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Accurate solution of the Dirac equation on Lagrange meshes
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The Lagrange-mesh method is an approximate variational method taking the form of equations on a grid
because of the use of a Gauss quadrature approximation. With a basis of Lagrange functions involving associated
Laguerre polynomials related to the Gauss quadrature, the method is applied to the Dirac equation. The potential
may possess a 1/r singularity. For hydrogenic atoms, numerically exact energies and wave functions are obtained
with small numbers n + 1 of mesh points, where n is the principal quantum number. Numerically exact mean
values of powers −2 to 3 of the radial coordinate r can also be obtained with n + 2 mesh points. For the Yukawa
potential, a 15-digit agreement with benchmark energies of the literature is obtained with 50 or fewer mesh
points.
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I. INTRODUCTION

Numerically solving the Dirac equation raises a number of
difficulties mostly related to the existence of the Dirac sea.
The Dirac equation with a Coulomb potential is of particular
interest since the existence of exact analytical results allows
precise tests. The variational or Rayleigh-Ritz approximation
for the Dirac equation has been discussed in depth by Grant and
Quiney [1]. The authors use special spinors based on associated
Laguerre polynomials. The B-spline variational or Galerkin
method has been applied to the Dirac-Coulomb problem by
Froese Fischer and Zatsarinny [2]. An alternative approach is
the use of Bernstein B-polynomial basis sets [3], which looks
promising for relativistic calculations of atomic properties [4].
The free-complement method also yields accurate results for
this problem [5]. Here we use a different numerical method,
the Lagrange-mesh method, able to give exact energies and
wave functions of this problem up to rounding errors. The
exactness of one eigenvalue is not hindered by the much
discussed problems of the variational collapse [6,7] and of
the kinetic balance of the basis [1,2,7–11].

The Lagrange-mesh method is an approximate variational
calculation using a special basis of functions, hereafter called
Lagrange functions, related to a set of N mesh points and
the Gauss quadrature associated with this mesh [12,13]. It
combines the high accuracy of a variational approximation and
the simplicity of a calculation on a mesh [14,15]. The Lagrange
functions are N infinitely differentiable functions that vanish at
all points of this mesh, except one. Used as a variational basis
in a quantum-mechanical calculation, the Lagrange functions
lead to a simple algebraic system when matrix elements
are calculated with the associated Gauss quadrature. The
variational equations take the form of mesh equations with
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a diagonal representation of the potential depending only on
values of this potential at the mesh points [12,15]. The most
striking property of the Lagrange-mesh method is that, in spite
of its simplicity, the obtained energies and wave functions can
be as accurate with the Gauss quadrature approximation as
in the original variational method with an exact calculation
of the matrix elements [14,15]. It has been applied to various
problems in atomic and nuclear physics.

Until now, most Lagrange-mesh calculations are nonrel-
ativistic. A semirelativistic approach based on the Salpeter
equation has been developed in Refs. [16–18]. Here we
show that the Dirac equation allows a simple Lagrange-mesh
treatment. In the case of hydrogenic atoms, it even provides
numerically exact energies and wave functions, with very low
numbers of mesh points. For the Yukawa potential, it can be
compared with very accurate benchmark calculations [19].

Some properties of the Dirac equation are recalled in Sec. II.
The Lagrange-mesh method is summarized in Sec. III, with
emphasis on its adaptation to the Coulomb-Dirac problem.
In Sec. IV, numerically exact energies and Dirac spinors are
derived for hydrogenic atoms with small numbers of mesh
points. Accurate results for the Yukawa potential are obtained
and discussed in Sec. V. Section VI is devoted to concluding
remarks.

For the fine-structure constant, we use the CODATA 2010
value 1/α = 137.035 999 074 [20].

II. DIRAC EQUATION FOR THE HYDROGEN ATOM

In atomic units � = me = e = 1, where me is the electron
mass, the Dirac Hamiltonian reads [21]

HD = cα · p + βc2 + V (r), (1)

where p is the momentum operator, V is the potential, and α

and β are the traditional Dirac matrices. As the cited works
use either atomic units, where the speed of light c = 1/α

1539-3755/2014/89(4)/043305(9) 043305-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.043305


DANIEL BAYE, LIVIO FILIPPIN, AND MICHEL GODEFROID PHYSICAL REVIEW E 89, 043305 (2014)

is the inverse of the fine-structure constant, or relativistic
units, where c = 1, we delay the full choice of units till the
applications. The eigenenergies of HD are denoted c2 + E and
the Dirac equation reads

HD φκm(r) = (c2 + E) φκm(r). (2)

The Dirac spinors are defined as

φκm(r) = 1

r

(
Pκ (r)χκm

iQκ (r)χ−κm

)
(3)

as a function of the large and small radial components,
Pκ (r) and Qκ (r), respectively. The spinors χκm are common
eigenstates of L2, S2, J2, and Jz, with respective eigenvalues
l(l + 1), 3/4, j (j + 1), and m, where

j = |κ| − 1
2 , l = j + 1

2 sgn κ. (4)

The coupled radial Dirac equations read, in matrix form,

Hκ

(
Pκ (r)
Qκ (r)

)
= E

(
Pκ (r)
Qκ (r)

)
, (5)

with the Hamiltonian matrix

Hκ =
(

V (r) c
(− d

dr
+ κ

r

)
c
(

d
dr

+ κ
r

)
V (r) − 2c2

)
. (6)

The Dirac spinors, (3), are normed if∫ ∞

0
{[Pκ (r)]2 + [Qκ (r)]2}dr = 1. (7)

We assume that the potential behaves at the origin as

V (r) →
r→0

−V0

r
, (8)

where V0 is positive or null. At the origin [19,21], the radial
functions behave as

Pκ (r), Qκ (r) →
r→0

rγ , (9)

with the parameter γ defined by

γ =
√

κ2 − (V0/c)2, (10)

i.e., the wave functions φκm are singular for |κ| = 1 if V0 �= 0.
This singularity is weak for the hydrogen atom but can be
important for hydrogenic ions with high charges Z or for other
potentials.

