. However, the listed results are obtained with $N=40$ to improve the wave functions and the mean values discussed below. We do not find any other bound state. Under the same conditions, the $\kappa=1$ and -2 energies
are also perfect. It should be noted that a similar quality of energies can be obtained with far fewer mesh points when each state is studied separately. The same ground-state energy is obtained with only eight mesh points for $h=4.5-5$. The first excited $\kappa=-1$ energy is obtained with $N=14$ and $h \approx 10$. The energies of the $\kappa=1$ and -2 levels can also be as accurate with fewer mesh points.

For the second, deeper potential, the calculations are performed with $N=50$ and $h=2$. Here also a 15 -digit accuracy is reached under these conditions. For the ground state, with $h=1, N=10$ would be enough to get the same digits. For $h=1.2, N=12$ is enough for the first excited level. With $N=50$ and $h=2$, one observes the existence of two additional negative energies. The energy of the third excited level is obtained with the same accuracy, as shown by a comparison with $N=60$. The presence of a fifth slightly negative energy gives some indication of the possible existence of a very weakly bound fourth excited level but we could not reach convergence by increasing N and h. For $\kappa=1$ and -2

TABLE V. Relative errors on Lagrange-mesh calculations of the nine lowest energies of a calculation with $N=30$ and the optimal α^{\prime} for the Dirac hydrogen atom with $|\kappa|=1-3$. Powers of 10 are indicated in brackets.

$n-l-1$	$\begin{gathered} s_{1 / 2} \\ (h=1.5) \end{gathered}$	$\begin{gathered} p_{1 / 2} \\ (h \stackrel{2}{=} 2) \end{gathered}$	$\begin{gathered} p_{3 / 2} \\ (h \stackrel{2}{=} .5) \end{gathered}$	$\begin{gathered} d_{3 / 2} \\ (h=3.5) \end{gathered}$	$\begin{gathered} d_{5 / 2} \\ (h=4) \end{gathered}$	$\begin{gathered} f_{5 / 2} \\ (h \stackrel{4.5)}{=} \end{gathered}$
0	-2.7[-15]	-3.0[-14]	-2.1[-14]	-1.8[-14]	2.7[-15]	-1.4[-14]
1	-2.8[-14]	-2.3[-14]	-2.2[-14]	-1.4[-14]	$-1.2[-14]$	-8.5[-15]
2	-3.4[-13]	-1.6[-14]	-2.0[-14]	-1.1[-14]	-8.9[-15]	-6.9[-15]
3	-1.1[-13]	-1.3[-14]	-1.4[-14]	-8.2[-15]	-5.9[-15]	-5.7[-15]
4	2.5[-13]	-9.8[-15]	-6.2[-15]	-4.8[-15]	-7.7[-15]	-4.9[-15]
5	2.3[-12]	-7.0[-15]	-2.6[-15]	-4.9[-15]	-6.9[-15]	-1.4[-15]
6	2.5[-07]	-2.7[-15]	-1.8[-15]	-2.0[-15]	-5.9[-15]	-2.6[-15]
7	6.6[-04]	8.9[-10]	1.5[-10]	-1.2[-15]	-4.7[-15]	-3.8[-15]
8	7.5[-02]	7.6[-06]	1.8[-06]	2.3[-11]	-5.7[-15]	-2.3[-15]

TABLE VI. Regularized Lagrange-Laguerre-mesh energies of Yukawa potentials $(c=1)$. Comparison with the benchmark results in Ref. [19] rounded to 17 digits.

n	κ	$1+E_{n \kappa}$	Ref. [19]
		$\lambda=0.01, V_{0}=0.1(N=40, h=16)$	
0	-1	0.995917081971152	0.99591708197115189
1		0.999497559778376	0.99949755977837546
2		0.999967446168861	0.99996744616886068
0	1	0.999531550432223	0.99953155043222289
1		0.999983717932084	0.99998371793208417
0	-2	0.999534057514086	0.99953405751408553
1		0.999983995560747	0.99998399556074702
		$\lambda=0.04, V_{0}=0.7(N=50, h=2)$	
0	-1	0.741201083823740	0.74120108382373990
1		0.950294103969378	0.95029410396937801
2		0.988794022128970	0.98879402212897038
3		0.998408251840772	
0	1	0.950966326753638	0.95096632675363753
1		0.989310801129036	0.98931080112903600
2		0.998718627536472	
0	-2	0.961282015004946	0.96128201500494609
1		0.991803837230717	0.99180383723071712
2		0.999249454384587	

also, an additional excited level is obtained with high accuracy under the same conditions.

