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The nonlinear Schrödinger (NLS) equation is widely used in natural science. Various nonlinear excitations
of the NLS equation have been found by many methods. However, except for the soliton-soliton interactions, it
is very difficult to find interaction solutions between different types of nonlinear excitations. In this paper, the
symmetry reduction method is further developed to find interaction solutions between solitons and other types of
NLS waves. Especially, the soliton-cnoidal wave interaction solutions are explicitly studied in terms of the Jacobi
elliptic functions and the third type of incomplete elliptic integrals. Some special concrete interaction solutions
and their asymptotic behaviors are discussed both in analytical and graphical ways.
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I. INTRODUCTION

The soliton and/or solitary wave equations connect rich
histories of exactly solvable systems constructed in mathe-
matical, statistical, and many-body physics and powerfully
demonstrate the unity of nonlinear concepts across disciplines
and scales from micro-physics and biology to cosmology [1].
Among these equations, the nonlinear Schrödinger (NLS)
equation,

pt + 1
2 ibpxx − i|p|2p = 0, i ≡ √−1, b ≡ ±1, (1)

is most ubiquitous [2]. Originally, the NLS equation is derived
to describe the envelope dynamics of a quasimonochromatic
plane wave propagating in a weakly nonlinear dispersive
medium when dissipative processes are negligible (see, for
instance, Ref. [3]). The NLS equation finds an important
application in plasma physics, where it describes electron
(Langmuir) waves [4]. The NLS equation in nonlinear optics is
also well known to describe self-modulation and self-focusing
of light in a Kerr-type nonlinear medium [5]. The great current
interest in the NLS application is initiated by the prediction of
solitons in nonlinear optical fibers [6] and the concept of the
soliton laser [7]. Furthermore, the NLS equation is widely used
in ferromagnets with easy-axis anisotropy, molecular chains,
nonideal Bose gas, nuclear matter, solid-state medium, gravity
waves, optical lattice, Bose-Einstein condensations, and so
on [8].

The multiple soliton solutions of the NLS equation have
been obtained by many authors via different methods, such
as Hirota’s bilinear method [9], the Darboux transformation
(DT) [10], and the Bäcklund transformation (BT) [11]. Using
the DT and BT, in principle, one can obtain a new solution
from a known one. However, in practice, one can only find
multiple soliton solutions stemming from simple constant
solutions. It is rather difficult to find new explicit solutions
starting from nonconstant nonlinear waves such as the cnoidal
waves and Painlevé waves via the DT and BT. In Refs. [12,13],
the mutisoliton complexes on a cnoidal wave background
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have been studied by the DTs for the multicomponent NLS
equations, the sine-Gordon (SG) equation, and the Toda lattice.
Recently, it is found that combining the symmetry reduction
method and the DT- or BT-related nonlocal symmeries [14],
one can readily find the interaction solutions among solitons
and other nonlinear excitations, including the cnoidal waves
for the KdV [15] and KP [16] equations.

In Sec. II of this paper, we review the known local and
nonlocal symmetries for the Ablowitz-Kaup-Newell-Segur
(AKNS) system, which is a general form of the NLS equation.
In Sec. III, to find the finite transformation related to a
special nonlocal symmetry, the nonlocal symmetry for the
original AKNS system is localized for an extended AKNS
system. Thus, the finite Darboux-Bäcklund transformation
(DBT) theorem is naturally obtained by Lie’s first principle.
In Sec. IV, thanks to the localization procedure of the last
section, the group invariant solutions related to the nonlocal
symmetries of the AKNS system are obtained by means of
the symmetry reduction method. In Sec. V, some special exact
solutions on the dark or gray solitons dressed by the cnoidal
periodic waves are explicitly given by means of the Jacobi
elliptic functions and the third type of incomplete elliptic
integrals. The last section is a short summary and discussion.

II. INFINITELY MANY LOCAL AND NONLOCAL
SYMMETRIES OF THE AKNS SYSTEM

It is known that an integrable system possesses infinitely
many symmetries. Using these symmetries, one can obtain var-
ious interesting results of the model especially to study its exact
solutions [17] via symmetry reduction methods and even to
find its ALL possible solutions [18]. However, one usually uses
the local symmetries to find symmetry reductions while the ex-
istence of infinitely many nonlocal symmetries [19] is ignored
by most of scientists. Recently, we have demonstrated that the
nonlocal symmetries can be successfully used to discover some
types of important interaction solutions that are difficult to be
found by other approaches [14,15]. Though we will only use
one nonlocal symmetry and five local symmetries to obtain
some types of exact solutions, we list as many as possible
symmetries for completeness and further studies in future.
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For simplicity and generality, we consider the NLS equation
as a special case of the AKNS system:

pt + 1
2 ibpxx − ip2q = 0, (2a)

qt − 1
2 ibqxx + iq2p = 0, (2b)

with q being a complex conjugate of p; i.e., q = p∗.
A symmetry σ ,

σ ≡
(

σp

σ q

)
, (3)

is defined as a solution of the linearized equation of the AKNS
system Eq. (2):

σ
p
t + 1

2 ibσp
xx − 2ipqσp − ip2σq = 0, (4a)

σ
q
t − 1

2 ibσ q
xx + 2ipqσ q + iq2σp = 0, (4b)

which means the AKNS system Eq. (2) is form invariant under
the transformation(

p

q

)
→

(
p

q

)
+ ε

(
σp

σ q

)
, (5)

with an infinitesimal parameter ε.
The infinitely many local K symmetries,

Kn = �n

(−ip

iq

)
, n = 0, 1, 2, . . . , (6)

and τ symmetries,

τn = �nτ0, τ0 =
(

tpx + ibxp

tqx − ibxq

)
, n = 0, 1, 2, . . . , (7)

are known in literature [28]. In Eqs. (6) and (7), the recursion
operator � is defined as

� =
(−∂ + 2bp∂−1q 2bp∂−1p

−2bq∂−1q ∂ − 2bq∂−1p

)
, (8)

with ∂ = ∂/∂x, ∂−1 = ∫ x

−∞ dx.
The Kn symmetries constitute a commute symmetry alge-

bra and the τn symmetries constitute the centerless Virasoro
symmetry algebra.

Remark 1. For the Kn symmetry, n can only be nonnegative
because K0 is a kernel of the inverse recursion operator; i.e.,
�−1K0 = 0. For the τn symmetry, n can be extended to both
positive and negative because τ0 is not a kernel of the inverse
recursion operator. However, τn for negative n are nonlocal
symmetries. Whence the negative set of the τn is considered,
the τn symmetries constitute a full centerless Virasoro algebra.