An important particular case is the relativistic hydrogenic
atom, for which the potential is

V (r) = −Zαc

r
, (11)

i.e., V0 = Zαc. As a function of the principal quantum number
n, the energies are given analytically as [21]

Enκ = c2

{[
1 + α2Z2

n − |κ| + γ

]−1/2

− 1

}
. (12)

They can be written in a form minimizing rounding errors
as

Enκ = − (Zαc)2

N(N + n − |κ| + γ )
, (13)

with the effective principal quantum number

N = [(n − |κ| + γ )2 + α2Z2]1/2. (14)

This number is equal to n when |κ| = n.

III. LAGRANGE-MESH METHOD

The mesh points xj are defined by [12]

Lα′
N (xj ) = 0, (15)

where j = 1 to N and Lα′
N is a generalized Laguerre polyno-

mial [22]. This mesh is associated with a Gauss quadrature

∫ ∞

0
g(x) dx ≈

N∑
k=1

λkg(xk), (16)

with the weights λk . The Gauss quadrature is exact for the
Laguerre weight function xα′

e−x multiplied by any polynomial
of degree, at most, 2N − 1 [23]. The regularized Lagrange
functions are defined by [14,15,24]

f̂j (x) = x

xj

fj (x) = (−1)j
(
hα′

Nxj

)−1/2 Lα′
N (x)

x − xj

xα′/2+1e−x/2.

(17)

In this expression, fj (x) is a standard Lagrange function [12].
The functions fj (x) are polynomials of degree N − 1 multi-
plied by the square root of the Laguerre weight xα′

exp(−x).
The squared norm hα′

N of the generalized Laguerre polynomials
reads

hα′
N = 	(N + α′ + 1)

N !
. (18)

The Lagrange functions satisfy the Lagrange conditions

f̂j (xi) = fj (xi) = λ
−1/2
i δij . (19)

While the explicit form of the Lagrange functions will be
useful to choose the optimal value of α′, it does not play any
role in the determination of energies and mean values. These
functions are useful when the wave functions must be known
explicitly.

The nonregularized functions fj (x) form an orthonormal
set satisfying conditions (19) but have the drawback that the
matrix elements of d/dx and 1/x are not given accurately
by the Gauss quadrature because the integrals contain a
nonpolynomial factor 1/x. Though the exact matrix elements
are available [25,26], they lead to a variational calculation.
The elegant simplicity of the Lagrange-mesh method is lost
and singular potentials such as the Yukawa potential cannot be
described accurately. For this reason, in the following we use
the regularized functions f̂j (x), for which, as shown below,
the Gauss quadrature is exact for matrix elements of d/dx and
1/x. This basis is, however, not exactly orthonormal [14]:

〈f̂i |f̂j 〉 = δij + (−1)i−j

√
xixj

. (20)

Nevertheless, thanks to condition (19), these functions are
orthonormal at the Gauss-quadrature approximation denoted
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by the subscript G,

〈f̂i |f̂j 〉G =
N∑

k=1

λkλ
−1/2
i δikλ

−1/2
j δjk = δij . (21)

In the following, we treat the basis as orthonormal. This
apparently rough approximation will be shown to have no ef-
fect on the physically interesting eigenvalues and significantly
simplifies the calculations.

The matrix elements of d/dx are given at the Gauss
approximation by

DG
i �=j = λ

1/2
i f̂ ′

j (xi) = (−1)i−j

√
xi

xj

1

xi − xj

,

(22)
DG

ii = λ
1/2
i f̂ ′

i (xi) = 1

2xi

.

They are not exact since the integrands f̂i f̂
′
j involve the

weight function multiplied by a polynomial of degree 2N .
But

∫ ∞
0 f̂i(f̂ ′

j + 1
2 f̂j )dx can be calculated exactly with the

Gauss quadrature. With (20), the exact expressions are thus

Dij = 〈f̂i | d

dx
|f̂j 〉 = DG

ij − (−1)i−j

2
√

xixj

, (23)

or explicitly,

Di �=j = (−1)i−j xi + xj

2
√

xixj (xi − xj )
, Dii = 0. (24)

This matrix is antisymmetric as expected.
The crucial property of the Lagrange-mesh method is

that the potential matrix elements calculated at the Gauss
approximation are diagonal:

〈f̂i |V |f̂j 〉G =
N∑

k=1

λkf̂i(xk)V (xk)f̂j (xk) = V (xi)δij . (25)

This property also applies to matrix elements of powers of
x, for example. Note that the Gauss quadrature is exact for
x−1 and x−2 because the integrand is then a polynomial of
degree 2N − 1 or 2N − 2 multiplied by the Laguerre weight
function [23].

