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The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein
and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in
terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The
viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389
(2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also
derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided
that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the
Hermite polynomials.
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I. INTRODUCTION

One of the greatest achievements of the Boltzmann equa-
tion [1] is to determine the macroscopic hydrodynamical
equations of a fluid from a phase-space distribution function,
f (χ ,x,t), which describes the probability to find particles with
microscopic velocity χ in position x at time t . Nearly 80
years have passed since Uehling and Uhlenbeck [2] solved the
Boltzmann equation for the quantum fluid approximately by
determining the small correction to the distribution function
of noninteracting particles in case of a weak interaction. From
this solution they derived the macroscopic hydrodynamical
equations through the so-called Chapman-Enskog analysis
and obtained the viscosity, η, and the thermal conductivity,
κ , coefficients of the quantum fluid. The Uehling-Uhlenbeck
approach was later revisited by Nikuni and Griffin [3],
who derived the macroscopic hydrodynamic equations, and
the corresponding η and κ coefficients, of a trapped Bose
gas above the Bose-Einstein condensation with damping.
Lepienski and Kremer [4] also determined these coefficients
in case of specific two-body potentials, namely Lennard-Jones
and hard spheres. Recently, the Boltzmann equation was
found applicable to describe the collective oscillations of the
two-dimensional Fermi gas [5]. All the above studies of the
quantum fluid take the assumption of a two-body collision
operator, as in the original Bolztmann equation. A simplifying
assumption for the collision operator was introduced in the
1950s by Bhatnagar-Gross-Krook (BGK) [6], who considered
it only a simple drive to an equilibrium distribution function
under a single relaxation time τ . Nevertheless, the Uehling-
Uhlenbeck approach has been applied only recently to solve
the BGK-Boltzman equation for the quantum fluid [7,8] by
Yang et al., who derived its η and κ coefficients.

In the late 1980s a numerical scheme was formulated to
solve the Boltzmann equation with the BGK collision term
[9–12] under the assumption of a discrete phase space where
both the microscopic velocity and the position are restricted

*mmd@if.ufrj.br

to a discrete set of values defined by a lattice. This method
became widely known as the lattice Boltzmann method (LBM)
and is used to simulate fluids with numerous advantages, such
as easy implementation, inherent parallelization, and flexible
treatment of the boundary conditions. The position space falls
on a regular lattice where each point has a discrete set of
microscopic velocity vectors that points towards a selected
set of nearest nodes. To this discrete set of directions we
associate the index α, such that the microscopic velocities
become χα . The neighbor points are reached after a time �t .
The discreteness and rigidity of the microscopic velocity in the
LBM makes the distribution function also become a discrete
set, and instead of f (χ ,x,t), one has fα(x,t), a fact that is of
great numerical advantage. Then the lattice BGK-Boltzmann
equation is derived from the continuous Boltzmann equation
under a discretization procedure [13],

fα(x + χα�t,t + �t) − fα(x,t)

= −�t

τ

[
fα(x,t) − f (0)

α (x,t)
]
, (1)

which constantly drives the nonequilibrium distribution
fα(x,t) to the equilibrium distribution function f (0)

α (x,t).
Despite the tremendous success of the LBM method to
describe the mass and momentum (Navier-Stokes) equations,
the inclusion of an energy equation has remained a challenge
for some time. The energy equation is needed to describe, for
instance, the conversion of friction due to motion into heat,
which increases the fluid temperature. This means that the
transport of matter by particle diffusion is intertwined with
the advected transport of enthalpy in such a way that the total
energy is conserved for a closed system. The macroscopic
hydrodynamical equations of the classical thermal compress-
ible fluid are well known and can be derived from general
macroscopic principles, as shown in the book of Landau and
Lifshitz [14], for instance.

Many years after the development of the Uehling-
Uhlenbeck approach, Grad [15,16] devised another method to
solve the continuous Boltzmann equation based on a sequence
of approximations, obtained through the expansion of the
distribution function in terms of the microscopic velocity
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space, expressed as a Gaussian times a linear expansion
in Hermite polynomials. Grad’s approach turned to be of
paramount importance for the understanding of the properties
of the LBM. For this reason the Hermite polynomial expansion
method found a renewal of interest, such as in Refs. [17,18].
Despite the understanding brought by these references, the
ingredients to describe the thermal compressible classical fluid
were still missing, since the Hermite polynomial expansion
was only carried there to third order (N = 3), which is just
insufficient. It was not until recently that the LBM for the
thermal compressible fluid with a single BGK relaxation time,
as described in Eq. (1), was derived. Philippi et al. (Ref. [19]),
Siebert et al. (Ref. [20]), and Shan and Chen (Ref. [21])
succeeded to show that the thermal compressible properties
of the classical fluid are correctly described if the Hermite
polynomial expansion is carried to fourth order (N = 4). Then
the Chapman-Enskog analysis [19–21], applied to the BGK-
Boltzmann equation with the Maxwell-Boltzmann equilibrium
distribution function, gives the macroscopic hydrodynamical
equations for the mass, momentum, and energy balance, as
obtained in the book of Landau and Lifshitz [14].

In this paper we apply the N = 4 order Hermite polynomial
expansion procedure to the quantum fluid and obtain its macro-
scopic hydrodynamical equations from a Chapman-Enskog
analysis of the BGK-Boltzmann equation. We conclude that
the construction of an LBM for the quantum fluid, similarly to
the classical fluid, requires the Hermite polynomial expansion
be carried to N = 4 order to reach the correct energy equation,
which in addition to the mass and momentum equations, is also
needed for a full description of friction-heating processes.
The coefficients η and κ of the BGK-Boltzmann quantum
fluid, obtained through the Uehling-Uhlenbeck approach [7,8],
can be retrieved only in the N = 4 order, and not in the
lowest order, as shown here. Therefore the halt of the Hermite
polynomial expansion in N = 3 order, as done in Ref. [8],
impairs the derivation of the correct energy equation of the
quantum fluid. Similarly, the macroscopic hydrodynamical
equations of Ref. [22] do not correctly describe the energy
balance equation because they are limited to N = 3 order.
Reference [8] provides the general form of the macroscopic
hydrodynamical equations for the BGK-Boltzmann quantum
fluid but not the formulation of these equations in terms of
the local macroscopic fields, namely the chemical potential
μ(x) [or the fugacity z(x)], the local temperature θ (x), and the
local velocity u(x). In this paper we obtain the macroscopic
hydrodynamical equation in terms of the above macroscopic
variables.

We summarize the main achievements of this paper as
follows. We obtain the equilibrium distribution function of
the Bose-Einstein (BE) and Fermi-Dirac (FD) expanded to
N = 4 order in Hermite polynomials, namely Eq. (78), or,
equivalently, Eq. (88). We also obtain the Maxwell-Boltzmann
(MB) equilibrium distribution function by Taylor expansion,
namely Eq. (B11). In the classical limit the N = 4 BE-FD equi-
librium distribution function becomes the Taylor-expanded
MB equilibrium distribution function. All our results are
obtained in D dimensions, a feature that generalizes previous
results discussed in the literature [7,8]. Next we derive the
macroscopic hydrodynamical equations for the BE-FD cases,
Eqs. (21) and (22), and show that they become their MB

counterparts, Eqs. (5) and (6), in the classical limit, where BE,
FD, and MB statistics coincide. The viscosity and the thermal
coefficients, given by Eqs. (19) and (34), respectively, are the
ones previously derived in Ref. [7] by use of another method.
We show in Sec. VI that the N = 3 Hermite expansion yields
an incorrect energy equation and therefore this order is not
suitable to describe either the classical or the quantum fluid.
The N = 4 order FD-BE fluid equations cannot be generally
mapped into the MB ones for arbitrary fugacity. However, this
mapping, as found in this paper, is always possible at the N = 3
expansion level. This shows, once again, that the N = 3 order
cannot be correct. The N = 4 macroscopic hydrodynamical
equations of the FD-BE fluids display an interesting property.
To better understand this property we introduce the notation
of pseudo variables, represented by a bar on the top of
the corresponding variable. The property corresponds to the
mapping of the pseudo variables into their counterparts, which
leads the (BE-FD) quantum equations into the (MB) classical
ones. However, this mapping is not perfect and is spoiled by
a single term in the heat flow term of the energy equation,
as seen in Eq. (23). We notice that Love and Boghosian [23]
found that any equilibrium distribution that obeys isotropy
and Galilean invariance results in the same general form for
the hydrodynamic equations [24]. Under such premises the BE
and FD statistics have exactly one new extra term in the fluid
equations as compared to the MB case, similar to the present
findings.

Finally, we explicitly construct a LBM for the quantum
fluids using the corresponding N = 4 order LBM scheme and
obtain some numerical results in the limit of dilute quantum
fluids. In this dilute limit the BE and FD are small corrections
to the MB statistics. This is the limit where the average
distance between particles is much larger than the thermal de
Broglie wavelength. There is no overlap between the individual
wave functions and the particles cannot condense into a single
quantum state. Our numerical analysis is based on some
two-dimensional lattices [18,25], the so-called d2q17 and
d2q37 lattices. Thus we are able to check that, indeed, quantum
fluid motion generates friction and the heat created results
in a temperature change such that the total energy remains
conserved during a time evolution process. Our numerical
study is restricted to an adiabatic process as there is no external
contact or force. We treat a two-dimensional system under
periodic boundary conditions, thus without external borders
and with no external applied force, just an initial displacement
from equilibrium set by the initial conditions.

The paper is organized as follows. In Sec. II we review the
classical macroscopic hydrodynamical equations as described
by Landau and Lifshitz [14] and also those obtained from
a Chapman-Enskog analysis of the N = 4 order Hermite
polynomial expansion [19–21]. We also present in Sec. II the
macroscopic hydrodynamical equations of the quantum fluids
and discuss several of their aspects, such as the introduction of
the pseudo variables and the viscosity and thermal coefficients.
The dimensionless units are also introduced in Sec. II. In the
next section, Sec. III, the Hermite polynomial decomposition
is performed on the BE and FD equilibrium distribution
functions. The derivation of the MB equilibrium distribution
function by Taylor expansion is left for the Appendix B.
Some properties of the Hermite polynomials are discussed in
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Appendix A. The passage from the continuum to the discrete
through the Gauss-Hermite quadrature is the subject of Sec. IV.
The Chapman-Enskog analysis is performed in Sec. V and
the relations required to determine several tensors are listed
in Appendix D. To obtain the macroscopic hydrodynamical
equations one needs some position and time cross derivative
terms derived in Appendix C. In Sec. VI we obtain a no-go
theorem for the Hermite polynomial expansion to order N = 3.
The dilute quantum fluid is treated in Sec. VII and numerical
results in this limit are studied in Sec. VIII.

There have been in the past few years attempts to construct
a LBM for the classical thermal compressible fluid starting
from ad hoc assumptions of the equilibrium distribution
function [11,26–29]. This approach never has been attempted
for the quantum fluid.

II. MACROSCOPIC EQUATIONS FOR CLASSICAL
AND QUANTUM FLUIDS

In this section we present the macroscopic hydrodynamical
equations of the quantum fluid obtained in this paper through
the N = 4 Hermite polynomial expansion of the BE and FD
equilibrium distribution functions. We express them almost
entirely in terms of the pseudo variables, with the exception
of a single term in the heat flow. From these equations we
obtain the thermal coefficients and the classical MB limit.
The actual derivation of these equations is done in Secs. III
and V, with the help of Appendices D and C. In order to best
convey our results we review the derivation of the macroscopic
hydrodynamical equations for the classical fluid, both from
the point of view of the macroscopic principles and of the
N = 4 Hermite polynomial expansion of the Maxwell-
Boltzmann equilibrium distribution function [19–21]. Thus the
first two subsections are reviews while the last one contains
our original results.