Especially, the symmetries

K0 =
(−ip

iq

)
, K1 =

(
px

qx

)
, K2 = −2ib

(
pt

qt

)
,

and

τ0 =
(

tpx + ibxp

tqx − ibxq

)
, τ1 = −ib

(
2tpt + (xp)x
2tqt + (xq)x

)
constitute a five-dimensional Lie point symmetry algebra with
nonzero commutators

[τ0, K1] = ibK0, [τ0, K2] = 2ibK1, [τ1, K1] = ibK1,

[τ1, K2] = 2ibK2, [τ1, τ0] = −ibτ0, (9)

where the definition of the commutator [A, B] is standard [17].

To find infinitely many nonlocal symmetries, one can use
some different approaches, for instance, the inverse recursion
operator method [19], the infinitesimal forms of the Darboux
transformations [10] or Bäcklund transformations [11], the
conformal invariance of the Schwarzian forms [20], the
residual of the truncated Painlevé analysis [21], the deriva-
tives of the inner parameters [14] and the higher-order Lax
operators [22], or the infinitely many nonhomogeneous Lax
pairs [23]. In this paper, we write down only the nonlocal
symmetries related to the infinitesimal forms of the Darboux
transformation.

For the AKNS system Eq. (2), its Lax pair possesses the
following form [24]:(

φ1

φ2

)
x

=
(−iλ

p√
b

q√
b

iλ

)(
φ1

φ2

)
, (10)

(
φ1

φ2

)
t

=
(

ibλ2 + 1
2 ipq −

√
b

2 (ipx + 2pλ)
√

b
2 (iqx − 2qλ) −ibλ2 − 1

2 ipq

)(
φ1

φ2

)
.

(11)

A simple nonlocal symmetry of the AKNS system related to
the Lax pair is the so-called square eigenfunction symme-
try [25]

N0 =
(

φ2
1

φ2
2

)
, (12)

which is related to the infinitesimal form of the usual Darboux
transformation [25]. N0 is a kernel of the recursion operator
�. Thus, �nN0 is zero for positive n.

In addition to the infinitely many nonlocal symmetries,

N
′
n = �−nN0, n = 0, 1, 2, . . . , ∞, (13)

for a fixed spectral parameter λ, one can find infinitely
many nonlocal symmetries via some different ways, say, by
expanding N0 as a series near a given λ1 = λ + δ,

N0 =
∞∑

n=0

N
′′
nδ

n, (14)

where N
′′
n are also symmetries of the AKNS system for an

arbitrary n.
More interestingly, the arbitrariness of the spectral pa-

rameter λ implies that N0 itself expresses infinitely many
symmetries and thus we can sum up any number of square
eigenfunction symmetries with different eigenvalues

Nn =
n∑

i=0

ci

(
φ2

1i

φ2
2i

)
, (15)

where(
φ1i

φ2i

)
x

=
(−iλi

p√
b

q√
b

iλi

)(
φ1i

φ2i

)
, i = 0, 1, 2, . . . , n, (16a)

(
φ1i

φ2i

)
t

=
(

ibλ2
i + 1

2 ipq −
√

b
2 (ipx + 2pλi)√

b
2 (iqx − 2qλi) −ibλ2

i − 1
2 ipq

)(
φ1i

φ2i

)
.

(16b)
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It should be mentioned that the last set of infinitely many
nonlocal symmetries Eq. (15) can be used to find algebra-
geometric solutions by using the so-called nonlinearization
approach [26]. They can also be localized to a Lie point
symmetry for a suitable extended system and then the n-times
Darboux transformations by using the method of the next
section. However, as it is not the purpose of the present paper,
we will leave this problem in our future study similar to the
KdV equation [27].

III. LOCALIZATION OF NONLOCAL SYMMETRIES

Now, one of the important questions is what kind of finite
transformations are related to the nonlocal symmetries. In this
section, we only concentrate on the finite transformation of the
square eigenfunction symmetry N0 given in Eq. (12). Accord-
ing to Lie’s first principle, to find the finite transformation of
N0, one has to solve the following “initial value” problem:

dp(ε)

dε
= φ2

1(ε), p(0) = p, (17a)

dq(ε)

dε
= φ2

2(ε), q(0) = q, (17b)

with(
φ1(ε)
φ2(ε)

)
x

=
(

−iλ
p(ε)√

b
q(ε)√

b
iλ

)(
φ1(ε)
φ2(ε)

)
, (18a)

(
φ1(ε)
φ2(ε)

)
t

=
(

ibλ2 + 1
2 ip(ε)q(ε) −

√
b

2 (ipx(ε) + p(ε)λ)√
b

2 (iqx(ε) − 2q(ε)λ) −ibλ2
n − 1

2 ip(ε)q(ε)

)

×
(

φ1(ε)
φ2(ε)

)
. (18b)

Because of the presence of φ1(ε) and φ2(ε) in the initial
value problem Eq. (17), we have to study the corresponding
symmetry transformation for the spectral functions φ1 and φ2

related to the symmetry N0 for p and q. In other words, we
have to solve the symmetry equations(

σ
φ1
x

σ
φ2
x

)
=

(
−iλ

p√
b

q√
b

iλ

)(
σφ1

σφ2

)
+

(
φ2√
b

0

0 φ1√
b

)(
σp

σ q

)

+ iσ λ

(−φ1

φ2

)
, (19)

and

(
σ

φ1
t

σ
φ2
t

)
=

(
ibλ2 + 1

2 ipq − 1
2

√
b(ipx + 2pλ)

1
2

√
b(iqx − 2qλ) −ibλ2 − 1

2 ipq

)(
σφ1

σφ2

)
+

√
bσλ

(
2i

√
bλφ1 − pφ2

−2i
√

bλφ2 − qφ1

)

+
(

i
2qφ1 −

√
b

2 φ2(2λ + i∂x) i
2pφ1

− i
2qφ2 − i

2pφ2 +
√

b
2 φ1(i∂x − 2λ)

)(
σp

σ q

)
, (20)

with

σp = φ2
1 , σ q = φ2

2 . (21)

It is not difficult to verify that Eqs. (19), (20), and (21) have
the solution

σφ1 = φφ1, σ φ2 = φφ2, (22)

with

φx = 1√
b
φ1φ2, (23a)

φt = i

2

(
qφ2

1 − pφ2
2

) − 2
√

bλφ1φ2. (23b)

It is easy to prove that the consistent condition of Eq. (23),
namely, φxt = φtx , is identically satisfied. According to the
definition Eq. (23), it is not difficult to verify that φ is just a
solution of the Schwarzian AKNS system:(

φt

φx

)
t

=
(

3φ2
t

2φ2
x

− 1

4
{φ; x} + 4λb

φt

φx

)
x

,

{φ; x} ≡ φxxx

φx

− 3

2

φ2
xx

φ2
x

. (24)

Similarly, due to the entrance of φ in Eq. (22), we have to
study the solution of the symmetry equation for the field φ:

σφ
x = 1√

b
(σφ1φ2 + σφ2φ1), (25a)

σ
φ
t = i

2

(
σqφ2

1 − σpφ2
2 + 2qφ1σ

φ1 − 2pφ2σ
φ2
)

− 2
√

bλ(σφ1φ2 + σφ2φ1) − 2
√

bφ1φ2σ
λ, (25b)

with Eqs. (21) and (22).
It is straightforward to find that the meaningful solution of

Eq. (25) with Eqs. (21) and (22) has the form

σφ = φ2, (26)

which is just the infinitesimal form of the Möbious transfor-
mation.