Let us now apply the method to the Dirac equation. To
this end the radial functions Pκ (r) and Qκ (r) are expanded in
regularized Lagrange functions (17) as

Pκ (r) = h−1/2
N∑

j=1

pj f̂
(α′)
j (r/h), (26)

Qκ (r) = h−1/2
N∑

j=1

qj f̂
(α′)
j (r/h), (27)

where h is a scaling parameter aimed at adapting the mesh
points hxi to the physical extension of the problem. The
superscript added to the Lagrange functions corresponds to
the superscript of the generalized Laguerre polynomials in
Eq. (17).

Before choosing the parameter α′, it is important to first
analyze the behavior of the wave functions at the origin. The
Lagrange functions, (17), behave as

f̂
(α′)
j (x) →

x→0
xα′/2+1. (28)

Hence rather than choosing α′ = 0 as in the nonrelativistic
case, it is convenient to choose

α′ = 2(γ − 1). (29)

If nonregularized Lagrange functions were used, the optimal
choice would be α′ = 2γ like the one adopted in Refs. [1] and
[19] for the B-spline expansions.

Let us introduce expansions (26) and (27) in the cou-
pled radial Dirac equations, (5). A projection on the La-
grange functions leads to the 2N × 2N algebraic system of
equations (

H (1,1) H (1,2)

H (2,1) H (2,2)

) (
(p1,p2, . . . ,pN )T

(q1,q2, . . . ,qN )T

)

= E

(
(p1,p2, . . . ,pN )T

(q1,q2, . . . ,qN )T

)
, (30)

where T means transposition. Note that, thanks to the Gauss
approximation, (21), on the scalar product of Lagrange
functions, the energies are simply given by the eigenvalues
of the Hamiltonian matrix. According to (21) and (25), the
diagonal N × N blocks read

H
(1,1)
ij = V (hxi)δij , H

(2,2)
ij = (V (hxi) − 2c2)δij . (31)

For the nondiagonal blocks, the term cκ/r is given exactly
by the Gauss quadrature and is diagonal. For the matrix
elements of the first derivative d/dr , several options are
possible. One can use the exact expressions, (24), or use
the Gauss approximation in the spirit of the Lagrange-mesh
method. The exact representation of d/dr is antisymmetric, as
it should be, and leads to a symmetric Hamiltonian matrix.
It is thus more instructive to exemplify the case of the
Gauss quadrature because the matrix representation of d/dr

is not antisymmetric. One must impose the symmetry of the
Hamiltonian matrix. Thus, the Gauss quadrature is used either
in block (2,1) or in block (1,2) and the remaining block is
constructed by symmetry. Choosing the Gauss quadrature in
(2,1), one obtains

H
(2,1)
ij = c

h

(
DG

ij + κ

xi

δij

)
, H

(1,2)
ij = H

(2,1)
ji , (32)

where DG
ij is given by (22). Choosing (1,2), one obtains

H
(1,2)
ij = c

h

(
−DG

ij + κ

xi

δij

)
, H

(2,1)
ij = H

(1,2)
ji , (33)

which is different. As we shall see in Sec. IV, using the Gauss
approximations leads to negligible differences with respect to
using the exact expression.

The norm, (7), is calculated with the Gauss quadrature as

N∑
i=1

(
p2

i + q2
i

) = 1. (34)

Hence normed solutions of the algebraic system (30) provide
the coefficients of expansions (26) and (27) of the large and
small components. As explained below, in the hydrogenic
cases, Eq. (34) is numerically exact.
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TABLE I. Eigenvalues Ei of the κ = −1 Hamiltonian matrix in Eq. (30) for a hydrogen atom with N = 2 and N = 3 mesh points
for α′ = −5.325 206 347 372 990 × 10−5 and the optimal value, (35), of h. Three cases are considered: Gauss approximation in block (2,1)
[Eq. (32)], Gauss approximation in block (1,2) [Eq. (33)], and exact values of the matrix elements Dij [Eq. (24)].

Ei Gauss (2,1) Gauss (1,2) Dij exact

1s1/2 with N = 2 and h = 0.5
E1 −37 563.230 370 668 45 −37 575.711 442 013 92 −37 567.701 964 573 92
E2 −37 559.230 157 644 22 −37 558.744 829 570 28 −37 558.757 978 194 24
E3 −0.500 059 907 242 439 −0.500 006 656 596 554 −0.500 006 656 596 554
E4 −0.500 006 656 596 554 11.495 683 364 290 550 3.499 354 548 250 311

1s1/2 with N = 3 and h = 0.5
E1 −37 567.746 725 519 26 −37 592.568 729 228 42 −37 576.149 599 781 89
E2 −37560.389 012 315 35 −37559.894 106 141 27 −37559.764 941 574 49
E3 −37558.554 602 146 43 −37558.206 770 665 09 −37558.272 506 313 43
E4 −0.500 006 656 596 554 −0.500 006 656 596 553 −0.500 006 656 596 554
E5 −0.258 320 031 170 988 0.132 065 036 600 383 0.070 690 172 696 772
E6 2.257 774 354 082 858 25.846 655 340 028 450 9.425 471 838 916 183

2s1/2 with N = 3 and h = 0.999 993 343 469 911 1
E1 −37 561.226 230 747 84 −37 567.646 697 995 70 −37 563.503 884 007 47
E2 −37 558.801 380 244 41 −37 558.489 260 768 74 −37 558.480 608 772 83
E3 −37 558.037 978 852 44 −37 557.928 899 204 34 −37 557.956 069 204 32
E4 −0.739 366 695 081 362 −0.467 715 743 773 135 −0.488 828 609 075 186
E5 −0.260 654 106 967 512 −0.125 002 080 189 192 −0.125 002 080 189 192
E6 −0.125 002 080 189 193 5.466 963 065 804 257 1.363 779 946 938 871