A. Derivation of the macroscopic equation
from general principles

For the ideal fluid (no viscosity) the equations describing
the conservation of mass, momentum, and energy follow
straightforwardly from general macroscopic principles of
thermodynamics and Newtonian mechanics, as well described,
for instance, in the book of Landau and Lifshitz [14]. For the
conservation of mass one obtains that

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0. (2)

For the conservation of momentum one obtains Euler’s
equation,

∂ρui

∂t
+ ∂

∂xj
(pδij + ρuiuj ) = 0, (3)

and the law of conservation of energy is

∂(ρu2/2 + ρε)

∂t
+ ∂

∂xj
[uj (ρu2/2 + ρ� )] = 0, (4)

where p, ε, and � describe the pressure, the internal energy,
and the enthalpy of the fluid, � ≡ ε + p/ρ. These equations
describe the time evolution of the density, ρ, the macroscopic
velocity, ui , and the local temperature, θ , in some reduced

units, which are explained in this paper. The presence of
viscosity and thermal conduction in a fluid changes the
equations for momentum and energy, which become

∂(ρui)

∂t
+ ∂

∂xj
(pδij + ρuiuj − σ ij ) = 0 (5)

and

∂(ρu2/2 + ρε)

∂t
+ ∂

∂xj
[uj (ρu2/2 + ρ� ) + Qj − ukσ jk]

= 0, (6)

respectively. The momentum flux tensor becomes pδij +
ρuiuj − σ ij , and thus is changed by the presence of the
viscosity stress tensor,

σ ij = η

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

D
δij ∂ul

∂xl

)
+ ζ δij ∂ul

∂xl
, (7)

where η and ζ are the dynamic and volumetric viscosities,
respectively, and D is the number of space dimensions.
Similarly, the total energy flux becomes uj (ρu2/2 + ρ� ) +
Qj − ukσ jk , where

Qj = −κ
∂θ

∂xj
(8)

is the heat flux flow due to thermal conduction and κ is the
thermal conductivity. The presence of viscosity introduces
irreversible transfer of momentum within the fluid and Eq. (5)
is essentially the Navier-Stokes equation. From the other side,
notice that Eq. (6) shows that in a viscous fluid the friction
that stems from the loss of momentum results in an increase of
temperature, thus conserving the total energy in the process.

For the sake of completeness we express the equations for
momentum and energy in a different fashion, obtained by
simple manipulation of Eqs. (2), (5), and (6). The resulting
equations are expressed in terms of the stress tensor,

P ij ≡ ρθδij − σ ij . (9)

The momentum conservation equation becomes

ρ

(
∂

∂t
+ uj ∂

∂xj

)
ui + ∂

∂xj
P ij = 0. (10)

The energy conservation equation becomes

∂

∂t

(
D

2
ρθ

)
+ ∂

∂xj

(
D

2
ρθuj

)

+ 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
P ij + ∂

∂xi
Qi = 0. (11)

B. Macroscopic equations from the Maxwell-Boltzmann
distribution function

The Hermite polynomial expansion of the Maxwell-
Boltzmann equilibrium distribution function carried to N = 4
order [19–21], and the subsequent Chapman-Enskog analysis
applied to the BGK-Boltzmann equation, exactly reproduce
the above equations obtained by general macroscopic prin-
ciples. Thus the equations for the density, Eq. (2), the
macroscopic velocity, Eq. (5), and the temperature, Eq. (6),
also hold here, and so do Eqs. (10) and (11). However,
thermodynamic functions and coefficients acquire special
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features. The viscosity stress tensor has a null volumetric
viscosity (ζ = 0), and the dynamic viscosity is given by

η ≡ ρθτ

(
1 − �t

2τ

)
(12)

and the thermal conductivity by

κ ≡
(

D + 2

2

)
ρθτ

(
1 − �t

2τ

)
(13)

such that κ/η = (D + 2)/2. Notice that these coefficients are
local because of their θ and ρ dependence. The pressure is
p = ρ θ and the internal energy is ε ≡ Dθ/2, such that the
enthalpy becomes � ≡ (D + 2)θ/2.

C. Macroscopic equations from the Bose-Einstein and
Fermi-Dirac distribution functions

The N = 4 Hermite polynomial expansion of the BE
and FD equilibrium distribution functions, followed by the
Chapman-Enskog analysis done in the BGK-Boltzmann equa-
tion, leads to the macroscopic hydrodynamical equations for
the quantum fluid in terms of the temperature θ , the velocity
ui , and the chemical potential μ. The fugacity can be used
instead of the chemical potential and is defined as

z ≡ e
μ

θ . (14)

We find that the quantum equations are very similar to the
classical ones, provided that some auxiliary variables are
introduced, starting with the pseudo temperature defined as
follows:

θ̄ = θ
gD

2 +1(z)

gD
2

(z)
, (15)

where

gν(z) ≡ 1

�(ν)

∫ ∞

0

xν−1 dx

z−1ex ± 1
. (16)

The + and − signs in the denominator correspond to FD and
BE statistics, respectively. Indeed, the MB limit is retrieved
from the FD and MB statistics in the limit that z−1ex ± 1 ≈
z−1ex , thus the term ±1 becomes irrelevant in the denominator.
Since �(ν) = ∫ ∞

0 e−xxν−1 dx, one obtains that gν(z) = z for
the MB limit. Thus we conclude that in the classical limit
the pseudo temperature is the temperature itself. The BE-FD
density is not an independent parameter, as in the MB case,
but a function of the the temperature θ and the fugacity z,

ρ = (2πθ )
D
2 gD

2
(z). (17)

Based on the above definitions of ρ and θ̄ we introduce the
pseudo viscosity stress tensor,

σ̄ ij ≡ η̄

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

D
δij ∂ul

∂xl

)
, (18)

which depends on the pseudo dynamic viscosity defined as

η̄ ≡ ρθ̄τ

(
1 − �t

2τ

)
. (19)

We also define the pseudo thermal conductivity,

κ̄ ≡ D + 2

2
ρθ̄τ

(
1 − �t

2τ

)
. (20)

Their ratio is constant, κ̄/η̄ = (D + 2)/2, meaning that, like
in the MB case, thermal and mechanical transfers are done by
the same distribution and at the same rate, as there is only one
BGK time relaxation parameter.

The conservation of mass is given by Eq. (2) and the
momentum balance equation for quantum fluids is described
by

∂

∂t
(ρui) + ∂

∂xj
[ρ(θ̄ δij + uiuj )] − ∂σ̄ ij

∂xj
= 0. (21)

Comparison between Eqs. (5) and (21) shows that the classical
and the quantum equations are the same provided that the true
temperature θ is mapped into the pseudo temperature, θ̄ . The
same does not hold for the energy equations, namely Eqs. (6)
and (22), as the dependence of the quantum case in the true
temperature cannot collapse into the pseudo temperature. The
fugacity z explicitly appears there through the function g(z),
as seen in the following:

∂

∂t

(
ρ

2
u2 + ρ

2
Dθ̄

)
+ ∂

∂xj

{[
ρ

2
u2 + ρ

2
θ̄ (D + 2)

]
uj

+ Q̃j − ukσ̄ j k

}
= 0, (22)

where the true heat flux vector is given by

Q̃j = Q̄j − ∂

∂xj
[κ̄(g(z) − 1)θ̄ ], Q̄j ≡ −κ̄

∂

∂xj
θ̄ . (23)

Thus the writing of the energy equation solely in terms of
pseudo variables is spoiled just by the extra term that must be
added to the pseudo heat flux vector, Q̄j , to obtain the true
one, Q̃j . The function g(z) is defined as

g(z) ≡
gD

2
(z)gD

2 +2(z)(
gD

2 +1(z)
)2 . (24)

In conclusion, we find it remarkable that the replacement of
Q̃j by Q̄j in Eq. (22) renders the mass, momentum, and
energy equations for the quantum and classical fluids formally
identical, provided that the density and the temperature are
replaced by Eqs. (17) and (15), respectively. Another way to
see this connection is by noticing that for the quantum problem
all the explicit and linear dependence in the temperature
appears through the pseudo temperature. This is the reason
why the mass and momentum equations of quantum and
classical cases are formally equivalent, but the energy equation
is not. The quantum energy equation has an extra quadratic
dependence on the temperature brought by the function
g(z) − 1, as discussed in the coming sections. There is a link
between this quadratic behavior in the temperature and the
g(z) function, as shown by the following identity:

θ2
gD

2 +2(z)

gD
2

(z)
= θ̄2g(z). (25)
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The quantum counterparts of the classical momentum and
energy equations, namely Eqs. (10) and (11), are given by

ρ

(
∂

∂t
+ uj ∂

∂xj

)
ui + ∂

∂xj
P̄ ij = 0 (26)

and

∂

∂t

(
D

2
ρθ̄

)
+ ∂

∂xj

(
D

2
ρθ̄uj

)

+ 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
P̄ ij + ∂

∂xi
Q̃i = 0, (27)

respectively. We also define the pseudo stress tensor,

P̄ ij ≡ ρθ̄δij − σ̄ ij . (28)

We obtain the true thermal conductivity coefficient, κθ , and
the chemical potential coefficient, κμ, through their definition
as follows:

Q̃j = −κθ

∂θ

∂xj
− κμ

∂μ

∂xj
. (29)

To derive the above coefficients, we write the pseudo heat flux
vector as

Q̃j = θ̄
∂κ̄

∂xj
− ∂

∂xj
[κ̄g(z)θ̄]. (30)

First, we derive the function gμ(z) of Eq. (16) as follows:

∂gμ(z)

∂xj
= gμ−1(z)

(
−μ

θ

∂θ2

∂xj
+ 1

θ

∂μ

∂xj

)
, (31)

which leads to

∂κ̄

∂xj
= ρτ ′

{[(
D

2
+ 1

)
gD

2 +1(z)

gD
2

(z)
− μ

θ

]
∂θ

∂xj
+ ∂μ

∂xj

}
,

(32)

where τ ′ ≡ (D/2 + 1)τ (1 − �t/2τ ). One also obtains that

∂(κ̄ θ̄g(z))

∂xj
= ρτ ′

{[(
D

2
+ 2

)
θ
gD

2 +2(z)

gD
2

(z)
− μ

gD
2 +1(z)

gD
2

(z)

]

· ∂θ

∂xj
+ θ

gD
2 +1(z)

gD
2

(z)

∂μ

∂xj

}
. (33)

The last two equations are introduced in Eq. (30) to obtain the
coefficients κθ and κμ,

κθ = κ

[(
D

2
+ 2

)
gD

2 +2(z)

gD
2 +1(z)

−
(

D

2
+ 1

)
gD

2 +1(z)

gD
2

(z)

]
, (34)

κμ = 0, (35)

where κ is the MB (classical) thermal conductivity, given by
Eq. (13). These are the coefficients obtained in Ref. [7] for
the BGK-Boltzmann equation using the Uehling-Uhlenbeck
approach.

III. EXPANSION OF THE QUANTUM EQUILIBRIUM
DISTRIBUTION FUNCTIONS BY HERMITE

POLYNOMIALS TO N = 4 ORDER

Here we expand the quantum equilibrium distribution func-
tions to the N = 4 order of Hermite polynomials. Consider the
BE and FD distribution functions, given by

f (0)(χ ) = 1

exp
[ (χ−v)2m

2kBT
− μ′

kBT

] ± 1
, (36)

which depend on the microscopic velocity χ and other three
locally defined quantities, namely the temperature T (x), the
macroscopic velocity v(x), and the chemical potential μ′(x).