Therefore, the nonlocal symmetry N0 of the AKNS system
is localized for the extended AKNS system (EAKNS) of
Eqs. (2), (10), (11), and (23).

The nonlocal symmetry N0 of the original AKNS system is
localized to a Lie point symmetryin the vector form

V = φ2
1

∂

∂p
+ φ2

2
∂

∂q
+ φφ1

∂

∂φ1
+ φφ2

∂

∂φ2
+ φ2 ∂

∂φ
(27)

for the EAKNS system. In other words, the vector V

expressed by Eq. (27) of the EAKNS system is a special
closed prolongation related to the nonlocal symmetry. So the
localization of the nonlocal symmetry is equivalent to finding
a closed prolongation structure and the introduced related
equations constitute an extended system such that the nonlocal
symmetry becomes a Lie point symmetry.
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According to the vector Eq. (27), the initial value problem
Eq. (17) is changed to

dp(ε)

dε
= φ2

1(ε), p(0) = p, (28a)

dq(ε)

dε
= φ2

2(ε), q(0) = q, (28b)

dφ1(ε)

dε
= φ(ε)φ1(ε), φ1(0) = φ1, (28c)

dφ2(ε)

dε
= φ(ε)φ2(ε), φ2(0) = φ2, (28d)

dφ(ε)

dε
= φ2(ε), φ(0) = φ. (28e)

After solving out the initial value problem Eq. (28), we have the
following Binary Darboux-Bäcklund transformation (BDBT)
theorem:

Theorem 1 (BDBT theorem). If {p, q, φ1, φ2, φ} is a solution
of the extended AKNS system of Eqs. (2), (10), (11), and (23),
so is {p(ε), q(ε), φ1(ε), φ2(ε), φ(ε)}, with

p(ε) = p + εφ2
1

1 − εφ
, (29a)

q(ε) = q + εφ2
2

1 − εφ
, (29b)

φ1(ε) = φ1

1 − εφ
, (29c)

φ2(ε) = φ2

1 − εφ
, (29d)

φ(ε) = φ

1 − εφ
. (29e)

In this section, the localization procedure is only applied to
the nonlocal symmetry N0. Actually, the nonlocal symmetries
Nn expressed in Eq. (15) for arbitrary n can be accomplished
in the same way. Similar work has been finished for the KdV
equation [27].

IV. SYMMETRY REDUCTIONS OF THE AKNS SYSTEM
WITH NONLOCAL SYMMETRIES

Symmetry reduction is one of the most powerful methods of
studying exact solutions of nonlinear systems [17]. However,
usually only the local symmetries are utilized to explore
symmetry reductions, while the infinitely many nonlocal
symmetries [19] are mostly ignored. Recently, we have found
that the nonlocal symmetries can also be successfully used to
obtain some types of important interaction solutions that are
difficult to find by other approaches [14,15].

In this section, we study the symmetry reductions of
the AKNS system Eq. (2) under the local symmetries
{K0, K1, K2, τ0, τ1} and the nonlocal symmetry N0, which
is corresponding to the infinitesimal form of the Darboux
transformation. As in the KdV case [15], to find symmetry
reductions related to the nonlocal symmetry, we have to
extend the original system such that the nonlocal symmetry
can be localized to a Lie point symmetry for the extended
system.

For the AKNS system, its extended system (the EAKNS
system) has been given in the last section. It is easy to
demonstrate that the general Lie point symmetry solution of
the EAKNS system of Eqs. (2), (10), (11), and (23) has the
form

σnl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σp

σ q

σφ1

σφ2

σφ

σλ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(c5x + c4t + c2)px + (2c5t + c3)pt + (−c1 + c5 + c4bix)p + c6φ
2
1

(c5x + c4t + c2)qx + (2c5t + c3)qt + (c1 + c5 − c4bix)q + c6φ
2
2

(c5x + c4t + c2)φ1x + (2c5t + c3)φ1t + [(c7 − c1
2 ) + c6φ + 1

2c4bix]φ1

(c5x + c4t + c2)φ2x + (2c5t + c3)φ2t + [(c7 + c1
2 ) + c6φ − 1

2c4bix]φ2

(c5x + c4t + c2)φx + (2c5t + c3)φt + (2c7 − c5 + c6φ)φ + c8

c5λ − b
2c4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡ c1K0 + c2K1 + c3K2 + c4τ0 + c5τ1 + c6N0 + c7S0 + c8T0. (30)

The last component of the symmetry Eq. (30) implies that for
the EAKNS system, the scaling and Galileo invariance must
accompany the transformation of the spectral parameter λ. In
Eq. (30), two additional symmetries, S0 and T0, correspond to
the φ-scaling and φ-translation invariance, respectively. From
the fifth component of the symmetry Eq. (30), it is not difficult
to find that the symmetries N0, S0, and T0 all commute with
others, {K0, K1, K2, τ0, τ1}.

To find the symmetry reductions related to the nonlocal
symmetry, i.e., to find group invariant solutions related to
the symmetry Eq. (30) with c6 �= 0, four nontrivial cases
should be considered. Generally, the group invariant solu-
tions can be solved from the invariant condition σnl = 0.

For c6 �= 0, we can simply take c6 ≡ 1 without loss of
generality.

Case 1. c5 = 0, c8 �= c2
7. In this case, c4 = 0 should be held

at the same time because of the last component of Eq. (30).
The final group invariant solution obtained from σnl = 0 can
be written as [c′

8
2 ≡ (c2

7 − c8)c−2
3 ,c2 = cc3],

φ = −c7 + c′
8c3 tanh{c′

8[F (η) + t]}, η = x − ct, (31a)

φ1 = �1(η)sech[c′
8F (η) + c′

8t] exp

(
+ c1t

2c3

)
, (31b)

φ2 = �2(η)sech[c′
8F (η) + c′

8t] exp

(
− c1t

2c3

)
, (31c)

043202-4



INTERACTIONS BETWEEN SOLITONS AND OTHER . . . PHYSICAL REVIEW E 89, 043202 (2014)

p = {c3c
′
8P (η) − �2

1(η) tanh[c′
8F (η) + c′

8t]} exp

(
c1

c3
t

)
,

(31d)

q = {c3c
′
8Q(η) − �2

2(η) tanh[c′
8F (η) + c′

8t]} exp

(
−c1

c3
t

)
.