IV. HYDROGENIC ATOMS

We first consider the Dirac-Coulomb problem in atomic
units, where V (r) = −Z/r . With N mesh points, the eigen-
values and eigenvectors of the 2N × 2N Hamiltonian matrix,
(30), provide the relativistic energies and the coefficients of
expansions (26) and (27) of the wave functions. Given the
block structure, (31), of the mesh equations, one expects to
obtain N large negative eigenvalues with an order of magnitude
close to −2c2 = −37 557.730 084 418 65. The remaining N

eigenvalues should lie much higher in the spectrum, i.e., at
far less negative (or positive) values. If the eigenvalues are
ordered by increasing values, the (N + 1)th eigenvalue should
approximate the lowest physical energy of the chosen partial
wave and the following ones should approximate the energies
of excited states.

With α′ given by (29) and the choice

h = N/2Z, (35)

the Lagrange-Laguerre expansions, (26) and (27), are able to
perfectly reproduce the exact eigenfunctions. One of these
eigenvalues can even give the numerically exact result for the
level nκ if N > n − |κ| + 1. Indeed, in this case, the large and
small radial functions Pnκ and Qnκ are polynomials of degree
n − |κ| multiplied by rγ and an exponential exp(−Zr/N).
Moreover, the matrix elements of the Hamiltonian between
these components are exactly given by the Gauss-Laguerre
quadrature even if this quadrature is not exact for individual
matrix elements DG

ij . Let us start by testing the ground-state
energy with N = 2, scaling parameter h = 0.5, and α′ =
−5.325 206 347 372 990 × 10−5. The two mesh points are
given by Eq. (15), i.e.,

x1,2 = 2γ ∓
√

2γ . (36)

The four eigenvalues are listed in Table I for three ways
of treating the first derivative: (i) Gauss approximation (32)
on block (2,1); (ii) Gauss approximation (33) on block
(1,2); and (iii) exact expression, (24), of Dij immediately
leading to a symmetric matrix. In each case, one obtains
two eigenvalues below −2c2 as expected. They correspond
to pseudostates in the Dirac sea. One of the other two
eigenvalues is identical (with 15 digits!) in the three cases.
However, in case (i), a spurious eigenvalue E3 appears just
below the physical eigenvalue E4. In the other two cases,
the physical eigenvalue is E3. Anyway, this is probably the
simplest numerical calculation providing 15 significant figures
for the ground-state energy of the relativistic hydrogen atom.
At any r value, the Lagrange-mesh functions P1s and Q1s

given by (26) and (27) differ from the exact ones only by the
tiny rounding errors on the four coefficients p1, p2 and q1, q2,
which are the components of the eigenvector corresponding to
the physical eigenvalue. These properties remain true for all
hydrogenic ions.

The spurious eigenvalue probably has two origins. First,
the present basis does not satisfy the property of kinetic
balance [1,2,8]. Second, the Gauss approximation is not
exact, at least for the overlap of Lagrange functions, and
introduces an error even when exact values of the Dij are
used. The differences among the three calculations indicate
that the spurious eigenvalue is mainly due here to the Gauss
approximation. This is confirmed by a variational calculation
using the same regularized Lagrange-Laguerre basis, i.e., a
calculation with the exact matrix elements Dij and the exact
overlaps 〈f̂i |f̂j 〉 given by Eq. (20). The resulting generalized
eigenvalue problem provides the same exact value E3 as in
Table I and E4 ≈ 1.166 451 5. Since we are interested in a
single eigenvalue which is exact, the existence of spurious
eigenvalues is not a big problem. They can easily be detected
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TABLE II. Regularized Lagrange-Laguerre-mesh calculations of n � 3 energies of the relativistic Z = 1 hydrogen atom and Z = 100
hydrogenic ion calculated for given N and h values, for the optimal value, (29), of α′ and for α′ = 0 (c = 137.035 999 074). The exact energies
are identical to the values obtained with α′ = 2γ − 2, except for possibly one or two units on the last displayed digit.

nlj κ h N Enκ N Enκ

(α′ = 2γ − 2) (α′ = 0)

Z = 1
1s1/2 −1 0.5 3 −0.500 006 656 596 554 3 −0.500 006 656 714 711
2s1/2 −1 1 5 −0.125 002 080 189 192 5 −0.125 002 080 208 393
2p1/2 +1 1 4 −0.125 002 080 189 192 4 −0.125 002 080 192 885
2p3/2 −2 1 4 −0.125 000 416 028 976 4 −0.125 000 416 029 900
3s1/2 −1 1 7 −0.055 556 295 176 422 7 −0.055 556 295 182 736
3p1/2 +1 1.5 5 −0.055 556 295 176 422 5 −0.055 556 295 195 238
3p3/2 −2 1.5 5 −0.055 555 802 091 367 5 −0.055 555 802 096 072
3d3/2 +2 1.5 5 −0.055 555 802 091 367 5 −0.055 555 802 091 398
3d5/2 −3 1.5 5 −0.055 555 637 733 815 5 −0.055 555 637 733 829