We define the following dimensionless quantities, based on
a reference temperature Tr , and a reference velocity:

cr ≡
√

kTr

m
, (37)

which are both not present in the original BE-FD equilibrium
distribution functions. Then the dimensionless temperature is

θ ≡ T

Tr

, (38)

and the microscopic and macroscopic dimensionless velocities
are defined as

ξ ≡ χ

cr

, (39)

and

u ≡ v

cr

. (40)

The dimensionless chemical potential is

μ ≡ μ′

kBTr

, (41)

and the fugacity can be expressed in two ways,

z ≡ e
μ′

kB T = e
μ

θ . (42)

The BE-FD function expressed in terms of dimensionless
parameters becomes

f (0)(ξ ) = 1

z−1 exp
[ (ξ−u)2

2θ

] ± 1
. (43)

The first three moments of the BE-FD function, obtained by
integrating over the microscopic velocity χ , give that

n(x) = m

(
m

2π�

)D ∫
dDχ f 0(χ ), (44)

v(x) = 1

ρ(x)

∫
dDχ χf 0(χ), (45)

and

D

2
kBT̄ (x) = 1

ρ(x)

∫
dDχ

1

2
m[χ − v(x)]2f 0(χ). (46)

We define the pseudo temperature T̄ because the third
moment is the internal energy, ε = DkBT̄ /2, and in the
classical case we know that T̄ = T . Notice that the density
n has the dimension of a D-dimensional space density, as
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expected, namely of mass/(length)D , because mv/2π� has
the dimension of length−1, and thus, through the following
constant, which has the dimension of density:

n0 ≡ m

(
mcr

2π�

)D

. (47)

By taking averages over the quantum equilibrium distribution
function we obtain the dimensionless density ρ of Eq. (17),
the macroscopic velocity u, and the pseudo temperature θ̄ of
Eq. (15) as follows:

ρ(x) ≡ n(x)

n0
=

∫
dDξ f (0)(ξ ), (48)

u(x) = 1

ρ(x)

∫
dDξ ξf (0)(ξ ), (49)

and

D

2
θ̄ (x) = 1

ρ(x)

∫
dDξ

1

2
[ξ − u(x)]2f (0)(ξ ). (50)

The explicit calculation of these moments are done below.
The N th-order Hermite polynomial is defined by the

Rodrigues’s formula,

Hi1i2...iN (ξ ) = (−1)N

ω(ξ )

∂Nω(ξ )

∂ξ i1∂ξ i2 ...∂ξ iN
, (51)

where

ω(ξ ) ≡ 1

(2π )
D
2

exp

(
−ξ 2

2

)
(52)

is the Gaussian function. The orthonormality of the Hermite
polynomials, Hi1i2...iN (ξ ), is given by∫

dDξ ω(ξ )Hi1i2...iN (ξ )Hj1j2...jM (ξ )

= δNM (δi1j1δi2j2 ...δiN jN + all permutations of j ’s). (53)

We seek the decomposition of the BE-FD function f (0) of
Eq. (43) in powers of Hermite polynomials,

f (0)(x,ξ ) = ω(ξ )
∞∑

N=0

1

N !
ai1i2...iN (x)Hi1i2...iN (ξ ). (54)

Notice that this decomposition splits the dependence on the
dimensionless microscopic velocity, which falls in the Hermite
polynomials from the other variables, since the coefficients
of this expansion carry all the information about the local
macroscopic fields. For this reason the following notation is
employed: ai1 i2...iN (x) ≡ ai1 i2...iN [z(x),u(x),θ (x)]. Applying
the orthonormality of the Hermite polynomials one obtains
an expression for the coefficients,

ai1i2...iN (x) =
∫

f (0)(x,ξ )Hi1i2...iN (ξ )dDξ . (55)

More details about properties of the Hermite polynomials are
given in Appendix A. Notice that the BE-FD function is even
in the difference between the macroscopic and the microscopic
velocities, f (0)(x,ξ − u) = f (0)(x,u − ξ ), a helpful property
to compute the coefficients of Eq. (55). Then the coefficient
associated to any odd Hermite polynomial vanishes since

∫
dDξ f (ξ − u)Hi1...i2L+1 (ξ − u) = 0. A discussion of such

properties is presented in Appendix A. We introduce the
variable η = ξ − u and write the BE-FD distribution function

as f (η) = 1/(z−1e
η2

2θ ± 1) to express the coefficients as

ai1i2...iN =
∫

f (0)(η)Hi1i2...iN (ξ )dDη. (56)

A. Coefficient N = 0

The integration over a spherical shell in D dimensions

is dDη = Dπ
D
2

�( D
2 +1)

ηD−1dη and the lowest Hermite coefficient

becomes

a =
∫

HdDη

z−1e
η2

2θ ± 1
= Dπ

D
2

�
(

D
2 ± 1

) ∫ ∞

0

ηD−1dη

z−1e
η2

2θ ± 1
(57)

since H = 1. Defining x = η2/2θ , one obtains that

a = (2π )
D
2 θ

D
2 gD

2
(z), (58)

where in the last line we have introduced the function gν(z)
of Eq. (16). This coefficient is the density itself, a = ρ =∫

dDξ f (0)(ξ ), as given by Eq. (17).

B. Coefficient N = 1

To obtain this coefficient take Eq. (A20) such that

ai =
∫

f (0)(η)Hi(ξ )dDη

=
∫

f (0)(η)[Hi(η) + Hui]dDη = ui

∫
f (0)(η)dDη

= uiρ (59)

as the first integral vanishes because it is odd. Using analogous
arguments, we find the next coefficients.

C. Coefficient N = 2

One gets from Eq. (A21) that

aij =
∫

f (0)(η)Hij (ξ )dDη

=
∫

f (0)(η)[Hij (η) + uiHj (η)

+ujH i(η) + uiujH ]dDη

=
∫

f (0)(η)Hij (η)dDη + ρuiuj . (60)

The terms proportional to uj vanish because of the odd
integrals and it remains to calculate the following integrals:∫

f (0)(η)ηiηjdDη = δij

D

∫
f (0)(η)η2dDη

= θρ
gD

2 +1(z)

gD
2

(z)
δij . (61)

The other integral to compute is∫
f (0)(η)Hij (η)dDη = ρδij

[
θ
gD

2 +1(z)

gD
2

(z)
− 1

]
. (62)
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Introducing the pseudo temperature of Eq. (15), the second-order coefficient becomes

aij = ρ[δij (θ̄ − 1) + uiuj ]. (63)

Hereafter we directly use Eq. (15) to shorten the notation.

D. Coefficient N = 3

One gets from Eq. (A22) that

aijk =
∫

f (0)(η)Hijk(ξ )dDη

=
∫

f (0)(η)[Hijk(η) + uiHjk(η) + ujH ik(η) + ukH ij (η) + uiujHk(η) + uiukHj (η) + ujukH i(η) + uiujukH ]dDη

= ρ[(uiδjk + ujδik + ukδij )θ̄ + uiujuk]. (64)

Terms proportional to uiuj vanish because they are proportional to integrals over a Hermite polynomial of odd order.

E. Coefficient N = 4

One gets from Eq. (A23) that

aijkl =
∫

f (0)(η)Hijkl(ξ )dDη

=
∫

f (0)(η)[Hijkl(η) + uiHjkl(η) + ujH ijk(η) + ukH ijl(η) + ulH ijk(η) + uiujHkl(η) + uiukHjl(η)

+uiulH jk(η) + ukulH ij (η) + ujulH ik(η) + ujukH il(η) + uiujukH l(η) + uiujulHk(η)

+ujukulH i(η) + uiukulH j (η) + uiujukulH ]dDη. (65)

Because of the odd integrals the terms proportional to uj and uiujuk do not contribute and so

aijkl =
∫

f (0)(η)Hijkl(η)dDη + uiuj

∫
f (0)(η)Hkl(η)dDη + uiuk

∫
f (0)(η)Hjl(η)dDη

+uiul

∫
f (0)(η)Hjk(η)dDη + ukul

∫
f (0)(η)Hij (η)dDη + ujul

∫
f (0)(η)Hik(η)dDη

+ujuk

∫
f (0)(η)Hil(η)dDη + ρuiujukul. (66)

The first integral is defined as

I1 ≡
∫

f (0)(η)Hijkl(η)dDη

=
∫

ηiηjηkηlf (0)(η)dDη − δkl

∫
ηiηjf (0)(η)dDη − δjl

∫
ηiηkf (0)(η)dDη

− δjk

∫
ηiηlf (0)(η)dDη − δil

∫
ηjηkf (0)(η)dDη − δik

∫
ηjηlf (0)(η)dDη − δij

∫
ηkηlf (0)(η)dDη + ρδijkl, (67)

where the last symbol is defined in Eq. (A13). Then use Eq. (61) and call the first integral as I2,

I1 = I2 + ρ(1 − 2θ̄ )δijkl, (68)

where

I2 ≡
∫

ηiηjηkηl

z−1e
η2

2θ ± 1
dDη = ρθ2

gD
2 +2(z)

gD
2

(z)
δijkl . (69)

We stress that only the N = 4 coefficient contains contributions proportional to θ2. Thus an expansion of the BE-FD function
limited to the N = 3 coefficient has the temperature only inside the pseudo temperature. At this point we introduce the notation
defined in Eq. (25), which brings the function g(z) of Eq. (24) into the N = 4 coefficient,

I1 = ρ[θ̄2g(z) − 2θ̄ + 1]δijkl . (70)

Finally, we obtain that the fourth coefficient

aijkl = ρ(θ̄2g(z) − 2θ̄ + 1)δijkl + ρθ̄ (uiuj δkl + uiukδjl + uiulδjk + ukulδij + ujulδik + ujukδil) + ρuiujukul. (71)
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In the possession of the four Hermite coefficients we write their contractions to the Hermite polynomials themselves,

aH = ρ, (72)

aiH i = ρ(ξ · u), (73)

aijH ij = ρ[(θ̄ − 1)(ξ 2 − D) + (ξ · u)2 − u2], (74)

aijkH ijk = ρ{(ξ · u)3 − 3u2(ξ · u) + (θ̄ − 1) · [3(ξ · u)ξ 2 − 3(ξ · u)D − 6(ξ · u)]}, (75)

aijklH ijkl = ρ{[θ̄2g(z) − 2θ̄ + 1] · (3ξ 4 − 6Dξ 2 − 12ξ 2 + 3D2 + 6D) + 6(θ̄ − 1) · [(ξ · u)2(ξ 2 − D − 4) + u2(D + 2 − ξ 2)]

+ [(ξ · u)4 − 6(ξ · u)2u2 + 3u4]}. (76)

From Eqs. (54) and (52), one obtains that

f (0)(x,ξ ) = ω(ξ )

(
aH + aiH i + 1

2!
aijH ij + 1

3!
aijkH ijk + 1

4!
aijklH ijkl

)
. (77)

Therefore the BE-FD function expanded in Hermite polynomials to the fourth order is

f (0)(x,ξ ) = ω(ξ )ρ

{
1 + (ξ · u)

(
1 − 1

2
u2

)
+ 1

6
(ξ · u)3 + (ξ · u)2

(
1

2
− 1

4
u2

)
− 1

2
u2 + 1

8
u4

+ 1

24
(ξ · u)4 + (

θ̄ − 1
) ·

[
1

2
(ξ 2 − D) + 1

2
(ξ · u)(ξ 2 − D − 2) + 1

4
(ξ · u)2(ξ 2 − D − 4) + 1

4
u2(D + 2 − ξ 2)

]

+ 1

8
[θ̄2g(z) − 2θ̄ + 1][ξ 4 + (D + 2)(D − 2ξ 2)]

}
, (78)

where the definitions of ρ, θ̄ , and g(z) are given in Eqs. (17), (15), and (24), respectively. In Appendix B we Taylor expand the
MB distribution function, thus providing an independent check that BE-FD and MB coincide in the limit that gν(z) → z.