(31e)

The group invariant functions F (η), P (η), Q(η), �1(η), and
�2(η) satisfy the following reduction equations:

Fη = �1�2√
bc3c

′
8

2 , (32a)

Q = 2i(c − 2bλ)�2√
b�1

+ P�2
2

�2
1

− 2ic′
8

2
c3

�2
1

, (32b)

�1η = P�2√
b

− iλ�1, (32c)

�2η = Q�1√
b

+ iλ�2, (32d)

Pη = P 2�2√
b�1

− 2iP

(
λ + c′

8
2
c3√

b�1�2

)
+ �2�

3
1√

bc′
8

2
c2

3

+ (ic1 − 2cλc3 + 2bc3λ
2)�1√

bc3�2

. (32e)

After finishing some simple calculations, the reduction
system Eq. (32) can be simplified to the following single

equation ({F ; η} ≡ Fηηη

Fη
− 3

2
F 2

ηη

F 2
η

),

{F ; η} = 2c′
8

2
F 2

η + 8(2bλ − c)

Fη

+ 6

F 2
η

+ 2c2 + 12λ2

− 12bcλ + 2ibc1

c3

≡ 2c′
8

2
F 2

η + 2C1 − 8C

Fη

+ 6

F 2
η

, (33)

with

�1(η) = α
√

Fη exp[iθ (η)], θ (η) ≡ (λ − bc)η

+ b

∫
F−1

η dη, (34a)

�2(η) = −c3

α

√
bFη exp[−iθ (η)], (34b)

P (η) = �2
1(η){bFηη + 2i[1 + (2bλ − c)Fη]}

bc3c
′
8

2
F 2

η

, (34c)

Q(η) = c3c
′
8

2{bFηη − 2i[1 + (2bλ − c)Fη]}
2�2

1(η)
, (34d)

where α is an arbitrary constant.

The reduction Eq. (33) can be further integrated as

F 2
1η = −4F 4

1 + 8(c − 2bλ)F 3
1 − 4

(
c2 + 6λ2 − 6bcλ + ibc1

c3

)
F 2

1 + γ1F1 + 4c′
8

2
, (35)

with

F (η) =
∫

1

F1(η)
dη + γ2, (36)

γ1 and γ2 being arbitrary integral constants.
In this case, the original physical quantities, p, q, and I ≡ pq are related to F (η) by

p = α2
{
Fηη − 2c′

8F
2
η tanh[c′

8(t + F )] − 2ib(CFη − 1)
}

2c3c′2
8Fη

exp(−ibθ ), (37)

q = bc3c
′2
8

{
Fηη − 2c′

8F
2
η tanh[c′

8(t + F )] + 2ib(CFη − 1)
}

2α2Fη

exp(ibθ ), (38)

and

I = b

4F 2
η

({
2c′

8F
2
η tanh[c′

8(t + F )] − Fηη

}2 + (1 − CFη)2
) ≡ J + K, (39)

K ≡
{

bc′
8Fη

{
1 − tanh[c′

8(t + F )]
}

(ln Fη)η − bc′2
8F

2
η sech2[c′

8(t + F )] + I0, x − vst � 0,

−bc′
8Fη

{
1 + tanh[c′

8(t + F )]
}

(ln Fη)η − bc′2
8F

2
η sech2[c′

8(t + F )] + I0, x − vst < 0,
(40)

J ≡
{

b
{[

c′
8Fη − 1

2 (ln Fη)η
]2 + (

F−1
η − C

)2} − I0, x − vst � 0,

b
{[

c′
8Fη − 1

2 (ln Fη)η
]2 + (

F−1
η − C

)2} − I0, x − vst < 0,
(41)

where

θ ≡ 2(C + bλ)η + (C1 + 2bCλ + 2λ2 − C2)t − 2
∫

F−1
η dη.
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Here, K and J are introduced for convenience later to
discuss the limiting procedures x → ±∞ for any fixed
time. In Eqs. (40) and (41), I0 is an arbitrary constant for
convenience later and it can be simply taken as zero. vs is the
velocity of the soliton, which will be determined in the next
section.

Remark 2. For the NLS case, if we accept that all the
parameters in Eq. (39) are real, then the result is valid only
for b = 1 because I = pq = |p|2 > 0. In other words, if one
tries to find some significant results for the b = −1 case, the
parameters appearing in the solutions have to be complex,
which makes it difficult to find nonsingular solutions. Thus,
in the Sec. V we discuss only explicit solutions for the b = 1
case.

There is more about the solutions of Eq. (33) [or equiva-
lently Eq. (35)] and then the quantity Eqs. (39), (40), and (41)
of the AKNS system presented in the next section.

Case 2. c5 = 0, c8 = c2
7. In this case, we have

φ = −c7 + c3

t + F (η)
, η = x − ct, c2 = cc3, (42a)

φ1 = �1(η)[
F (η) + t

] exp

(
c1t

2c3

)
, (42b)

φ2 = �2(η)[
F (η) + t

] exp

(
− c1t

2c3

)
, (42c)

p =
{

P (η) + �2
1(η)

c3
[
F (η) + t

]
}

exp

(
c1

c3
t

)
, (42d)

q =
{
Q(η) + �2

1(η)

c3[F (η) + t]

}
exp

(
−c1

c3
t

)
. (42e)

The functions F (η), P (η), Q(η), �1(η), and �2(η) satisfy the
reduction equations

Fη = −�1�2√
bc3

, (43a)

Q = 2i(c − 2bλ)�2√
b�1

+ P�2
2

�2
1

+ 2ic3

�2
1

, (43b)

�1η = P�2√
b

− iλ�1, (43c)

�2η = Q�1√
b

+ iλ�2, (43d)

Pη = P 2�2√
b�1

− 2iP

(
λ − c3√

b�1�2

)

+ (ic1 − 2cλc3 + 2bc3λ
2)�1√

bc3�2

. (43e)

The reduction system Eq. (43) can also be solved by Eq. (35)
with Eq. (36), c′

8
2 = 0, and

�1(η) = α
√

Fη exp[iθ (η)],
(44a)

θ (η) ≡ (λ − bc)η + b

∫
F−1

η dη,

�2(η) = −c3

α

√
bFη exp[−iθ (η)], (44b)

P (η) = �2
1(η){−bFηη + 2i[1 + (2bλ − c)Fη]}

2bc3F 2
η

, (44c)