Z = 100
1s1/2 −1 0.005 3 −5939.195 192 426 652 100 −5932.765
2s1/2 −1 0.009 175 5 −1548.656 111 829 165 100 −1545.707
2p1/2 +1 0.009 175 4 −1548.656 111 829 167 100 −1548.567
2p3/2 −2 0.010 4 −1294.626 149 195 190 100 −1294.626 143
3s1/2 −1 0.013 906 7 −657.945 199 521 658 9 100 −656.436
3p1/2 +1 0.013 906 5 −657.945 199 521 658 8 100 −657.890
3p3/2 −2 0.014 768 5 −582.139 046 840 141 8 100 −582.139 036
3d3/2 +2 0.014 768 5 −582.139 046 840 141 9 100 −582.139 046 829
3d5/2 −3 0.015 5 −564.025 853 485 845 0 100 −564.025 853 485 675

by their instability when increasing the number of mesh
points.

When N increases to 3, three values are below −2c2 and the
physical eigenvalue is E4 in the three cases. Note that while
E4 is almost identical, the other eigenvalues are quite different
and meaningless. If one chooses h = 0.999 993 343 469 911 1
with N = 3 in agreement with Eq. (35), an eigenvalue becomes
exactly equal to the 2s1/2 energy in the three cases, though the
rounding errors may be slightly different. It is E5 for (ii) and
(iii) but E6 for (i). Note that when h is rounded to 0.999 993 3,
the physical eigenvalue does not change but the other ones can
be significantly modified.

Although the variational calculation with Lagrange func-
tions does not present difficulties, it is less simple than
a Lagrange-mesh calculation because of the nondiagonal
overlap matrix of basis functions. The fact that the eigenvalue
problem is generalized may even lead to additional rounding
errors when N is large. Since the simpler Lagrange-mesh
method gives the same exact energies and wave functions,
in the rest of the paper we only use this method with the Gauss
quadrature on block (2,1).

The energies of the n � 3 levels are listed in Table II for
the cases Z = 1 and Z = 100. The calculations are performed
with small numbers N of mesh points, i.e., N = n + 2, except
for s states (n > 1), where a slightly larger value is used to
move a spurious eigenvalue to higher energies. With these
choices, mean values of powers rk of the coordinate can be cal-
culated exactly from k = −2 to 3 as explained below. The first
Enκ column contains energies obtained with the optimal α′ de-
fined in Eq. (29). These energies coincide with the exact ones,
(13), except possibly for one or two units on the last displayed
digit. For Z = 1, the energies are shown as obtained with

h = n/2Z, but calculations with the optimal value, (35),
lead to exactly the same displayed digits because the dif-
ference between the h values is smaller than 10−5. Note
that exactly degenerate energies are obtained despite the
fact that the meshes are quite different because of different
α′ and/or N values. As in most other applications of the
Lagrange-mesh method, the results are not very sensitive
to the precise choice of h. Nevertheless, at some higher
accuracy level, multiprecision calculations aiming at more
digits should be made with (35) to provide the exact
values.

For Z = 100, the results are computed for the displayed
truncated value of the optimal h given by (35) since the
dropped digits do not affect the significant digits of the physical
energies. The accuracy remains excellent. Tiny differences
appear between theoretically degenerate values. The rela-
tive error with the nonrelativistic value h = n/2Z is about
10−10.

The last column in Table II lists calculations with stan-
dard Laguerre polynomials (α′ = 0). For Z = 1, the relative
difference from the fourth-column values is tiny when the
same number of mesh points is kept. It decreases from about
2 × 10−9 to 3 × 10−13 when |κ| increases. The singularity
induced by the difference between γ and |κ| is weak. For
Z = 100 with the same N , the results are very bad (not shown).
Even with the much larger N = 100 value, the accuracy
remains poor except when |κ| is large, i.e., when α′ gets closer
to an integer value that α′ = 0 can better simulate. For |κ| = 1,
the relative error is larger than 10−3. For large Z values, a
correct treatment of the singularity is crucial, as expected.

The high accuracy obtained in Table II is not restricted
to small n values. Some energies for n = 30 obtained with
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TABLE III. Regularized Lagrange-Laguerre-mesh calculations of some n = 30 energies of the relativistic hydrogen atom (Z = 1) and
hydrogenic fermium ion (Z = 100) for N = 32 and optimal parameters α′ = 2γ − 2 and h = N/2Z. The relative errors ε listed depend on the
code implementation but are given for information. Powers of 10 are indicated in brackets.

κ α′ h N Enκ ε

Z = 1 (n = 30)
−1 −5.325 206 347 372 990[−5] 14.999 987 1 32 −0.000 555 556 517 052 700 9 2.2[−16]
+1 −0.000 555 556 517 052 702 9 3.8[−15]
−2 1.999 973 374 234 119 14.999 993 8 −0.000 555 556 023 972 175 9 2.0[−15]
−29 55.999 998 163 746 37 15.000 000 0 −0.000 555 555 564 906 847 1 −4.4[−16]
+29 −0.000 555 555 564 906 847 5 4.4[−16]
−30 57.999 998 224 954 82 15 −0.000 555 555 563 773 357 4 0