To test the wave functions, we have computed the mean values of $1 / r, r$, and r^{2} using the same conditions as in Table VI. The corresponding results are reported in Table VII. The significant digits of $\left\langle r^{-1}\right\rangle$ are estimated by a comparison with $N=60$. The error is of a few units on the last displayed digit. The other two cases can be compared with results rounded from Table 10 in Ref. [19]. For both potentials, one observes that about 14 figures are significant. Not only the energies but also the wave functions are highly accurate in these calculations.

VI. CONCLUSION

For the first time, the Lagrange-mesh method is applied to the Dirac equation. The choice of mesh points takes precisely into account a possible singularity of the potential. A scaling parameter allows adjusting the mesh to the extension of the physical problem.

For the exactly solvable Coulomb-Dirac problem describing hydrogenic atoms, numerically exact results, i.e., exact up to rounding errors, are obtained for any state and for any nuclear charge with very small numbers of mesh points. Only two points are enough to get the exact energy and wave function of the ground state. With a slightly larger number of points, mean values of a number of powers of the coordinate are also obtained exactly with the Gauss quadrature.

Tests with the Yukawa potential provide very accurate results, with a number of mesh points for which the computation seems instantaneous. The approximate wave functions provide mean values of powers of the coordinate that are also extremely precise.

TABLE VII. Regularized Lagrange-Laguerre-mesh calculation of mean values $\left\langle r^{k}\right\rangle$ for Yukawa potentials with $\kappa=-1(c=1)$. Comparison with the benchmark results in Ref. [19] rounded to 17 digits.

n	$\left\langle r^{k}\right\rangle$	Ref. [19]
	$\lambda=0.01, V_{0}=0.1(N=40, h=16)$	
$0\left\langle r^{-1}\right\rangle$	0.0998318722091	
$\langle r\rangle$	15.08243412886293	15.082434128863035
$\left\langle r^{2}\right\rangle$	304.1888864931214	304.18888649312441
$1\left\langle r^{-1}\right\rangle$	0.022947496790515	
$\langle r\rangle$	65.04319573725043	65.043195737250814
$\left\langle r^{2}\right\rangle$	4980.632803277178	4980.6328032772213
$2\left\langle r^{-1}\right\rangle$	0.006923052889159	
$\langle r\rangle$	205.370791289550	205.37079128953701
$\left\langle r^{2}\right\rangle$	49369.953038660	49369.953038651105
	$\lambda=0.04, V_{0}=0.7(N=50, h=2)$	
$0\left\langle r^{-1}\right\rangle$	0.97814467335053	
$\langle r\rangle$	1.739045717021701	1.7390457170217368
$\left\langle r^{2}\right\rangle$	4.271937620831649	4.2719376208317344
$1\left\langle r^{-1}\right\rangle$	0.257425108303809	
$\langle r\rangle$	7.02034033255971	7.0203403325597959
$\left\langle r^{2}\right\rangle$	59.7110519265186	59.711051926519476
$2\left\langle r^{-1}\right\rangle$	0.094765809000015	
$\langle r\rangle$	18.07544662046882	18.075446620468967
$\left\langle r^{2}\right\rangle$	377.461035916263	377.46103591626638
$3\left\langle r^{-1}\right\rangle$	0.0372656559381	
$\langle r\rangle$	41.7399798341145	
$\left\langle r^{2}\right\rangle$	1982.03755353972	

A more stringent test of wave functions would be given by the calculation of polarizabilities. For the nonrelativistic hydrogen atom, numerically exact polarizabilities can be found with the Lagrange-mesh method for small numbers of mesh points [28]. Work is in progress to extend this study to the relativistic case, for which very accurate values are available for comparison [29].