Q(η) = c3{−bFηη − 2i[1 + (2bλ − c)Fη]}
2�2

1(η)
. (44d)

Case 3. c5 �= 0, c8 �= (c7 − c5
2 )2. In this case, the group

invariant solution obtained from the invariant condition σnl =
0 has the form

φ = c5c
′′
8 tanh{c′′

8[F (ξ ) + ln(τ )]} − c′
7,

ξ = x + c5c
′
2

τ
− c4τ

2c2
5

, τ =
√

2c5t + c3, (45a)

φ1 = �1(ξ )sech{c′′
8[F (ξ ) + ln(τ )]}τ 1

2c5
(c1−c5+ibc4c5c

′
2)

× exp

[
− ibc4τ

8c3
5

(
c4τ + 4c2

5ξ
)]

, (45b)

φ2 = �2(ξ )sech{c′′
8[F (ξ ) + ln(τ )]}τ− 1

2c5
(c1+c5+ibc4c5c

′
2)

× exp

[
ibc4τ

8c3
5

(
c4τ + 4c2

5ξ
)]

, (45c)

p = [
c5c

′′
8P (ξ ) − �2

1(ξ ) tanh({c′′
8[F (ξ ) + ln(τ )]})]

× τ
(c1−c5+ibc4c5c′2)

c5 exp

[
− ibc4τ

4c3
5

(
c4τ + 4c2

5ξ
)]

, (45d)

q = (
c5c

′′
8Q(ξ ) − �2

2(ξ ) tanh{c′′
8[F (ξ ) + ln(τ )]})

× τ
−ibc4c′2−c5−c1

c5 exp

[
ibc4τ

4c3
5

(
c4τ + 4c2

5ξ
)]

, (45e)

where c′
7 = c7 − c5

2 , c′′
8 =

√
c′

7
2−c8

c5
,c′

2 ≡ c2

c2
5
− c3c4

2c3
5

, while the

group invariant functions F (ξ ), P (ξ ), Q(ξ ), �1(ξ ), and �2(ξ )
should satisfy symmetry reduction equations, which can be
obtained by substituting Eq. (45) into the EAKNS system of
Eqs. (2), (10), (11), and (23). It is straightforward to find the
final reduction equations are

Fξ = �1�2

c5c
′′
8

2√
b
, (46a)

Q = 2ic5ξ�2√
b�1

+ P�2
2

�2
1

− 2ic2
5c

′′
8

2

�2
1

, (46b)

�1ξ = P�2√
b

, (46c)

�2ξ = Q�1√
b

, (46d)

Pξ = P 2�2√
b�1

− 2ic2
5c

′′
8

2
P√

b�1�2

+ �2�
3
1√

bc2
5c

′′
8

2

+ [bc5c4c
′
2 + i(c5 − c1)]�1√

b�2

, (46e)
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which can be solved via the fourth Painlevé equation. The
results read

�1(ξ ) = α
√

Fξ exp

[
1

2
ibc5

(
2
∫

F−1
ξ dξ − ξ 2

)]
, (47a)

�2(ξ ) = α−1F
−1/2
ξ

√
bc5c

′′
8

2

× exp

[
−1

2
ibc5

(
2
∫

F−1
ξ dξ − ξ 2

)]
, (47b)

P (ξ ) = − α2

2c5c
′′
8

2 exp

[
ibc5

(
2
∫

F−1
ξ dξ − ξ 2

)]

× [2ic5b(ξFξ − 1) − Fξξ ], (47c)

Q(ξ ) = c5c
′′
8

2
b

2α2
exp

[
−ibc5

(
2
∫

F−1
ξ dξ − ξ 2

)]
× [Fξξ + 2ic5b(ξFξ − 1)], (47d)

while F = F (ξ ) is given by the following equation

2Fξ

(
Fξξξ + 8c2

5ξ
) − 3F 2

ξξ − 4c′′
8

2

+ 4
(
c4c5c

′
2 − ibc1 − c2

5ξ
2
)
F 2

ξ − 12c2
5 = 0. (48)

Making the transformation

Fξ = F−1
1 , (49)

Eq. (48) becomes

F1ξξ = 1

2

F 2
1ξ

F1
− 6c2

5F
3
1 + 8c2

5F
2
1

+ 2
(
c4c5c

′
2 − ibc1 − c2

5ξ
2
)
F1 − 2c′′

8
2

F1
, (50)

which is completely same as the standard form of the fourth
Painlevé (PIV) equation

yzz = 1

2

y2
z

y
+ 3

2
y3 + 4zy2 + 2(z2 − β1)y + β2

y
, (51)

with the scaling relation

F1 = − 1
2

(−c2
5

)−1/4
y
[(−c2

5

)1/4
ξ
]
, (52)

and β1 = c−1
5 (c1b + ic4c5c

′
2), β2 = −8c′′

8
2.

It is known that the general solutions of the Painlevé
equations cannot be expressed by known simple functions.
Here we write down a special class of solutions (c′

5 = −ic5)

F1(ξ ) = ξ + 2δc′′
8 − 1

2c′
5ξ

− αKU

(
δc′′

8 − 1
2 , 3

2 , c′
5ξ

2
) + c′′

8(c′′
8 − δ)KM

(
δc′′

8 − 1
2 , 3

2 , c′
5ξ

2
)

αKU

(
δc′′

8 + 1
2 , 3

2 , c′
5ξ

2
) + c′′

8δKM

(
δc′′

8 + 1
2 , 3

2 , c′
5ξ

2
) (53)

for the PIV Eq. (50) with a constant condition

c1 = −ic4bc′
2c5 + c5b − 2δc5bc′′

8, δ = ±1, (54)

where α is an arbitrary constant, KM (μ, ν, x) and KU (μ, ν, x)
are two independent Kummer functions, which are solutions
of the Kummer equation

xyxx + (ν − x)yx − μy = 0. (55)

It is remarkable that if δc′′
8 is a negative half integer, the

Kummer functions and then F1 become rational functions.
For instance, if δ = 1, b = −1, and c′′

8 = − 3
2 , we have

F1 = 3(2c′
5ξ

2 − 1)

2c′
5(2c′

5ξ
2 − 3)ξ

, F (ξ ) = 1

3
c′

5ξ
2 − 1

3
ln(2c′

5ξ
2 − 1),

(56a)

p = 4iα2
[
(2c′

5ξ
2 − 1)τec′

5ξ
2 − 1

]
c′

5τ
3(1 + τec′

5ξ
2 )

e
− (2ξc′5

2−c4τ )2

4c′5
3

, (56b)

q = − 9ic′
5

2
τ 3

α2(τ 3ec′
5ξ

2 + 2c′
5ξ

2 − 1)
e

(2ξc′5
2−c4τ )2

4c′5
3

. (56c)