Z = 100 (n = 30)
−1 −0.632 540 377 608 241 9 0.148 463 49 32 −5.672 000 589 766 628 2.0[−15]
+1 −5.672 000 589 766 619 4.4[−16]
−2 1.724 237 615 790 889 0.149 355 17 −5.604 466 953 036 355 2.4[−15]
−29 55.981 634 556 287 49 0.149 998 47 −5.556 490 981 728 510 −2.4[−15]
+29 −5.556 490 981 728 514 −1.8[−15]
−30 57.982 246 922 059 13 0.15 −5.556 377 578 924 101 −3.0[−15]

N = 32 mesh points are listed in Table III. The values of α′
and h are also given. The last column contains the relative error
ε with respect to the exact value, (13). This error depends on
the code implementation and may vary from one calculation
to another as well as the last one or two digits of Enκ . Here, for
low |κ| values, a spurious eigenvalue appears below the energy
listed in Table III. In some cases, it is probably related to the
problem discussed in Refs. [1,2], and [8–11], i.e., the fact that
the basis does not satisfy the kinetic-balance criterion, because
it also occurs in the corresponding variational calculation. In
the other cases, it disappears when the Gauss approximation
is not used. Finally, let us note the large variation of α′ values
as a function of |κ|. This can be avoided by using

α′ = 2(γ − |κ|) (37)

rather than (29). The meshes are then much more similar for
all κ values. The correct behavior, (9), at the origin can still
be simulated with a corresponding increase in the number
N of mesh points depending on n rather than on n − |κ|.
The accuracy of the results does not change much with this
modification.

Tables II and III show that the present method can
provide numerically exact energies. The same is true for
the corresponding wave functions, as it can be realized
from the calculation of the mean values of powers of r .
With N � n − |κ| + 3, the obtained wave functions and the
corresponding Gauss quadrature lead to the exact mean values
for the operators r−2, r−1, r , r2, and r3 with

〈rk〉nκ = 〈φnκm|rk|φnκm〉 = hk

N∑
i=1

(
p2

nκi + q2
nκi

)
xk

i . (38)

Indeed, the integrand of the exact matrix element is the weight
function times a polynomial of degree 2n − 2|κ| + k + 2. The
Gauss quadrature is exact for 2N − 1 � 2n − 2|κ| + k + 2
or 0 � k � 2(N − n + |κ|) − 3. This is thus also valid for the
norm (34). Thanks to the regularization, the integrand contains
a factor rk+2 and the integral is also exact for the negative
powers k = −1 and −2. The exact mean values of higher

positive integer powers of r can also be obtained, but with
increasing numbers N of mesh points.

Mean values obtained with the conditions in Table II for
the optimal α′ and h are listed in Table IV. For k = −2, −1, 1,
and 2, the numerical results agree with analytical expressions
from Table 3.2 in Ref. [21] or from Ref. [27]. If the Gauss
quadrature is performed on block (1,2) rather than on block
(2,1), the mean values are closer to the exact ones for 2p1/2

and 2p3/2 but they are slightly less good for 1s1/2 and 2s1/2.
All results until now have been obtained with h values

varying from shell to shell and, sometimes, from level to
level. Several highly accurate eigenvalues can also be obtained
simultaneously with a single h value per partial wave or for all
partial waves. Relative errors on the nine lowest energies are
listed in Table V with N = 30 mesh points and some average
scaling parameter depending on κ . At least six eigenvalues
simultaneously have a relative accuracy better than 10−10 for
the various partial waves. The worst case is κ = −1 because of
the large range of binding energies and thus the large range of
asymptotic exponential decreases which must be simulated
with a single h. Precise results with a single value of h

for all partial waves can be obtained with larger N values.
With N = 50 and h = 3, the number of eigenvalues with an
accuracy better than 10−10 increases to at least 10 in all the
|κ| = 1 − 3 partial waves. With N = 100 and h = 5.5, this
number rises to at least 25.

V. YUKAWA POTENTIAL

Benchmark values with a 40-digit accuracy are given in
Ref. [19] for selected Yukawa potentials:

V (r) = −V0
e−λr

r
. (39)

We choose some of them to test the Lagrange-mesh method
in that case. Switching to the Yukawa potential requires only
changing the potential values V (hxi) in the Hamiltonian matrix
[see Eq. (25)]. The system of units is now � = m = c = 1.
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TABLE IV. Lagrange-mesh calculations of the mean values 〈(Zr)k〉 (k = −2 to k = 3) for the Dirac hydrogen atom and hydrogenic
fermium ion with N = 3 (1s1/2), N = 4 (2p1/2 and 2p3/2), and N = 5 (2s1/2) mesh points.

k 1s1/2 2s1/2 2p1/2 2p3/2

Z = 1
−2 2.000 159 766 116 231 0.250 028 292 269 074 0.083 342 024 388 253 0.083 334 627 656 595
[27] 2.000 159 766 116 226 0.250 028 292 269 074 0.083 342 024 388 253 0.083 334 627 656 577
−1 1.000 026 626 740 701 0.250 008 320 873 086 0.250 008 320 873 087 0.250 001 664 121 470
[21] 1.000 026 626 740 701 0.250 008 320 873 086 0.250 008 320 873 086 0.250 001 664 121 445
1 1.499 973 373 968 263 5.999 883 511 521 008 4.999 883 511 520 941 4.999 973 374 233 225
[21] 1.499 973 373 968 263 5.999 883 511 521 012 4.999 883 511 521 012 4.999 973 374 234 120
2 2.999 906 809 597 867 41.998 495 647 329 15 29.998 735 280 816 32 29.999 707 117 268 71
[21] 2.999 906 809 597 866 41.998 495 647 329 22 29.998 735 280 817 29 29.999 707 117 284 25
3 7.499 687 148 380 748 329.983 239 243 076 3 209.987 712 361 100 8 209.997 151 055 590 1