IV. GAUSS-HERMITE QUADRATURE

We review the Gauss-Hermite quadrature, which is a way to
obtain the values of integrals through discrete sums. In this way
we transform our equilibrium distribution functions obtained
in the previous section in a LBM scheme to numerically solve
the BGK-Boltzmann equation. The Gauss-Hermite quadrature
preserves the orthogonality of the Hermite polynomial tensors
in the Hilbert space [19]. Then the Gaussian integrals can
be performed in a D-dimensional discrete space where the
microscopic velocity only takes the fixed set of values, ξα ,
α = 0,1, . . . ,Mα − 1, provided that we introduce the set of
weights wα . Essentially this means that the Gaussian integral
over an arbitrary function G (ξ ) can be performed as a sum
over a set of Mα velocities,∫

dDξ ω(ξ )G (ξ ) =
∑

α

wαG (ξα) . (79)

Thus the orthonormality condition of the Hermite polynomials,
shown in Eq. (53), also holds in this discrete space,∑

α

wαH i1i2...iN (ξα)Hj1j2...jM (ξα)

= δNM (δi1j1δi2j2 . . . δiN jN + all permutations of j’s). (80)

Notice the two distinct integers, the truncation order of the
Hermite expansion of the equilibrium distribution, N , and also

M , the number of relations that the discrete set of velocities
and weights wα must satisfy [19]. For instance, we show the
M = 6 relations that replace the continuum Eqs. (A6)–(A12)
as follows: ∑

α

wα = 1, (81)

∑
α

wαξ i
α = 0, (82)

∑
α

wαξ i
αξ j

α = δij , (83)

∑
α

wαξ i
αξ j

α ξ k
α = 0, (84)

∑
α

wαξ i
αξ j

α ξ k
αξ l

α = δijkl, (85)

∑
α

wαξ i
αξ j

α ξ k
αξ l

αξm
α = 0, (86)

∑
α

wαξ i
αξ j

α ξ k
αξ l

αξm
α ξn

α = δijklmn, (87)

where the tensors δi1···iN have been previously defined. In
this case the equilibrium distribution function of Eq. (78)
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becomes

f (0)
α = wαρ

{
1 + (ξα· u)

(
1 − 1

2
u2

)

+ 1

6
(ξα· u)3 + (ξα· u)2

(
1

2
− 1

4
u2

)
− 1

2
u2 + 1

8
u4

+ 1

24
(ξα· u)4 + (θ̄ − 1)

·
[

1

2

(
ξ 2

α − D
) + 1

2
(ξα· u)

(
ξ 2

α − D − 2
)

+ 1

4
(ξα· u)2

(
ξ 2

α − D − 4
) + 1

4
u2

(
D + 2 − ξ 2

α

)]

+ 1

8
[θ̄2g(z) − 2θ̄ + 1]

· [ξ 4
α + (D + 2)

(
D − 2ξ 2

α

)]}
. (88)

Thus the continuum and discrete distribution functions basi-
cally differ by the replacement of the Gaussian function ω(ξ )
by the weights wα .

V. MULTISCALE EXPANSION

In this section we perform the Chapman-Enskog analysis
of the N = 4 order BGK-Boltzmann theory and obtain the
macroscopic hydrodynamical equations. The local density,
macroscopic velocity, and energy are obtained at any time
and at any grid point through the following definitions:

ρ(x,t) =
∑

α

fα(x,t), (89)

u(x,t) = 1

ρ(x,t)

∑
α

ξfα(x,t), (90)

D

2
θ̄(x,t) = 1

ρ(x,t)

∑
α

[ξα − u(x)]2

2
fα(x,t). (91)

The last expression truly defines θ̄ and can be expressed as

D

2
θ̄ (x,t) + 1

2
u(x,t)2 = 1

ρ(x,t)

∑
α

ξ 2
α

2
fα(x,t). (92)

The so-called Chapman-Enskog relations must hold to assure
the following macroscopic thermodynamic equations [9,11]:∑

α

fα =
∑

α

f (0)
α , (93)

∑
α

fαξα =
∑

α

f (0)
α ξα, (94)

∑
α

fαξ 2
α =

∑
α

f (0)
α ξ 2

α. (95)

These equations imply that ρ = ∑
α f (0)

α , ρu = ∑
α ξf (0)

α , and
Dρθ̄/2 + ρu2/2 = ∑

α ξ 2
αf (0)

α /2. The quantities ρ, u, and θ ,
obtained from Eqs. (89)–(91), respectively, must be fed back
into f (0)

α , which, in turn, sets the evolution to a new fα(x,t),

according to Eq. (1). Next we seek a formal solution of the
distribution fα in terms of f (0)

α . To obtain this solution two key
ingredients must be considered. First, we Taylor expand fα to
second order in the following time step:

fα(x + ξα�t,t + �t)

∼= fα(x,t) + �t

(
ξ i
α

∂fα

∂xi
+ ∂fα

∂t

)

+ (�t)2

2

(
∂2fα

∂t2
+ ξ i

αξ j
α

∂2fα

∂xi∂xj
+ 2ξ i

α

∂2fα

∂xi∂t

)
. (96)

Then the discrete Boltzmann equation (1), becomes, in this
approximation,

ξ i
α

∂fα

∂xi
+ ∂fα

∂t
+ �t

2

(
∂2fα

∂t2
+ ξ i

αξ j
α

∂2fα

∂xi∂xj
+ 2ξ i

α

∂2fα

∂xi∂t

)

∼= − 1

τ

(
fα − f (0)

α

)
. (97)

Second, we introduce the Chapman-Enskog expansion, which
means to expand the distribution function in terms of a
parameter ε that represents the Knudsen’s number,

fα = f (0)
α + εf (1)

α + ε2f (2)
α + · · · . (98)

Notice that because of the Chapman-Enskog relations,
Eqs. (93)–(95), the ε-dependent terms must satisfy the fol-
lowing relations: ∑

α

f (1)
α =

∑
α

f (2)
α = 0, (99)

∑
α

ξαf (1)
α =

∑
α

ξαf (2)
α = 0, (100)

∑
α

ξ 2
αf (1)

α =
∑

α

ξ 2
αf (2)

α = 0. (101)

The parameter ε also sets the scale for the derivatives of time
and space that are expanded in Eq. (98):

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
, (102)

∂

∂xi
= ε

∂

∂xi
1

. (103)

We stress for later purposes that the cross time and position
derivative is given by

∂

∂xi

∂

∂t
= ε2 ∂

∂t1

∂

∂xi
1

, (104)

to the studied order ε2. Applying (98), (102), and (103) in
Eq. (97),

ε

[
ξ i
α

∂f (0)
α

∂xi
1

+ ∂f (0)
α

∂t1

]
+ ε2

[
ξ i
α

∂f (1)
α

∂xi
1

+ ∂f (1)
α

∂t1
+ ∂f (0)

α

∂t2

+�t

2

∂2f (0)
α

∂t2
1

+ �t

2
ξ i
αξ j

α

∂2f (0)
α

∂xi
1∂x

j

1

+ �tξ i
α

∂2f (0)
α

∂xi
1∂t1

]

= 1

τ

[
εf (1)

α + ε2f (2)
α + · · · ]. (105)
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Next we collect the terms of same order, and the first-order
terms give that

− 1

τ
f (1)

α =
[
ξ i
α

∂f (0)
α

∂xi
1

+ ∂f (0)
α

∂t1

]
. (106)

For second order one obtains that

− 1

τ
f (2)

α = ξ i
α

∂f (1)
α

∂xi
1

+ f (1)
α

∂t1
+ ∂f (0)

α

∂t2
+ �t

2

∂2f (0)
α

∂t2
1

+ �t

2
ξ i
αξ j

α

∂2f (0)
α

∂xi
1∂x

j

1

+ �tξ i
α

∂2f (0)
α

∂xi
1∂t1

. (107)

We derive Eq. (106) with respect to t1 and xi
1 to find that

Eq. (107) becomes

− 1

τ
f (2)

α = ∂f (0)
α

∂t2
+

(
1 − �t

2τ

) [
∂f (1)

α

∂t1
+ ξ i

α

∂f (1)
α

∂xi
1

]
. (108)

In summary, we found a solution for the discrete Boltzmann
[Eq. (97)], which is the distribution fα , given by Eq. (98),
as a function of f (0)

α and its derivatives through Eqs. (106)
and (108). It remains to reconstruct the time and the position,
which are defined by Eqs. (102) and (103). This will be done
separately for the mass, momentum, and energy.

A. Conservation of mass

To obtain the continuity equation, one must sum over all
directions α in Eq. (106),

1

τ

∑
α

f (1)
α = − ∂

∂t1

∑
α

f (0)
α − ∂

∂xi
1

∑
α

f 0
α ξ i

α. (109)

Recall the definitions of ρ, u, Eqs. (89) and (90), and the
Chapman-Enskog relations of Eqs. (93) and (94),

∂ρ

∂t1
+ ∂

∂xi
1

(ρui) = 0. (110)

This is not yet the continuity equation as the time derivative
is over t1 instead of t . To fix it, we need to sum over α in
Eq. (108) as follows:

− 1

τ

∑
α

f (2)
α = ∂

∂t2

∑
α

f (0)
α +

(
1 − �t

2τ

) [
∂

∂t1

∑
α

f (1)
α

+
∑

α

ξ i
α

∂f (1)
α

∂xi
1

]
. (111)

The above equation is no more than

∂ρ

∂t2
= 0. (112)

To reconstruct the time and space derivative, take Eqs. (102)
and (103) applied to the density, respectively,

∂ρ

∂t
= ε

∂ρ

∂t1
+ ε2 ∂ρ

∂t2
= ε

∂ρ

∂t1
(113)

∂ρ

∂xi
= ε

∂ρ

∂xi
1

. (114)

Then the continuity equation (2), is obtained.

B. Conservation of momentum

The derivation of the conservation of momentum equation
follows similar steps, which means that Eqs. (106) and (108)
are multiplied by ξ i

α and next summed over α,

− 1

τ

∑
α

ξ i
αf (1)α = ∂

∂x
j

1

∑
α

ξ i
αξ j

α f (0)
α + ∂

∂t1

∑
α

ξ i
αf (0)

α . (115)

Using the Chapman-Enskog relation of Eq. (94), it follows that

∂

∂t1

∑
α

ξ i
αf (0)

α + ∂

∂x
j

1

∑
α

ξ i
αξ j

α f (0)
α = 0. (116)

Next, from Eq. (108) one obtains that

− 1

τ

∑
α

ξ i
αf (2)

α = ∂

∂t2

∑
α

ξ i
αf (0)

α +
(

1 − �t

2τ

) [
∂

∂t1

∑
α

ξ i
αf (1)

α

+ ∂

∂x
j

1

∑
α

ξ i
αξ j

α f (1)
α

]
. (117)

We apply Eq. (100) twice in the above equation to obtain the
following:

∂

∂t2

∑
α

ξ i
αf (0)

α +
(

1 − �t

2τ

)
∂

∂x
j

1

∑
α

ξ i
αξ j

α f (1)
α = 0. (118)

Next we consider the construction ε times Eq. (116) plus ε2

times Eq. (118),(
ε

∂

∂t1
+ ε2 ∂

∂t2

) ∑
α

ξ i
αf (0)

α + ε
∂

∂x
j

1

∑
α

ξ i
αξ j

α f (0)
α

+ ε2

(
1 − �t

2τ

)
∂

∂x
j

1

∑
α

ξ i
αξ j

α f (1)
α = 0. (119)

We use Eqs. (90) and (94) and introduce Eq. (106) into the
above equation to write it solely in terms of moments of f (0)

α

as follows:(
ε

∂

∂t1
+ ε2 ∂

∂t2

)
(ρui) + ε

∂

∂x
j

1

∑
α

ξ i
αξ j

α f (0)
α

− τε2

(
1 − �t

2τ

)
∂

∂x
j

1

∂

∂xk
1

∑
α

ξ i
αξ j

α ξ k
αf (0)

α

− τε2

(
1 − �t

2τ

)
∂

∂x
j

1

∂

∂t1

∑
α

ξ i
αξ j

α f (0)
α = 0. (120)

The true time and position derivatives are given by Eqs. (102)–
(104), and the above equation acquires the form

∂

∂t
(ρui) + ∂

∂xj
πij − τ

(
1 − �t

2τ

)
∂

∂xj

∂

∂xk
πijk (121)

−τ

(
1 − �t

2τ

)
∂

∂xi

∂

∂t
πij = 0, (122)

by definition of πij ≡ ∑
α ξ i

αξ
j
α f (0)

α , πijk ≡ ∑
α ξ i

αξ
j
α ξ k

αf (0)
α .