Case 4. c5 �= 0, c8 = (c7 − c5
2 )2. In this case, the corre-

sponding similarity reduction solution has the form

φ = c5

F (ξ ) + ln(τ )
− c′

7, ξ = x + c5c
′
2

τ
− c4τ

2c2
5

,

(57a)

τ =
√

2c5t + c3,

φ1 = �1(ξ )

F (ξ ) + ln(τ )
τ

1
2c5

(c1−c5+ibc4c5c
′
2)

× exp

[
− ibc4τ

8c3
5

(
c4τ + 4c2

5ξ
)]

, (57b)

φ2 = �2(ξ )

F (ξ ) + ln(τ )
τ

− 1
2c5

(c1+c5+ibc4c5c
′
2)

× exp

[
ibc4τ

8c3
5

(
c4τ + 4c2

5ξ
)]

, (57c)

p =
[
P (ξ ) + �2

1(ξ )

c5(F (ξ ) + ln(τ ))

]
τ

(c1−c5+ibc4c5c′2)

c5

× exp

[
− ibc4τ

4c3
5

(
c4τ + 4c2

5ξ
)]

, (57d)

q =
[
Q(ξ ) + �2

2(ξ )

c5(F (ξ ) + ln(τ ))

]
τ

−ibc4c′2−c5−c1
c5

× exp

[
ibc4τ

4c3
5

(
c4τ + 4c2

5ξ
)]

. (57e)

Correspondingly, the group invariant functions
F (ξ ), P (ξ ), Q(ξ ), �1(ξ ), and �2(ξ ) satisfy the following
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symmetry reduction equations

Fξ = −�1�2

c5

√
b

, (58a)

Q = 2ic5ξ�2√
b�1

+ P�2
2 + 2ic2

5

�2
1

, (58b)

�1ξ = P�2√
b

, (58c)

�2ξ = Q�1√
b

, (58d)

Pξ = P 2�2√
b�1

+ 2ic2
5P√

b�1�2

+ [bc5c4c
′
2 + i(c5 − c1)]�1√

b�2

.

(58e)

The solutions of the reduction system Eq. (58) can be
expressed by the special PIV Eq. (50) with c′′

8 = 0, which read

�1(ξ ) = φ0

√
Fξ exp

[
1

2
ibc5

(
2
∫

F−1
ξ dξ − ξ 2

)]
,

(59a)

�2(ξ ) = −φ−1
0

√
bFξc5 exp

[
−1

2
ibc5

(
2
∫

F−1
ξ dξ − ξ 2

)]
,

(59b)

P (ξ ) = φ2
0

2c5Fξ

exp

[
ibc5

(
2
∫

F−1
ξ dξ − ξ 2

)]
× [2ic5b(ξFξ − 1) − Fξξ ], (59c)

Q(ξ ) = − c5b

2φ2
0Fξ

exp

[
−ibc5

(
2
∫

F−1
ξ dξ − ξ 2

)]
× [Fξξ + 2ic5b(ξFξ − 1)], (59d)

where F = F (ξ ) is given by Eq. (48) with c′′
8 = 0.

V. WAVE INTERACTION SOLUTIONS OF THE
AKNS AND NLS SYSTEMS

Except for the first reduction given in the last section, all
the solutions of the other three reductions are analytical only
at some finite regions for both space and time variables. Thus,
in this section, we discuss only concrete special examples
of the first case to find the interacting wave solutions of the
AKNS and NLS systems. It is noted that the key point is to
write down the explicit solutions of the reduction Eq. (33) or
equivalently Eq. (35) with Eq. (36). From Eq. (35), we know
that the solution of Eq. (33) can be written as the function of
the Jacobi elliptic functions. Therefore, we seek for solutions
of Eq. (33) in the form

F (η) = A1

c′
8

η + A

c′
8

Eπ [B sn(kη,m),n,ν], (60)

where A, A1, B, k, m, and n are constants, sn(kη,m) ≡
Sn, cn(kη,m) ≡ Cn, dn(kη,m) ≡ Dn, are the usual Jacobi
elliptic functions, and Eπ (ζ, n, ν) is the third type of
incomplete elliptic integral defined by

Eπ (ζ, n, ν) =
∫ ζ

0

dt

(1 − nt2)
√

(1 − t2)(1 − ν2t2)
.

Substituting Eq. (60) into Eq. (33), one can find that three
situations are important: (i) B = 1, ν = m, (ii) B = m, ν =
m−1, and (iii) n = 0, ν = 1.

Case (i). B = 1, ν = m. In this case, Eq. (60) becomes

F (η) = A1

c′
8

η + A

c′
8

Eπ (Sn, n, m). (61)

Substituting Eq. (61) into Eq. (33) yields

[−C1A
2
1n

4 + 4Cc′
8A1n

4 − n3
(
3c′2

8n + A4
1n + AA1k

3m2
)]

S8
n + [

2A1n
3(2A1 + Ak)C1 − 4c′

8n
3(Ak + 4A1)C

− 2n2
(
A2k4m2 − 6c′2

8n − 2A4
1n + Ak3A1m

2 − Ak3A1nm2 − 2A3
1nAk − Ak3A1n

)]
S6

n + [−n2
(
6A1Ak + A2k2 + 6A2

1

)
C1

+ 12c′
8n

2(2A1 + Ak)C − n
(
18nc′2

8 − A2k4n − A2k4nm2 + 6A2
1A

2nk2 − 3Ak3A1m
2 − 3A2k4m2 + 3AA1k

3n2

+ 12A3
1nAk + 6A4

1n
)]

S4
n + [2n(Ak + A1)(2A1 + Ak)C1 − 4nc′

8(4A1 + 3Ak)C + 2n(2A1A
3k3

−A2k4m2 + 2A4
1 + 6c′2

8 − A2k4 + 6A3
1Ak + 6A2

1A
2k2 − Ak3A1 − Ak3A1m

2

+Ak3A1n)]S2
n − (Ak + A1)2C1 + 4c′

8C(A1 + Ak) − 3c′2
8 − 6A2

1A
2k2 + A2k4n

− 4A1A
3k3 − 4A3

1Ak − A4
1 + AA1nk3 − A4k4 = 0. (62)

Vanishing all the coefficients of different powers of Sn leads to a unique nontrivial solution for constants

c′2
8 = k2A2

1

n
(n + nm2 − 3m2) − A4

1 ± kA1
[
nA2

1(2n − 3m2 + 2nm2 − n2) + k2m2(n − 1)(m2 − n)
]

n
√

n(1 − n)(m2 − n)
,

C1 = 3k4m2
[
k2m2(n − 1)(m2 − 1) + nA2

1(2n(1 + m2) − n2 − 3m2)
]

n2
[
n
(
A4

1 + c′2
8

) − k2A2
1(n + nm2 − 3m2)