Z = 100
−2 7.960 417 675 192 373 1.542 632 708 400 137 0.454 380 205 317 436 0.098 563 843 941 060 1
[27] 7.960 417 675 192 391 1.542 632 708 400 123 0.454 380 205 317 370 0.098 563 843 941 060 0
−1 1.462 566 036 503 436 0.398 505 472 652 605 0.398 505 472 652 623 0.268 511 331 221 178 9
[21] 1.462 566 036 503 437 0.398 505 472 652 604 0.398 505 472 652 604 0.268 511 331 221 178 6
1 1.183 729 811 195 878 4.675 861 781 113 669 3.675 861 781 113 592 4.724 237 615 790 892
[21] 1.183 729 811 195 879 4.675 861 781 113 673 3.675 861 781 113 673 4.724 237 615 790 889
2 1.993 081 171 511 766 26.562 706 733 046 36 17.293 451 206 471 90 27.042 658 666 244 49
[21] 1.993 081 171 511 771 26.562 706 733 046 46 17.293 451 206 472 39 27.042 658 666 244 48
3 4.352 350 770 363 447 172.545 557 666 531 8 98.256 482 525 922 66 181.84 126 263 455 46

Potential (39) has the singular behavior, (8), at the origin.
The parameter γ is thus given by Eq. (10) and α′ is chosen
according to Eq. (29). The scaling parameter h and the number
N of mesh points are adjusted for each potential according to
the requested goals. Here we want to reproduce simultaneously
all the energies listed in Table 9 in Ref. [19] for a given
symmetry within the double-precision accuracy. This can be
achieved with N = 40 or 50 and an appropriate h value.

Table VI lists the energies c2 + Enκ for two cases: λ =
0.01 and V0 = 0.1 (corresponding to λ ≈ 1.37 and V0 ≈ 13.7
in a.u.) and λ = 0.04 and V0 = 0.7 (corresponding to λ ≈
5.48 and V0 ≈ 95.9 in a.u.). For the first, shallower potential,
h = 16 is a good compromise for a simultaneous treatment
of the three κ = −1 lowest bound states. With N = 30, the
energies of these states perfectly reproduce the benchmark
values rounded to 15 digits. However, the listed results are
obtained with N = 40 to improve the wave functions and the
mean values discussed below. We do not find any other bound
state. Under the same conditions, the κ = 1 and −2 energies

are also perfect. It should be noted that a similar quality of
energies can be obtained with far fewer mesh points when
each state is studied separately. The same ground-state energy
is obtained with only eight mesh points for h = 4.5–5. The first
excited κ = −1 energy is obtained with N = 14 and h ≈ 10.
The energies of the κ = 1 and −2 levels can also be as accurate
with fewer mesh points.

For the second, deeper potential, the calculations are
performed with N = 50 and h = 2. Here also a 15-digit
accuracy is reached under these conditions. For the ground
state, with h = 1, N = 10 would be enough to get the same
digits. For h = 1.2, N = 12 is enough for the first excited
level. With N = 50 and h = 2, one observes the existence
of two additional negative energies. The energy of the third
excited level is obtained with the same accuracy, as shown
by a comparison with N = 60. The presence of a fifth slightly
negative energy gives some indication of the possible existence
of a very weakly bound fourth excited level but we could not
reach convergence by increasing N and h. For κ = 1 and −2

TABLE V. Relative errors on Lagrange-mesh calculations of the nine lowest energies of a calculation with N = 30 and the optimal α′ for
the Dirac hydrogen atom with |κ| = 1 − 3. Powers of 10 are indicated in brackets.

n − l − 1 s1/2 p1/2 p3/2 d3/2 d5/2 f5/2

(h = 1.5) (h = 2.5) (h = 2.5) (h = 3.5) (h = 4) (h = 4.5)

0 −2.7[−15] −3.0[−14] −2.1[−14] −1.8[−14] 2.7[−15] −1.4[−14]
1 −2.8[−14] −2.3[−14] −2.2[−14] −1.4[−14] −1.2[−14] −8.5[−15]
2 −3.4[−13] −1.6[−14] −2.0[−14] −1.1[−14] −8.9[−15] −6.9[−15]
3 −1.1[−13] −1.3[−14] −1.4[−14] −8.2[−15] −5.9[−15] −5.7[−15]
4 2.5[−13] −9.8[−15] −6.2[−15] −4.8[−15] −7.7[−15] −4.9[−15]
5 2.3[−12] −7.0[−15] −2.6[−15] −4.9[−15] −6.9[−15] −1.4[−15]
6 2.5[−07] −2.7[−15] −1.8[−15] −2.0[−15] −5.9[−15] −2.6[−15]
7 6.6[−04] 8.9[−10] 1.5[−10] −1.2[−15] −4.7[−15] −3.8[−15]
8 7.5[−02] 7.6[−06] 1.8[−06] 2.3[−11] −5.7[−15] −2.3[−15]
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TABLE VI. Regularized Lagrange-Laguerre-mesh energies of
Yukawa potentials (c = 1). Comparison with the benchmark results
in Ref. [19] rounded to 17 digits.

n κ 1 + Enκ Ref. [19]