The present method is expected to be very accurate for all properties of a single particle described by Dirac equations with various potentials. This includes taking account of the finite extension of the nucleus, evaluating two-photon transition probabilities, and studying the scattering by some potential. An extension to two-electron atoms should also be accurate if treated in perimetric coordinates [30]. A big challenge is to extend the method with accuracy to polyelectronic atoms where several Coulomb singular terms appear. A simultaneous regularization of several singularities is not available at present. A hybrid treatment may be feasible involving Lagrange functions but where the associated Gauss quadrature is replaced by another numerical technique for the computation of the matrix elements of the Coulomb repulsion between electrons.

ACKNOWLEDGMENTS

This paper presents research results of Interuniversity Attraction Pole Programme P7/12, initiated by the Belgianstate Federal Services for Scientific, Technical and Cultural Affairs. L.F. acknowledges support from the FRIA.
[1] I. P. Grant and H. M. Quiney, Phys. Rev. A 62, 022508 (2000).
[2] C. Froese Fischer and O. Zatsarinny, Comput. Phys. Commun. 180, 879 (2009).
[3] M. I. Bhatti and W. F. Perger, J. Phys. B 39, 553 (2006).
[4] P. Amaro, A. Surzhykov, F. Parente, P. Indelicato, and J. P. Santos, J. Phys. A 44, 245302 (2011).
[5] H. Nakashima and H. Nakatsuji, Theor. Chem. Acc. 129, 567 (2011).
[6] R. N. Hill and C. Krauthauser, Phys. Rev. Lett. 72, 2151 (1994).
[7] H. Nakatsuji and H. Nakashima, Phys. Rev. Lett. 95, 050407 (2005).
[8] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and G. Soff, Phys. Rev. Lett. 93, 130405 (2004).
[9] A. Igarashi, J. Phys. Soc. Jpn. 75, 114301 (2006).
[10] A. Igarashi, J. Phys. Soc. Jpn. 76, 054301 (2007).
[11] K. Beloy and A. Derevianko, Comput. Phys. Commun. 179, 310 (2008).
[12] D. Baye and P.-H. Heenen, J. Phys. A 19, 2041 (1986).
[13] M. Vincke, L. Malegat, and D. Baye, J. Phys. B 26, 811 (1993).
[14] D. Baye, M. Hesse, and M. Vincke, Phys. Rev. E 65, 026701 (2002).
[15] D. Baye, Phys. Status Solidi (B) 243, 1095 (2006).
[16] C. Semay, D. Baye, M. Hesse, and B. Silvestre-Brac, Phys. Rev. E 64, 016703 (2001).
[17] F. Buisseret and C. Semay, Phys. Rev. E 71, 026705 (2005).
[18] F. Buisseret and C. Semay, Phys. Rev. E 75, 026705 (2007).
[19] C. Krauthauser and R. N. Hill, Can. J. Phys. 80, 181 (2002).
[20] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012).
[21] I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules (Springer, New York, 2007).
[22] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
[23] G. Szegö, Orthogonal Polynomials (American Mathematical Society, Providence, RI, 1967).
[24] D. Baye, J. Phys. B 28, 4399 (1995).
[25] D. Baye, J. Phys. A 44, 395204 (2011).
[26] D. Baye (unpublished).
[27] V. M. Shabaev, in Precision Physics of Simple Atomic Systems. Lecture Notes in Physics, Vol. 627 (Springer, Berlin, 2003), pp. 97-113.
[28] D. Baye, Phys. Rev. A 86, 062514 (2012).
[29] L.-Y. Tang, Y.-H. Zhang, X.-Z. Zhang, J. Jiang, and J. Mitroy, Phys. Rev. A 86, 012505 (2012).
[30] M. Hesse and D. Baye, J. Phys. B 32, 5605 (1999).

[^0]: *dbaye@ulb.ac.be
 ${ }^{\dagger}$ livio.filippin@ulb.ac.be
 ${ }^{\ddagger}$ mrgodef@ulb.ac.be