]
− 3

A2
1

(
A4

1 − c′2
8

) − 2k2

n
(n + nm2 − 3m2),
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C = c′
8

2A1
+ A1

6nc′
8

[
k2(n + nm2 − 3m2) + n

(
2C1 + 3A2

1

)]
,

A = 2A1

3m2k
(n + nm2 − 3m2) + nA1

3m2k3

(
C1 + 3A2

1

) − nc′2
8

A1m2k3
, (63)

while the remained five parameters m, n, k, A1, and c (the velocity of the periodic wave included in η) are free.
In this case, the physical quantity I and J expressed by Eqs. (39) and (41) become

I = b

[
C − c′

8
(
1 − nS2

n

)
Ak + A1

(
1 − nS2

n

)]2

+ b

{
tanh[A1x − (A1c − c′

8)t + AEπ (Sn,n,m)]

1 − nS2
n

− Ank2SnCnDn(
1 − nS2

n

)[
Ak + A1

(
1 − nS2

n

)]}2

,

≡ K + J (64)

and

J =

⎧⎪⎨
⎪⎩

b
4

[
C − c′

8(1−nS2
n )

Ak+A1(1−nS2
n )

]2
+ b

{
1

1−nS2
n

− Ank2SnCnDn

(1−nS2
n )[Ak+A1(1−nS2

n )]

}2
− I0, x − vst > 0,

b
4

[
C − c′

8(1−nS2
n )

Ak+A1(1−nS2
n )

]2
+ b

{
−1

1−nS2
n

− Ank2SnCnDn

(1−nS2
n )[Ak+A1(1−nS2

n )]

}2
− I0, x − vst < 0,

(65)

with the soliton velocity

vs = c − c′
8

A1
, (66)

while the quantity K defined in Eq. (40) is just I − J .
It is remarkable that this solution can describe interactions between solitons and cnoidal waves. Figure 1 displays the

soliton-cnoidal wave interaction structure of Eq. (39) with Eq. (61) by fixing

m = 0.999, n = 0.99, k = −1, A1 = 1, b = 1, I0 = 1, (67)

and then

A = 0.00899, C = 0.202, C1 = −0.938, c′
8 = 0.110, c = 0.202. (68)

Figure 1(a) exhibits the wave interaction structure of I determined by Eq. (39) for the defocusing NLS equation (with b = 1) at
t = 0, and Fig. 1(d) is a density plot of Eq. (39) showing its time evolution. Figures 1(b) and 1(c) reveal the structures of the
related quantities J and K . It is observed from Fig. 1(b) that apart from the soliton center, the solution rapidly tends to a cnoidal
periodic wave expressed by Eq. (65) [i.e., Eq. (41)]. It is clear from Fig. 1(c) that after removing the periodic wave from I , the
left is just a dark soliton. Figure 1(d) shows that the interaction between soliton and cnoidal wave (everyone peak of the cnoidal
wave) is elastic except for a phase shift. The straight line plotted in Fig. 1(d) is determined by

x − vst = 0, (69)

with vs given by Eq. (66).
It is noted that similar soliton-cnoidal wave interaction solutions can be obtained for other types of nonlinear systems [15,16].
Case (ii). B = m, ν = m−1. In this case, Eq. (60) is changed to

F (η) = A1

c′
8

η + A

c′
8

Eπ (m Sn, n, m−1). (70)

Substituting Eq. (61) into Eq. (33) yields further constraints of the constants

A = − n

3mk3A1

(
C1A

2
1 − 4c′

8CA1 + A4
1 + 3c′2

8

)
,

C = A1k
2

6nc′
8

(n − 3 + nm2) + c′
8

2A1

A1

6c′
8

(
2C1 + 3A2

1

)
,

C1 = 3k2
{[

n(n − 1)k2 + n2A2
1(n − 2)

]
c′2

8 − k4A2
1(n2 − 3n + 2) − nk2A4

1(n − 2)2 + n2(n − 2)A6
1

}
n2A2

1

[
A2

1k
2(n − 3 + nm2) − n

(
A4

1 + c′2
8

)] (71)

+ 3c′2
8

A2
1

+ 3(n − 1)k4

n2A2
1

+ (1 − 2m2)k2 − 3A2
1,

c′2
8 = A2

1k
2

n
(n − 3 + nm2) − A4

1 ± kA1
[
k2(n − 1)(nm2 − 1) + nA2

1(3 − 2nm2 − 2n + n2m2)
]

n
√

n(n − 1)(nm2 − 1)
.
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We will not go further on this type of solution because singularities of I occur for all possible parameter
selections.

Case (iii). n = 0, ν = 1. In this case, the elliptic π function in Eq. (60) reduces to the inverse hyperbolic tangent function;
i.e., Eq. (60) becomes

F (η) = A1

c′
8

η + A

c′
8

arctanh(B Sn). (72)

Consequently, the quantities I and J expressed by Eqs. (39) and (41) become

I = b

({
S1n

S2n

tanh[c′
8(t + F )] − ABk2Sn

2S1nS2n

[
S1n

(
D2

n + m2C2
n

) + 2B2C2
nD

2
n

]}2

+
(

C + c′
8S1n

S2n

)2)
, (73)

and

J =
{

b
({

S1n

S2n
− ABk2Sn

2S1nS2n

[
S1n

(
D2

n + m2C2
n

) + 2B2C2
nD

2
n

]}2 + (
C + c′

8S1n

S2n

)2) − I0, x − vst > 0,

b
({

S1n

S2n
+ ABk2Sn

2S1nS2n

[
S1n

(
D2

n + m2C2
n

) + 2B2C2
nD

2
n

]}2 + (
C + c′

8S1n

S2n

)2) − I0, x − vst < 0,
(74)

with the same soliton velocity Eq. (66) and

S1n ≡ B2S2
n − 1, S2n ≡ ABkCnDn − A1S1n.

Substituting Eq. (72) into Eq. (33) leads to three possible
subcases.

Case (iiia).

B2 = 1, A2 = ±1

4
,

C1 = 1

4
(1 + m2)k2 − 6A2

1,

(75)

C = A1

4c′
8

[
k2(1 + m2) − 8A2

1

]
,

c′2
8 = 1

16

(
k2 − 4A2

1

)(
4A2

1 − k2m2
)
,

where m, k, c′
8, and c are four free parameters.