We call it the master equation for the conservation of
momentum. To determine the tensors πij and πijk in terms
of the macroscopic quantities one must introduce f (0)

α given
by Eq. (88). To accomplish such task one must invoke some
relations calculated in Appendix D. These are Eqs. (D1)–(D5)
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to calculate πij and Eqs. (D6)–(D8) to derive πijk . After some
algebra we find that

πij = ρ(θ̄ δij + uiuj )
(123)

πijk = ρ[θ̄ (ukδij + ujδik + uiδjk) + uiujuk].

Substituting these results into Eq. (122), we find that the
equation for the momentum conservation is

∂

∂t
(ρui) + ∂

∂xj
[ρ(θ̄ δij + uiuj )] − τ

(
1 − �t

2τ

)

· ∂

∂xj

∂

∂xk
{ρ[θ̄ (ukδij + ujδik + uiδjk) + uiujuk]}

− τ

(
1 − �t

2τ

)
∂

∂xi

∂

∂t
[ρ(θ̄ δij + uiuj )] = 0. (124)

Notice that in the above equation the temperature is only
present through the pseudo temperature. The last step is
to replace the cross derivative term ∂2/∂t∂xk by a po-
sitional derivative term, ∂2/∂xi∂xj . This task is carried
out in Appendix C and leads to the momentum equation
of Eq. (21).

C. Conservation of energy

The derivation of the conservation of energy equation also
follows from Eqs. (106) and (108), but in this case it is
multiplied by ξ 2

α instead and summed over α,

− 1

τ

∑
α

f (1)
α ξ 2

α =
∑

α

ξ 2
αξ j

α

∂f (0)
α

∂x
j

1

+
∑

α

ξ 2
α

∂f (0)
α

∂t1
. (125)

The Chapman-Enskog relation of Eq. (95) renders the left-
hand side of the above equation equal to zero and so

∂

∂t1

∑
α

ξ 2
αf (0)

α + ∂

∂x
j

1

∑
α

ξ 2
αξ j

α f (0)
α = 0. (126)

Similarly, Eq. (108) leads to the following equation:

− 1

τ

∑
α

ξ 2
αf (2)

α = ∂

∂t2

∑
α

ξ 2
αf (0)

α +
(

1 − �t

2τ

)
∂

∂t1

∑
α

ξ 2
αf (1)

α

+
(

1 − �t

2τ

)
∂

∂x
j

1

∑
α

ξ 2
αξ j

α f (1)
α . (127)

The Chapman-Enskog relation of Eq. (95) renders two terms
null, including the left-hand side,

∂

∂t2

∑
α

ξ 2
αf (0)

α +
(

1 − �t

2τ

)
∂

∂x
j

1

∑
α

ξ 2
αξ j

α f (1)
α = 0. (128)

To get the time and the position derivatives consider Eqs. (102)
and (103) and take Eq. (126) times ε plus Eq. (128) times ε2,(

ε
∂

∂t1
+ ε2 ∂

∂t2

) ∑
α

ξ 2
αf (0)

α + ε
∂

∂x
j

1

∑
α

ξ 2
αξ j

α f (0)
α

+ ε2

(
1 − �t

2τ

)
∂

∂x
j

1

∑
α

ξ 2
αξ j

α f (1)
α = 0. (129)

Introduce Eqs. (92) and (106) to obtain that(
ε

∂

∂t1
+ ε2 ∂

∂t2

)∑
α

ξ 2
αf (0)

α + ε
∂

∂x
j

1

∑
α

ξ 2
αξ j

α f (0)
α

− τε2

(
1 − �t

2τ

)
∂

∂x
j

1

∂

∂xk
1

∑
α

ξ 2
αξ j

α ξ k
αf (0)

α

− τε2

(
1 − �t

2τ

)
∂

∂x
j

1

∂

∂t1

∑
α

ξ 2
αξ j

α f (0)
α = 0. (130)

Then one gets

∂

∂t
φ + ∂

∂xj
φj − τ

(
1 − �t

2τ

)
∂

∂xj

∂

∂xk
φjk

−τ

(
1 − �t

2τ

)
∂

∂xj

∂

∂t
φj = 0. (131)

This is the master equation for the conservation of energy.
We define φ ≡ ∑

α ξ 2
αf (0)

α /2, φj ≡ ∑
α ξ 2

αξ
j
α f (0)

α /2, and φjk ≡∑
α ξ 2

αξ
j
α ξ k

αf (0)
α /2 and use Eq. (104). It is straightforward to

calculate φ, φj , and φjk from the expressions developed in the
appendix. Then one determines these tensors in terms of the
macroscopic quantities contained in f (0)

α , given by Eq. (88),

φ = 1

2
ρu2 + D

2
ρθ̄, (132)

φj = ρ

2
[uj u2 + θ̄ (D + 2) uj ], (133)

φjk = ρ

2
[u2ujuk + θ̄ (D + 4)ujuk

+ θ̄u2δjk + θ̄2g(z)(D + 2)δjk]. (134)

Notice that among the above three tensors only φjk contains
an explicit quadratic term in the temperature, which leads to
the presence of the g(z) function in Eq. (24). Thus the energy
equation cannot be purely expressed in terms of ρ, u, and θ̄ .
We write it with a g(z) − 1 term intentionally in its right-hand
side. The left-hand side corresponds to the classical (MB) case,
replacing θ̄ with θ ,

∂

∂t

(
ρ

2
u2 + ρ

2
Dθ̄

)
+ ∂

∂xj

[(
ρ

2
u2 + ρ

2
θ̄(D + 2)

)
uj

]

− τ

(
1 − �t

2τ

)
∂

∂xj

∂

∂xk

[
ρ

2
u2ujuk

+ ρ

2
θ̄ (D + 4)ujuk + ρ

2
θ̄u2δjk + ρ

2
θ̄2(D + 2)δjk

]

− τ

(
1 − �t

2τ

)
∂

∂xj

∂

∂t

[(
ρ

2
u2 + ρ

2
θ̄(D + 2)

)
uj

]

= τ

(
1 − �t

2τ

)
∂

∂xj

∂

∂xk

[
ρ

2
θ̄2(g(z) − 1)(D + 2)δjk

]
.

(135)

Similarly to the momentum case, the cross derivative
term ∂2/∂t∂xk is replaced by a positional derivative term,
∂2/∂xi∂xj , in Appendix C, and this leads to Eq. (22).
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VI. THE HERMITE POLYNOMIAL EXPANSION
TO ORDER N = 3

Here we show that the Hermite polynomial expansion of the
BE-FD equilibrium distribution function must be carried to the
N = 4 order to obtain meaningful results. The N = 3 order
simply does not correctly describe the energy equation. The
BE-FD function equilibrium distribution function expanded to
order N = 3 is given by

f̂ (0)
α = wαρ

{
1 − 1

2
u2 + (ξα· u)

(
1 − 1

2
u2

)

+ 1

2
(ξα· u)2 + 1

6
(ξα· u)3 + (θ̄ − 1) ·

[
1

2

(
ξ 2

α − D
)

+ 1

2
(ξα· u)

(
ξ 2

α − D − 2
)]}

. (136)

Notice that for the above equilibrium distribution function the
fugacity z is only present through the pseudo temperature θ̄

of Eq. (15), but this is not so for the equilibrium distribution
function of Eq. (78). This shows that the quantum and the
classical macroscopic hydrodynamical equations are identical
to the N = 3 order by mapping the pseudo variables into
their counterparts. In order N = 4 this mapping holds for the
mass and momentum but not for the energy equation. This
conclusion can be reached by analyzing the N = 3 order
construction of the momentum and energy tensors, given
by Eqs. (123) and (132)–(134). Interestingly, the momentum
tensors of Eq. (123) are the same in order N = 3 and N = 4,
as seen in the following:∑

α

ξ i
αf̂ (0)

α = ρui, (137)

∑
α

ξ i
αξ j

α f̂ (0)
α = ρ(θ̄ δij + uiuj ), (138)

∑
α

ξ i
αξ j

α ξ k
α f̂ (0)

α = ρ[θ̄ (ukδij + ujδik + uiδjk) + uiujuk].

(139)

Thus we conclude that to obtain Eqs. (122) and (124) it
is just enough to go in the expansion to order N = 3.
Consequently, the quantum Navier-Stokes equation, namely
Eq. (21), is obtained in order N = 3, and higher-order terms,
such as N = 4 terms, do not contribute to it. Thus, concerning
the momentum equation, classical and quantum fluids have
formally the same macroscopic description. However, the
same does not hold for the energy equation, as we learn by
the expressions of the energy tensors in the N = 3 order. They
are given by the following:

1

2

∑
α

ξ 2
α f̂ (0)

α = 1

2
ρu2 + D

2
ρθ̄, (140)

1

2

∑
α

ξ 2
αξ j

α f̂ (0)
α = ρ

2
[uj u2 + θ̄ (D + 2)uj ], (141)

1

2

∑
α

ξ 2
αξ j

α ξ k
α f̂ (0)

α

= ρ

2
[(D + 4)ujuk + u2δjk + (2θ̄ − 1)(D + 2)δjk]. (142)

The last tensor,
∑

α ξ 2
αξ

j
α ξ k

α f̂ (0)
α /2, differs from its N = 4 coun-

terpart, as seen by comparison to Eq. (134). The first two other
tensors are identical in the N = 3 and N = 4 orders, as seen in
comparison to Eqs. (132) and (133). Thus, with the exception
of a single energy tensor, all other ones are identical in the N =
3 and N = 4 orders. Nevertheless, this single tensor renders the
N = 3 energy equation unfit to describe the energy evolution
of the quantum fluid. Hereafter we develop a heuristic proce-
dure to obtain the N = 3 tensor from its N = 4 counterpart,
given by Eq. (134). Consider the following approximations
in the N = 4 tensor:

∑
α ξ 2

αξ
j
α ξ k

α f̂ (0)
α /2 = ρ[u2ujuk + θ̄ (D +

4)ujuk + θ̄u2δjk + θ̄2g(z)(D + 2)δjk]. First, drop the fourth-
power terms in the velocity. Notice that θ̄ − 1 is of the
order of velocity squared, as shown in Appendix B, and so
terms multiplied by the second power in the velocity are of
maximum order and therefore also dropped. Apply g(z) = 1,
as we know that such a function does not exist in the N = 3
order because it is not contained in f̂ (0)

α . Therefore take
the above tensor in the limit that θ̄ = (θ̄ − 1) + 1 → 1 and
θ̄2 = (θ̄ − 1)2 + 2θ̄ − 1 → 2θ̄ − 1 to obtain the above N = 3
expression for this tensor. In conclusion, contributions of
N = 4 order to the last tensor,

∑
α ξ 2

αξ
j
α ξ k

α f̂ (0)
α /2, are important

and necessary to reach the energy equation of Eq. (135). Hence,
neither the energy of Eq. (22) nor the thermal coefficient of
Eq. (34) can be obtained in the N = 3 order. This can only be
done in order N = 4, as shown in this paper.