λ = 0.01, V0 = 0.1 (N = 40, h = 16)
0 −1 0.995 917 081 971 152 0.995 917 081 971 151 89
1 0.999 497 559 778 376 0.999 497 559 778 375 46
2 0.999 967 446 168 861 0.999 967 446 168 860 68
0 1 0.999 531 550 432 223 0.999 531 550 432 222 89
1 0.999 983 717 932 084 0.999 983 717 932 084 17
0 −2 0.999 534 057 514 086 0.999 534 057 514 085 53
1 0.999 983 995 560 747 0.999 983 995 560 747 02

λ = 0.04, V0 = 0.7 (N = 50, h = 2)
0 −1 0.741 201 083 823 740 0.741 201 083 823 739 90
1 0.950 294 103 969 378 0.950 294 103 969 378 01
2 0.988 794 022 128 970 0.988 794 022 128 970 38
3 0.998 408 251 840 772
0 1 0.950 966 326 753 638 0.950 966 326 753 637 53
1 0.989 310 801 129 036 0.989 310 801 129 036 00
2 0.998 718 627 536 472
0 −2 0.961 282 015 004 946 0.961 282 015 004 946 09
1 0.991 803 837 230 717 0.991 803 837 230 717 12
2 0.999 249 454 384 587

also, an additional excited level is obtained with high accuracy
under the same conditions.

To test the wave functions, we have computed the mean
values of 1/r , r , and r2 using the same conditions as in
Table VI. The corresponding results are reported in Table VII.
The significant digits of 〈r−1〉 are estimated by a comparison
with N = 60. The error is of a few units on the last displayed
digit. The other two cases can be compared with results
rounded from Table 10 in Ref. [19]. For both potentials, one
observes that about 14 figures are significant. Not only the
energies but also the wave functions are highly accurate in
these calculations.

VI. CONCLUSION

For the first time, the Lagrange-mesh method is applied to
the Dirac equation. The choice of mesh points takes precisely
into account a possible singularity of the potential. A scaling
parameter allows adjusting the mesh to the extension of the
physical problem.

For the exactly solvable Coulomb-Dirac problem describ-
ing hydrogenic atoms, numerically exact results, i.e., exact
up to rounding errors, are obtained for any state and for
any nuclear charge with very small numbers of mesh points.
Only two points are enough to get the exact energy and
wave function of the ground state. With a slightly larger
number of points, mean values of a number of powers of
the coordinate are also obtained exactly with the Gauss
quadrature.

Tests with the Yukawa potential provide very accurate re-
sults, with a number of mesh points for which the computation
seems instantaneous. The approximate wave functions provide
mean values of powers of the coordinate that are also extremely
precise.

TABLE VII. Regularized Lagrange-Laguerre-mesh calculation
of mean values 〈rk〉 for Yukawa potentials with κ = −1 (c = 1).
Comparison with the benchmark results in Ref. [19] rounded to 17
digits.

n 〈rk〉 Ref. [19]

λ = 0.01, V0 = 0.1 (N = 40, h = 16)
0 〈r−1〉 0.099 831 872 209 1

〈r〉 15.082 434 128 862 93 15.082 434 128 863 035
〈r2〉 304.188 886 493 121 4 304.188 886 493 124 41

1 〈r−1〉 0.022 947 496 790 515
〈r〉 65.043 195 737 250 43 65.043 195 737 250 814

〈r2〉 4980.632 803 277 178 4980.632 803 277 221 3
2 〈r−1〉 0.006 923 052 889 159

〈r〉 205.370 791 289 550 205.370 791 289 537 01
〈r2〉 49 369.953 038 660 49 369.953 038 651 105

λ = 0.04, V0 = 0.7 (N = 50, h = 2)
0 〈r−1〉 0.978 144 673 350 53

〈r〉 1.739 045 717 021 701 1.739 045 717 021 736 8
〈r2〉 4.271 937 620 831 649 4.271 937 620 831 734 4

1 〈r−1〉 0.257 425 108 303 809
〈r〉 7.020 340 332 559 71 7.020 340 332 559 795 9

〈r2〉 59.711 051 926 518 6 59.711 051 926 519 476
2 〈r−1〉 0.094 765 809 000 015

〈r〉 18.075 446 620 468 82 18.075 446 620 468 967
〈r2〉 377.461 035 916 263 377.461 035 916 266 38

3 〈r−1〉 0.037 265 655 938 1
〈r〉 41.739 979 834 114 5

〈r2〉 1982.037 553 539 72

A more stringent test of wave functions would be given
by the calculation of polarizabilities. For the nonrelativistic
hydrogen atom, numerically exact polarizabilities can be found
with the Lagrange-mesh method for small numbers of mesh
points [28]. Work is in progress to extend this study to the
relativistic case, for which very accurate values are available
for comparison [29].

The present method is expected to be very accurate for all
properties of a single particle described by Dirac equations
with various potentials. This includes taking account of
the finite extension of the nucleus, evaluating two-photon
transition probabilities, and studying the scattering by some
potential. An extension to two-electron atoms should also
be accurate if treated in perimetric coordinates [30]. A
big challenge is to extend the method with accuracy to
polyelectronic atoms where several Coulomb singular terms
appear. A simultaneous regularization of several singularities
is not available at present. A hybrid treatment may be feasible
involving Lagrange functions but where the associated Gauss
quadrature is replaced by another numerical technique for the
computation of the matrix elements of the Coulomb repulsion
between electrons.
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