In this subcase, the soliton-cnoidal periodic wave interac-
tion solutions p, q, I expressed by Eqs. (37), (38), and (39)
with Eq. (72) are analytic only for m > 1. Figure 2 displays
a special structure of this type of interaction solution with the
parameter selections

B = b = k = 2A = 1, m = 5

4
, c = 1

5
, c′

8 = 7
√

11

400
,

A1 = 3

5
, C1 = −2431

1600
, C = −381

√
11

1540
, I0 = 3

2
.

(76)

Figure 2(a) explicitly displays that a dark (gray) soliton is
dressed by a periodic wave at t = 0. Figure 2(b) shows that
the solution rapidly approaches the cnoidal wave apart from
the soliton center. Figure 2(c) reveals that only a dark soliton
K is left after the periodic wave J is ruled out from the exact
solution I . Figure 2(d) demonstrates the interaction behavior
between soliton and every peak of the periodic wave.

Case (iiib).

B2 = m, A2 = 1,

C1 = 1

4
(1 + 6m + m2)k2 − 6A2

1,

C = A1

4c′
8

[
k2(1 + 6m + m2) − 8A2

1

]
,

c′2
8 = 1

4

(
mk2 − A2

1

)[
4A2

1 − k2(1 + m)2
]
. (77)

Different from the previous subcase (Case iiia), the soliton-
periodic interaction waves here are analytic only for m < 1.
Figure 3 is a special plot of this interaction solution with the
parameter selections

m = 9

10
, B = 3√

10
, A = 1, k = 1, c = 0, I0 = 3.7,

c′
8 = 3

√
126 811

1 000 000
, A1 = 949

1000
, (78)

C = 615 901
√

126 811

190 216 500
, C1 = −1 800 553

500 000
.

It is seen from Fig. 3(a) that a gray soliton is dressed
by a periodic wave. Figure 3(b) displays that the solution
exponentially approaches the cnoidal wave when x → ±∞.
Figure 3(c) manifests the fact that only a dark soliton K is
revived after the periodic wave J is taken away from the
exact solution I . Figure 3(d) is a three-dimensional plot of
the soliton-cnoidal wave interaction solution.

Case (iiic).

B2 = m2, A2 = 1

4
,

C1 = 1

4
(1 + m2)k2 − 6A2

1,

(79)

C = A1

4c′
8

[
k2(1 + m2) − 8A2

1

]
,

c′2
8 = 1

16

(
k2 − 4A2

1

)(
4A2

1 − k2m2
)
.

Similar to the second subcase, the soliton-periodic interaction
solution in this subcase is analytic also for m < 1. Figure 4 is
a special plot of this special interaction solution with

m = A = B = I0 = 1

2
, k = b = 1, c = 0, A1 = 3

8
,

c′
8 =

√
35

64
, C = 3

√
35

140
, C1 = −17

32
. (80)
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FIG. 1. (Color online) The first type of special soliton-cnoidal
wave interaction solution for the NLS system given by Eq. (39)
with the parameter selections Eq. (63): (a–c) the special structure
of I, J , and K , respectively, at t = 0; (d) the density plot of I for
time evolution.
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FIG. 2. The second type of special soliton-cnoidal wave interac-
tion solution for the NLS system given by Eq. (39) with the parameter
selections Eqs. (75) and (76): (a–c) a dark soliton dressed by a
cnoidal periodic wave at t = 0 for I, J , and K , respectively; (d)
the three-dimensional plot with time evolution and phase shifts for
every peak of the periodic wave.
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FIG. 3. The third special soliton-cnoidal wave interaction so-
lution for the NLS system given by Eq. (39) with the parameter
selections Eq. (77) and especially Eq. (78): the quantities I , J ,
and K = I − J are displayed in (a–c), respectively, at t = 0; (d)
the three-dimensional plot of the soliton-cnoidal wave with time
evolution and explicit phase shifts for all peaks of the periodic wave.
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FIG. 4. (Color online) The fourth special soliton-cnoidal wave
interaction solution for the NLS system given by Eq. (39) with the
parameter selections Eqs. (79) and (80): (a–c) exhibit the detailed
structure of the gray soliton dressed by a static cnoidal periodic wave
at t = 0 for the quantities I , J , and K , respectively; (d) the density plot
for the gray soliton with the interaction by a static cnoidal periodic
wave. The black straight line denotes x − vst = 0, displaying the
correctness of the soliton velocity Eq. (66).
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Figure 4(a) shows the wave interaction structure of I at t = 0,
while Fig. 4(d) is a density plot of Eq. (39) in addition to a
straight line plot of x − vst = 0. Figures 4(b) and 4(c) exhibit
the structure of the related cnoidal wave J and the soliton K ,
respectively.

VI. SUMMARY AND DISCUSSIONS

Though the square eigenfunction symmetry Eq. (12) is
nonlocal for the original AKNS system, it can be localized
for the extended system of Eqs. (2), (10), (11), and (23). The
localization method is valid for other integrable systems. The
extended AKNS system is studied by symmetry reductions
with localized symmetries that are nonlocal for the original
system. Especially, the soliton-cnoidal wave interaction solu-
tions are explicitly expressed by the Jacobi elliptic functions
and the third type of incomplete elliptic integral. The reduction
solutions exhibit the interactions between solitons and other
NLS waves such as the Painlevé IV waves determined by
Eq. (45), rational waves given in Eq. (47), and periodic waves.
For simplicity and analyticity, only the soliton-cnoidal wave
interaction solutions are discussed in detail.

The soliton-cnoidal wave interaction solutions display
some interesting physical phenomena. It is demonstrated that
the interactions between the soliton and the background waves
are elastic with phase shifts. From Figs. 1(a)–1(c), 2(a)–
2(c), 3(a)–3(c), and 4(a)–4(c), one can find that at a fixed time
the soliton-cnoidal interaction solution looks like a soliton
dressed by a periodic wave. This kind of phenomena may be
found in real physical systems, such as the Fermionic quantum

plasma [30] and the unmagnetized plasma system where
ion-acoustic and electric-plasma waves are simultaneously
excited. The soliton structures dressed by periodic waves have
also been observed in both experiments [31] and numerical
simulations [30,32]. It is noted that the present special type of
solutions is established by means of the symmetry reduction
method; however, it is also obtainable by other methods, such
as the CRE/CTE (consistent Riccati expansion and consistent
tanh expansion) method and the truncated Painlevé expansion
approach [33]. In addition, Fig. 4(d) indicates another potential
application of the soliton-cnoidal interaction solution is to offer
a new possible mechanism to produce the controllable routing
switches in optical information and communications.

It is remarkable that the method and what we obtained
here are valid to various integrable models. The details on the
method for other nonlinear systems, other types of interacting
wave solutions, other methods to solve interaction solutions
between different types of nonlinear excitations, other possible
new physical applications, and so on, will be reported in our
future research work.
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