VII. THE DILUTE QUANTUM FLUID

We develop here the approximation of the dilute quantum
(BE-FD) system, which is very near to the classical (MB) limit.
This is the limit of small fugacity, z � 1, taken in the function
of Eq. (16) [30],

gν(z) = z ∓ z2

2ν
+ · · · , (143)

where the assignment is (+) BE and (−) FD, respectively.
We intend to carry here just the first-order corrections to the
classical (MB) fluid which are linear in the fugacity. Then we
Taylor expand the function g(z) to obtain that

g(z) = 1 ∓ z

2
D
2 +2

+ · · · . (144)

In this order the density and the pseudo temperature are given
by

ρ = (2πθ )
D
2 z + · · · , (145)

θ̄ = θ

(
1 ± z

2
D
2 +2

+ · · ·
)

. (146)

Within this order we can write the fugacity and the function
g(z) in terms of the density and of the pseudo temperature,

g ≈ 1 ∓ 1

2
D
2 +2

ρ

(2πθ̄)
D
2

(147)

under the assumption that

z ≈ ρ

(2πθ̄ )
D
2

� 1. (148)
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Under this approximation the function g can be brought back to the BE-FD equilibrium distribution function of Eq. (88) that
becomes a function of ρ, θ̄ , and u,

f (0)
α = wαρ

{
1 + (ξα· u)

(
1 − 1

2
u2

)
+ 1

6
(ξα· u)3 + (ξα· u)2

(
1

2
− 1

4
u2

)
− 1

2
u2 + 1

8
u4

+ 1

24
(ξα· u)4 + (θ̄ − 1) ·

[
1

2

(
ξ 2

α − D
) + 1

2
(ξα· u)

(
ξ 2

α − D − 2
) + 1

4
(ξα· u)2

(
ξ 2

α − D − 4
) + 1

4
u2

(
D + 2 − ξ 2

α

)]

+ 1

8

[
θ̄2

(
1 ∓ 1

2
D
2 +2

ρ

(2πθ̄)
D
2

)
− 2θ̄ + 1

]
· [

ξ 4
α + (D + 2)

(
D − 2ξ 2

α

)]}
. (149)

Thus the LBM for the dilute quantum fluid can be developed
through the variables density ρ, macroscopic velocity u,
and pseudo temperature θ̄ . The latter is related to the true
temperature θ through the relation

θ ∼= θ ± ρ

16π
, (150)

where the + and − signs applies to fermions and bosons,
respectively.

VIII. NUMERICAL RESULTS

In this section we use the LBM based on the present N = 4
order theory to numerically solve the dilute quantum fluid.
We find that the energy is indeed conserved in D = 2 under
periodic boundary conditions and some initial conditions
that trigger a time evolution where motion and heat occur
simultaneously. The initial conditions are associated to a circle
of radius R located at the center of the cell, where one of
the variables, among the temperature θ , velocity u, and the
density ρ, assumes a special value, whereas the other two are
taken constant throughout the cell. A pictorial view of such
initial conditions is shown in Fig. 1. We work with a grid of
Acell = 2562 points, and in these units R = 10. We take for
the time step of Eq. (1) τ/�t = 0.58. We use in this section
the concept of a real temperature T connected to the reduced
one by T ≡ c2

s θ , where cs is a distinct numerical parameter for
each of the lattices d2q17 and d2q37. This parameter makes
equal to 1 the smallest nonzero microscopic velocity along the

1 256

256

10

1

FIG. 1. Pictorial view of the initial condition taken in a two-
dimensional cell of 2562 points with periodic boundary conditions.
The outward velocity (or the density) takes distinct values inside and
outside the circle of radius 10, while the remaining variables are taken
homogeneously throughout the cell.

axis [25]. In dimensionless units cs plays the role of the speed
cr , defined by Eq. (37). The time evolution of the system is
a multiple of the computer steps performed in our numerical
procedure. Since our goal is to verify that the total energy
remains constant in the cell at any time step, we define the
following sums over all cell points, which are the average
values of the kinetic and the thermal energies in the cell.

Ekin ≡ 1

Acell

∑
cell

1

2
ρu2, (151)

Etherm ≡ 1

Acell

∑
cell

D

2
ρθ̄, (152)

and

Etotal ≡ Ekin + Etherm. (153)

In our numerical study we assume identical initial conditions
for the BE, FD, and MB cases, which means that they start
with the same density, temperature, and velocity. Thus the
initial kinetic energy of Eq. (151) is the same for the three
cases but not for the thermal energy of Eq. (152) since the
initial pseudo temperature is not the same for the three cases,
according to Eq. (150), being greater for fermions and smaller
for bosons, as compared to the classical case.

To perform numerical calculations we must employ a
concrete realization of the weights and microscopic velocities
that satisfy the algebra of Eqs. (81)–(87). This assures that the
Gauss-Hermite quadrature is being correctly performed. We
choose the so-called d2q17 [18] and d2q37 [25] microscopic
velocity lattices. It is important to make a few considerations
about these lattices regarding their ability to give the expected
answers. This ability relies on the order of the maximum
power of the microscopic velocity polynomial contained in
the equilibrium distribution function and also the calculated
moments. The equilibrium distribution function has maximum
order f (0)

α ∼ ξN
α for N = 3 and N = 4, as seen from Eqs. (136)

and (88), respectively. For computer purposes the highest
moment that must be calculated is the energy, which is of order
ξ 2
α . Thus the chosen microscopic velocity lattice must correctly

account for the sums of the kind Eqs. (81)–(87), which means
ξ 5
α for N = 3 and ξ 6

α for N = 4. According to Ref. [18] these
calculations can be correctly done in the d2q9 and d2q17
algebras for N = 3 and N = 4, respectively. Thus we conclude
that d2q17 and d2q37 can be used for the numerical treatment
of the present N = 4 order LBM. Nevertheless, to apply the
Chapman-Enskog analysis and derive the equation for energy,
one must compute the moment φjk ∼ ξ 4

αf (0)
α . Hence, in this
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FIG. 2. (Color online) The thermal and the kinetic energies for
the Maxwell-Boltzmann distribution, with the circle of radial velocity
as initial condition, are shown here for the first 200 time steps, using
both the d2q17 and d2q37 lattices. For time step 118 the traveling
front wave hits the side of the unit cell.

case the microscopic velocity lattice must correctly account
for sums beyond Eqs. (81)–(87), which means of the order ξ 7

α

for N = 3 and ξ 8
α for N = 4. Thus for this purpose the d2q17

lattice is limited to N = 3 [18] and cannot be used N = 4. For
such purpose N = 4 demands a higher-order lattice, such as
d2q37 [25].

A. Velocity initial conditions

Under this initial condition u is nonzero inside a circle
of radius R, where the outward component is equal to 0.02
in reduced units, being zero outside the circle. Thus at the
beginning radial motion is set for a dilute quantum fluid of
constant density, ρ = 0.1, and temperature, T = 0.5, in the
unit cell. This initial motion immediately generates friction
and subsequent heating that raises the temperature. Figure 2
shows the time-step evolution of Ekin and Etherm and the most
important aspect found in these two plots is that their sum is a
constant which is Etotal, as given by Eq. (153). Ekin follows the
trend of decrease in time, and eventually must vanish, while
Etherm increases and tends to stabilize, though such behaviors
are suggested only in the first 200 steps of Fig. 2. This figure
only intends to display the evolution immediately after the
initial condition. To reach a nearly steady state of zero velocity
and stable temperature simulations up to 20 000 steps must be
carried. The two employed lattices, namely d2q17 and d2q37,
give the same qualitative results for the time evolution of the
system, but their numerical difference hinders the splitting
among the BE, FD, and MB curves for each lattice as they
fall very close to each other. Notice the nonzero initial value
of Ekin, due to the initial velocity condition. After a few steps
Ekin drops to a local minimum, which is a local maximum
for Etherm, meaning that friction caused by motion raises the
temperature but in such a way that Etotal is conserved. After
118 steps the front wave raised by the initial condition reaches
the side of the unit cell. Notice that this number coincides
with the number of grid points between the circle and the unit
cell side, namely (256 − 20)/2. In the numerical algorithm the

FIG. 3. (Color online) The deviation of the temperature from its
initial value is shown here for the first 5000 time steps using the
circle of velocity as initial condition. The splitting among the FD,
MB, and BE distribution curves is very small in comparison to the
d2q17 and d2q37 lattice splitting and for this reason is not observable.
The inset shows for a particular time-step window the splitting of the
temperature deviation among the three distributions for the d2q37
lattice.

speed of propagation is 1, thus the number of steps required
for the signal reach the border is the number of grid points
itself. Indeed, Fig. 2 shows a hilly behavior starting nearly
at 120 steps, a consequence of the interference of incoming
waves from the neighbor cells. Figure 3 shows the evolution
of the temperature deviation from its initial value of T = 0.5.
After 5000 steps the d2q17 and the d2q37 converge basically
to the same final temperature which is just 6.0 × 10−6 above
the initial one. Interestingly, there is also oscillatory behavior
in the deviated temperature though much less perceptible than
in Fig. 2. The inset of Fig. 3 shows the splitting among the BE,
FD, and MB cases in a particular time-step window. Indeed,
one observes that this splitting between the three statistics is of
order 10−9, whereas the differences between d2q17 and d2q37
is of order 10−6.

B. Density initial conditions

Under this initial condition the density is ρ = 0.12 inside
and ρ = 0.1 outside the circle of radius R. The initial
temperature is T = 0.5 and the macroscopic velocity u is
zero everywhere. Though there is no initial motion, the
nonhomogeneous density distribution sets a pressure front.
The higher density at the center means higher pressure that
forces motion outward the circle, and so generates friction
and heating and raises of the temperature in the cell. The first
1000 steps of Ekin are shown in Fig. 4. Notice that it starts
from zero and the oscillatory behavior set by the entrance of
wave fronts from neighbor cells is well described by the d2q17
and d2q37 lattices since their numerical differences are in the
range of 10−7. In this case, too, the difference among the three
distributions is hidden by the lattice difference, shown in the
inset for a chosen window of time steps for both lattices. The
trend towards kinetic energy decay is seen in this figure though
the convergence towards a steady state is only suggested by
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FIG. 4. (Color online) The kinetic energy of the FD, MB, and
BE distributions using the d2q17 and d2q37 lattices is shown here for
the first 1000 time steps. The initial condition used is of the circle of
density. The inset shows in a particular time-step window the splitting
of the kinetic energy among the three distributions for both d2q17
and d2q37 lattices.

this figure. To really see it a larger window must be taken.
The time-step evolution of Etherm is shown in Fig. 5. Etherm

experiments show a sudden drop to allow for the increase of
Ekin as the system starts to move due to pressure imbalance. As
in the previous case, Etotal is absolutely conserved to machine
precision, in our case tested to order 10−10. The inset of this
plot shows the splitting of the three distributions within the
first 1000 steps. Notice that such values are distinct because
we chose the same initial θ for the three distributions, which
means different θ̄ in the three cases. Finally, we address the
evolution of the temperature deviation from its initial value
T = 0.5 in Fig. 6 within the full time-step window studied,
namely 20 000 steps. The very first 20 steps, shown in the

FIG. 5. (Color online) The thermal energy of the MB distribution
using the d2q17 and d2q37 lattices is shown here for the first 1000
time steps. The initial condition used is that of the circle of density.
The inset shows in a particular time-step window the splitting of the
kinetic energy among the three distributions for the d2q17 lattice.

FIG. 6. (Color online) The temperature deviation from its initial
value is shown here for the case of a circle of density as initial
condition for the first 20 000 time steps. The curves for the three
distributions and the two lattices are clearly seen here. The inset
shows the first 20 time steps.

inset, indicate that the initial temperature is the same in all
cases. However, the final ones differ. The d2q17 reaches a final
temperature deviation at a value slightly lower that the d2q37
case by an order of magnitude of 10−7. The final deviation
is higher for the FD distribution and lower for the BE. We
notice that in the first few time steps the temperature drops
and reaches a minimum, while the kinetic expansion raises to
a maximum. A more detailed view of the time evolution, in
this case of the circle of density initial condition, can be seen
in Ref. [31]. There one finds how the velocity, density, and
temperature evolve for such initial condition.

IX. CONCLUSION

We have conclusively shown that the Hermite polynomial
expansion of the equilibrium distribution functions must be
carried to fourth order for quantum fluids. Only in this order it
is possible to obtain meaningful macroscopic hydrodynamical
equations that lead to the correct viscosity and thermal
coefficients. We have also demonstrated the feasibility of the
fourth-order lattice Boltzmann method scheme by showing
that it numerically describes motion and heating in an energy-
conserving way.
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APPENDIX A: HERMITE POLYNOMIALS

The lowest-order Hermite polynomials are easily derived
from Eq. (51) as follows:

H (ξ ) = 1, (A1)

Hi(ξ ) = ξ i, (A2)
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Hij (ξ ) = ξ iξ j − δij , (A3)

Hijk(ξ ) = ξ iξ j ξ k − (ξ iδjk + ξ j δik + ξkδij ), (A4)

Hijkl(ξ ) = ξ iξ j ξ kξ l − (ξ iξ j δkl + ξ iξ kδjl + ξ iξ lδjk

+ ξ j ξ kδil + ξ j ξ lδik + ξkξ lδij ) + δijkl . (A5)

The following integrals over the Gaussian function of Eq. (52)
are a consequence of the orthonormality of the Hermite
polynomials, ∫

dDξ ω(ξ ) = 1, (A6)

∫
dDξ ω(ξ )ξ i = 0, (A7)

∫
dDξ ω(ξ )ξ iξ j = δij , (A8)

∫
dDξ ω(ξ )ξ iξ j ξ k = 0, (A9)

∫
dDξ ω(ξ )ξ iξ j ξ kξ l = δijkl, (A10)

∫
dDξ ω(ξ )ξ iξ j ξ kξ lξm = 0, (A11)

∫
dDξ ω(ξ )ξ iξ j ξ kξ lξmξn = δijklmn. (A12)

The δ··· tensors are constructed recursively from the
Kroneckers symbol: δij = 1 for i = j and 0 for i 
= j . In the
case of four indices,

δijkl ≡ δij δkl + δikδjl + δilδkj . (A13)

The sixth-order tensor is

δijklmn ≡ δij δklmn + δikδjlmn

+ δilδkjmn + δimδjkln + δinδjklm. (A14)

The eighth order is

δijklmnpq ≡ δij δklmnpq + δikδjlmnpq + δilδjkmnpq

+ δimδjklnpq + δinδjklmpq + δipδjklmnq

+ δiqδjklmnp, (A15)

and so forth.
To illustrate that Eqs. (A6)–(A12) are a consequence of

Eq. (53) let us consider two examples. The orthogonality of
the first two Hermite polynomials is∫

dDξ ω(ξ )H (ξ )Hi(ξ ) =
∫

dDξ ω(ξ )ξ i = 0, (A16)

which yields Eq. (A7). Integration over two first-order Hermite
polynomials gives∫

dDξ ω(ξ )Hi(ξ )Hj (ξ ) =
∫

dDξ ω(ξ )ξ iξ j = δij , (A17)

which is Eq. (A8). Integration over the first- and second-order
Hermite polynomials gives that∫

dDξ ω(ξ )Hi(ξ )Hjk(ξ ) (A18)

=
∫

dDξ ω(ξ )ξ i(ξ j ξ k − δjk) = 0. (A19)

From Eq. (A16) one obtains Eq. (A9). As a last example
we consider the integration over two second-order Hermite
polynomials as follows:

∫
dDξ ω(ξ )Hij (ξ )Hkl(ξ )

=
∫

dDξ ω(ξ )[ξ iξ j − δij ][ξkξ l − δkl]

=
∫

dDξ ω(ξ )ξ iξ j ξ kξ l − δij

∫
dDξ ω(ξ )ξkξ l

−δkl

∫
dDξ ω(ξ )ξ iξ j + δij δkl

∫
dDξ ω(ξ )

= δikδjl + δilδkj .

The orthogonality relations, given by Eqs. (A7)–(A12), are
the key ingredients to obtain the moments of Eqs. (B12)–
(B14).

It is worth investigating the properties of the Hermite
polynomials in case the argument is a difference, ξ − u.
Using (A1)–(A4) we find the following relations:

Hi(ξ ) = Hi(ξ − u) + uiH, (A20)

Hij (ξ ) = Hij (ξ − u) + uiHj (ξ − u)

+ujH i(ξ − u) + uiujH, (A21)

Hijk(ξ ) = Hijk(ξ − u) + uiHjk(ξ − u)

+ujH ik(ξ − u) + ukH ij (ξ − u) + uiujHk(ξ − u)

+uiukHj (ξ − u) + ujukH i(ξ − u) + uiujukH,

(A22)

Hijkl(ξ )

= Hijkl(ξ − u) + uiHjkl(ξ − u)

+ujH ikl(ξ − u) + ukH ijl(ξ − u) + ulH ijk(ξ − u)

+uiujHkl(ξ − u) + uiukHjl(ξ − u) + uiulH jk(ξ − u)

+ukulH ij (ξ − u) + ujulH ik(ξ − u) + ujukH il(ξ − u)

+uiujukH l(ξ − u) + uiujulHk(ξ − u)

+ujukulH i(ξ − u) + uiukulH j (ξ − u)

+uiujukul. (A23)

Using the above expressions it becomes straightforward to
calculate the first four coefficients of the Hermite expansion.
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APPENDIX B: TAYLOR EXPANSION OF THE
MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION

In this Appendix we consider the Maxwell-Boltzmann
equilibrium distribution in reduced units,

f (ξ ) ≡ ρ

(
1

2πθ

)D
2

e− (ξ−u)2

2θ , (B1)

whose first three moments are obtained as follows:

ρ(x) =
∫

dDξf (ξ ), (B2)

u(x) = 1

ρ(x)

∫
dDξ ξf (ξ ), (B3)

and
D

2
θ (x) = 1

ρ(x)

∫
dDξ

1

2
[ξ − u(x)]2 f (ξ ). (B4)

We seek a Taylor expansion of the Maxwell-Boltzmann
equilibrium distribution function such that the three above
moment relations are retained for the expanded distribution
function. The reference temperature and velocity are the
parameters that set the Taylor expansion, although they are not
present in the original distribution. This means that the limit
that the macroscopic velocity and the temperature deviation

are small in comparison to cr and Tr , respectively, is being
considered. Therefore u(x) and θ (x) − 1 are small quantities,
a fact that justifies a series expansion in powers of these
quantities. The present Taylor expansion makes evident the
presence of a small parameter ε and we take the expansion
to order ε2. The square of the macroscopic velocity and the
temperature deviation must be considered of the same order:
|u(x)| ∼ √

ε and θ (x) − 1 ∼ ε. A few remarks are worth
noticing. The only scalars available are ξ · u and u2. The
microscopic velocity ξ has no ε order assigned to it, being
limited to small values by the Gaussian decay. Therefore,
according to our expansion criterion, the only terms to be
kept are those proportional to 1, ξ · u, u2, (ξ · u)2, u3,
(ξ · u)2u, (ξ · u)u2, (ξ · u)3, u4, (ξ · u)2u2, (ξ · u)4, (θ − 1),
(θ − 1)ξ · u, (θ − 1)u2, (θ − 1)(ξ · u)2, and (θ − 1)2. First,
consider small deviations of Tr , namely θ = 1 + (θ − 1) up to
order ε2 in the denominator of Eq. (B1),

1

θ
D
2

= 1

[1 + (θ − 1)]
D
2

= 1 − D

2
(θ − 1) + D

4

D + 2

2
(θ − 1)2 + O(ε3). (B5)

The exponential also has a θ -dependent denominator that must
be expanded, resulting in three different terms, which must be
treated separately according to ε,

exp

(
− (ξ − u)2

2θ

)
= exp

{
− (ξ − u)2

2
[1 − (θ − 1) + (θ − 1)2 + O(ε3)]

}

= exp

[
−

(
ξ 2

2
− ξ · u + u2

2

)]
· exp

[(
ξ 2

2
− ξ · u + u2

2

)
(θ − 1)

]

· exp

[
−

(
ξ 2

2
− ξ · u + u2

2

)
(θ − 1)2

]
. . . . (B6)

In the first exponential we factorize the Gaussian function [Eq. (52)], exp(−ξ 2/2), because of its zeroth ε order. Next we select
for the three exponentials only those terms of order equal or lower than ε2. The first exponential becomes

exp

[
−

(
ξ 2

2
− ξ · u + u2

2

)]
= exp

(
−ξ 2

2

)
·
[

1 + ξ · u − u2

2
+ 1

2
(ξ · u)2 − 1

2
(ξ · u)u2

+ u4

8
+ 1

6
(ξ · u)3 − 1

4
(ξ · u)2u2 + 1

24
(ξ · u)4 + O(ε5/2)

]
. (B7)

The second one

exp

[
−

(
ξ 2

2
− ξ · u + u2

2

)
(θ − 1)

]
= 1 +

(
ξ 2

2
− ξ · u + u2

2

)
(θ − 1) + ξ 4

8
(θ − 1)2 + O(ε5/2) (B8)

and the third

exp

[
−

(
ξ 2

2
− ξ · u + u2

2

)
(θ − 1)2

]
= 1 − ξ 2

2
(θ − 1)2 + O(ε5/2). (B9)

The product of Eqs. (B5) and (B6), together with the expansions of Eq. (B7)–(B9), gives that

f = ρω(ξ )

[
1 − D

2
(θ − 1) + D

4

D + 2

2
(θ − 1)2 − O(ε3)

]
·
[

1 + ξ · u − u2

2
+ 1

2
(ξ · u)2 − 1

2
(ξ · u)u2 + u4

8

+ 1

6
(ξ · �u)3 − 1

4
(ξ · u)2u2 + 1

24
(ξ · u)4 − O(ε5/2)

]

·
[

1 +
(

ξ 2

2
− ξ · u + u2

2

)
(θ − 1) + ξ 4

8
(θ − 1)2 + O(ε5/2)

]
·
[

1 − ξ 2

2
(θ − 1)2 + O(ε5/2)

]
, (B10)
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where we have used the Gaussian function of Eq. (52). Finally, we expand Eq. (B10) and hold terms up to order ε2 by multiplying
the ε expansions of the three exponentials of the numerator with that of the denominator as follows:

f̄

ρω(ξ )
= 1 + ξ · u + 1

2
(ξ · u)2 − u2

2
+ 1

2
(θ − 1)(ξ 2 − D) + 1

6
(ξ · u)3 − 1

2
u2(ξ · u) + 1

2
(θ − 1)(ξ · u)(ξ 2 − D − 2)

+ 1

24
(ξ · u)4 − 1

4
(ξ · u)2u2 + 1

8
u4 + 1

4
(θ − 1)[(ξ · u)2(ξ 2 − D − 4) + u2(D + 2 − ξ 2)]

+ 1

8
(θ − 1)2[ξ 4 − 2(D + 2)ξ 2 + D(D + 2)] + O(ε5/2). (B11)

We have obtained a Taylor expansion of the Maxwell-
Boltzmann equilibrium distribution function [Eq. (B1)] in
powers of T (x)/Tr − 1 and v(x)/cr up to the desired order
of ε2. Remarkably, the three local parameters ρ, θ , and u,
contained in f̄ are also its first three moments. The above
Taylor expansion also satisfies the same relations for the
momentum flux tensor,

∫
dDξ ξ iξ j f̄ (ξ ) = δijρθD + ρuiuj ,

and for the energy flux tensor,
∫

dDξ ξ iξ 2 f̄ (ξ ) = [δijρθ (D +
2)/2 + ρu2/2]ui .

ρ(x) =
∫

dDξ f̄ (ξ ,ρ,θ,u), (B12)

u(x) = 1

ρ(x)

∫
dDξ ξ f̄ (ξ ,ρ,θ,u), (B13)

and

D

2
θ (x) = 1

ρ(x)

∫
dDξ

[ξ − u(x)]2

2
f̄ (ξ ,ρ,θ,u). (B14)

APPENDIX C: THE POSITION AND TIME CROSS
DERIVATIVE TERMS OF THE MOMENTUM AND

ENERGY CONSERVATION EQUATIONS

In this Appendix we seek replacement of the ∂
∂xj

∂
∂t

terms
contained in Eqs. (124) and (135) by position derivatives. The
key to this step is to consider that terms proportional to the
square of the collision time τ , namely proportional to [τ (1 −
�t/2τ )]2, are neglected. Thus it considers the above equations
in the limit τ → 0 and �t/τ fixed. Setting τ = 0 in Eqs. (124)
and (135) gives that

∂

∂t
(ρui) + ∂

∂xj
(ρθ̄δij + ρuiuj ) = 0, (C1)

∂

∂t

(
ρ

2
u2 + ρ

2
Dθ̄

)
+ ∂

∂xj

[(
ρ

2
u2 + ρ

2
θ̄ (D + 2)

)
uj

]
= 0.

(C2)

1. The momentum conservation equation

Introducing the continuity equation (2) into Eq. (C1) gives

ρ
∂ui

∂t
+ ∂

∂xj
(ρθ̄δij ) + ρuj ∂ui

∂xj
= 0. (C3)

We develop some identities from Eqs. (2) and (C3),

∂

∂t
(ρu2) = u2 ∂ρ

∂t
+ 2ρuj ∂uj

∂t

= −u2 ∂

∂xj
(ρuj ) − 2uj ∂

∂xi
(ρθ̄δij ) − uj ∂

∂xj
(ρu2)

= − ∂

∂xj
(ρu2uj ) − 2uj ∂

∂xj
(ρθ̄ ). (C4)

Introducing Eq. (C4) into Eq. (C2) gives the identity

∂

∂t
(ρθ̄D) − 2uj ∂

∂xj
(ρθ̄ ) + ∂

∂xj
[ρθ̄ (D + 2)uj ] = 0,

which can be expressed as

∂

∂t
(ρθ̄D) = − ∂

∂xj
(ρθ̄Duj ) − 2ρθ̄

∂uj

∂xj
. (C5)

Starting from

∂

∂t
(ρuiuj ) = uiuj ∂ρ

∂t
+ ρuj ∂ui

∂t
+ ρui ∂uj

∂t
, (C6)

and using the continuity equations (2) and (C3) yields

∂

∂t
(ρuiuj ) = −uiuj ∂

∂xk
(ρuk) − uk ∂

∂xk
(uiuj )ρ

−uj ∂

∂xi
(ρθ̄ ) − ui ∂

∂xj
(ρθ̄ )

= − ∂

∂xk
(ρuiujuk) − uj ∂

∂xi
(ρθ̄ ) − ui ∂

∂xj
(ρθ̄ ).

(C7)

Thus the temporal evolution,

∂

∂t
(ρθ̄δij + ρuiuj )

= − ∂

∂xk
(ρθ̄uk)δij − 2

D
ρθ̄

∂uk

∂xk
δij

− ∂

∂xk
(ρuiujuk) − uj ∂

∂xi
(ρθ̄ ) − ui ∂

∂xj
(ρθ̄ ),

is to be fed into Eq. (122) to allow for the substitution of the
position and time cross derivative term,

∂

∂t
(ρθ̄δij + ρuiuj )

= − ∂

∂xk
[ρuk(θ̄ δij + uiuj )]

− 2

D
ρθ̄

∂uk

∂xk
δij − uj ∂

∂xi
(ρθ̄ ) − ui ∂

∂xj
(ρθ̄ ). (C8)
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Finally, we are able to write the addition of two terms
proportional to τ in Eq. (124) in terms of the derivative of
the viscosity stress tensor [Eq. (18)] by means of Eq. (C8),

∂

∂xj

∂

∂xk
[ρ(ukδij + ujδik + uiδjk)θ̄ + ρuiujuk]

+ ∂

∂xj

∂

∂t
[ρ(θ̄ δij + uiuj )]

= ∂

∂xj

∂

∂xi
(ρuj θ̄ ) + ∂

∂xj

∂

∂xj
(ρθ̄ui) − ∂

∂xi

(
2

D
ρθ̄

∂uk

∂xk

)

− ∂

∂xj

[
uj ∂

∂xi
(ρθ̄ )

]
− ∂

∂xj

[
ui ∂

∂xj
(ρθ̄ )

]

= ∂

∂xj

(
ρθ̄

∂uj

∂xi

)
+ ∂

∂xj

(
ρθ̄

∂ui

∂xj

)
− ∂

∂xi

(
2

D
ρθ̄

∂uk

∂xk

)

= ∂

∂xj

[
ρθ̄

(
∂uj

∂xi
+ ∂ui

∂xj
− 2

D

∂uk

∂xk
δij

)]
. (C9)

Substituting this result in Eq. (124), we obtain the momentum
conservation equation of Eq. (21).

2. The energy conservation equation

Some identities are obtained here, similarly to the momen-
tum equation case. From Eqs. (C3) and (C5), it follows that

∂

∂t
[(D + 2)ρθ̄uj ] = (D + 2)uj ∂

∂t
(ρθ̄ ) + (D + 2)ρθ̄

∂uj

∂t

= −(D + 2)

[
∂

∂xk
(ρθ̄ujuk) + 2

D
ρθ̄

∂uk

∂xk
uj

+ θ̄
∂

∂xj
(ρθ̄ )

]
. (C10)

Using the continuity equations (2) and (C3), one obtains that

∂

∂t
(ρuj u2) = ∂ρ

∂t
uj u2 + ρ

∂uj

∂t
u2 + 2ρujuk ∂uk

∂t

= − ∂

∂xk
(ρukuj u2) − ∂

∂xj
(ρθ̄ )u2

− 2ujuk ∂

∂xk
(ρθ̄ ). (C11)

Equations (C10) and (C11) allow us to write the time-
dependent term of the position-time cross derivative in
Eq. (135) as

∂

∂t
[ρu2uj + ρθ̄ (D + 2)uj ]

= − ∂

∂xk
[ρukuj u2 + (D + 2)ρθ̄ujuk]

− 2

D
(D + 2)ρθ̄

∂uk

∂xk
uj − [(D + 2)θ̄ + u2]

∂

∂xj
(ρθ̄ )

−2ujuk ∂

∂xk
(ρθ̄ ). (C12)

Next we deal with the terms proportional to τ in the left-
hand side of Eq. (135) and apply Eq. (C12) to it. For this

we define

τ [· · · ] ≡ 1

2

∂

∂xj

∂

∂xk
[ρu2ujuk + ρθ̄ (D + 4)ujuk

+ ρθ̄u2δjk + ρθ̄2(D + 2)δjk]

+ 1

2

∂

∂xj

∂

∂t
[ρuj u2 + ρθ̄ (D + 2)uj ], (C13)

and substitute (C12) into the above equation plus the canceling
of some terms, giving the final useful expression for the τ -
dependent terms of the left-hand side of Eq. (135),

τ [· · · ] = D + 2

2

∂

∂xj

(
ρθ̄

∂

∂xj
θ̄

)

+ ∂

∂xj

[
ρθ̄uk

(
∂uk

∂xj
+ ∂uj

∂xk
− 2

D

∂ul

∂xl
δjk

)]
.

(C14)

The above expression is introduced into Eq. (135) and added to
the definitions of the dynamic viscosity [Eq. (19)], the viscosity
stress tensor [Eq. (18)], and the thermal conductivity [Eq. (20)].

APPENDIX D: USEFUL RELATIONS

∑
α

ξ i
αξ j

α ξ k
αξ k

αwα = (D + 2)δij , (D1)

∑
α

ξ i
αξ j

α (ξα · u)2wα = u2δij + 2uiuj , (D2)

∑
α

ξ i
αξ j

α (ξα · u)4wα = 3u4δij + 12u2uiuj , (D3)

∑
α

ξ i
αξ j

α (ξα · u)2ξ 2
αwα = uiuj (2D + 8) + δij (D + 4)u2,

(D4)

∑
α

ξ i
αξ j

α ξ 4
αwα = δij (D2 + 6D + 8), (D5)

∑
α

ξ i
αξ j

α ξ k
α (ξα · u)wα = ukδij + ujδik + uiδjk, (D6)

∑
α

ξ i
αξ j

α ξ k
α (ξα · u)3wα

= 3(ukδij + ujδik + uiδjk)u2 + 6uiujuk, (D7)

∑
α

ξ i
αξ j

α ξ k
α (ξα · u)ξ 2

αwα = (D + 4)(ukδij + ujδik + uiδjk),

(D8)

∑
α

ξ 2
αwα = D, (D9)

∑
α

ξ 2
α (ξα · u)2wα = (D + 2)u2, (D10)

∑
α

ξ 2
α (ξα · u)4wα = 3(D + 4)u4, (D11)
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∑
α

ξ 4
αwα = D(D + 2), (D12)

∑
α

ξ 4
α (ξα · u)2wα = (D + 2)(D + 4)u2, (D13)

∑
α

ξ 6
αwα = D3 + 6D2 + 8D, (D14)

∑
α

ξ 2
αξ i

α(ξα · u)wα = (D + 2)uj , (D15)

∑
α

ξ 2
αξ j

α (ξα · u)3wα = 3(D + 4)uj u2, (D16)

∑
α

ξ 4
αξ j

α (ξα · u)wα = (D + 4)(D + 2)uj , (D17)

∑
α

ξ 2
αξ j

α ξ k
α (ξα · u)4wα = 3(D + 6)(u4δjk + 4ujuku2),

(D18)

∑
α

ξ 4
αξ j

α ξ k
α (ξα · u)2wα = (D + 4)(D + 6)(u2δjk + 2ujuk),

(D19)

∑
α

ξ 6
αξ j

α ξ k
αwα = (D + 2)(D + 4)(D + 6)δjk. (D20)
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