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Many-body interaction in fast soliton collisions
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We study n-pulse interaction in fast collisions of N solitons of the cubic nonlinear Schrödinger (NLS)
equation in the presence of generic weak nonlinear loss. We develop a generalized reduced model that yields the
contribution of the n-pulse interaction to the amplitude shift for collisions in the presence of weak (2m + 1)-order
loss, for any n and m. We first employ the reduced model and numerical solution of the perturbed NLS equation
to analyze soliton collisions in the presence of septic loss (m = 3). Our calculations show that the three-pulse
interaction gives the dominant contribution to the collision-induced amplitude shift already in a full-overlap
four-soliton collision, and that the amplitude shift strongly depends on the initial soliton positions. We then
extend these results for a generic weak nonlinear loss of the form G(|ψ |2)ψ , where ψ is the physical field and G

is a Taylor polynomial of degree mc. Considering mc = 3, as an example, we show that three-pulse interaction
gives the dominant contribution to the amplitude shift in a six-soliton collision, despite the presence of low-order
loss. Our study quantitatively demonstrates that n-pulse interaction with high n values plays a key role in fast
collisions of NLS solitons in the presence of generic nonlinear loss. Moreover, the scalings of n-pulse interaction
effects with n and m and the strong dependence on initial soliton positions lead to complex collision dynamics,
which is very different from that observed in fast NLS soliton collisions in the presence of cubic loss.
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I. INTRODUCTION

The problem of predicting the dynamic evolution of N

physical interacting objects or quantities, commonly known
as the N -body problem, is an important subject of research
in science and engineering. The study of this problem plays
a key role in many fields, including celestial mechanics [1,2],
nuclear physics, solid-state physics, and molecular physics [3].
In many cases, the dynamics of the N objects is governed by a
force which is a sum over two-body forces. This is the situation
in celestial mechanics [1,2] and in other systems [3], and it
has been discussed extensively in the literature. A different
but equally interesting dynamic scenario emerges when the
N -body dynamics is determined by a force involving n-body
interaction with n � 3 [4]. Indeed, n-body forces with n � 3
have been employed in a variety of problems including van
der Waals interaction between atoms [5], interaction between
nucleons in atomic nuclei [6–9], and in cold atomic gases
in optical lattices [10–12]. A fundamental question in these
studies concerns the physical mechanisms responsible for the
emergence of n-body interaction with a given n value. A
second important question revolves around the dependence
of the interaction strength on n and on the other physical
parameters. In the current study we investigate a different class
of N -body problems, in which n-body forces play a dominant
role. More specifically, we study the role of n-body interaction
in fast collisions between N solitons of the cubic nonlinear
Schrödinger (NLS) equation in the presence of generic weak
nonlinear loss. In this case the solitons experience significant
collision-induced amplitude shifts, and important questions
arise regarding the role of n-pulse interaction in the process,
and the dependence of the amplitude shift and the n-pulse
interaction on the physical parameters.

The NLS equation is one of the most widely used nonlinear
wave models in the physical sciences. It was successfully em-
ployed to describe a large variety of physical systems, includ-

ing water waves [13,14], Bose-Einstein condensates [15,16],
pulse propagation in optical waveguides [17,18], and nonlinear
waves in plasma [19–21]. The most common solutions of the
NLS equation are the fundamental solitons. The dynamics of
fundamental solitons in these systems can be affected by loss,
which is often nonlinear [22]. Nonlinear loss arises in optical
waveguides due to gain or loss saturation or multiphoton
absorption [23]. In fact, M-photon absorption with 3 � M � 5
has been the subject of intensive theoretical and experimental
research in recent years due to a wide variety of potential
applications, including lasing, optical limiting, laser scanning
microscopy, material processing, and optical data storage
[24–32]. More specifically, strong four-photon and five-photon
absorption were recently observed in a variety of experimental
setups [25,28,31,32], while optical soliton generation and
propagation in the presence of two-photon and three-photon
absorption was experimentally demonstrated in several recent
works [33–37]. It should be emphasized that nonlinear loss is
also quite common in other physical systems that can support
soliton pulses, including Bose-Einstein condensates [38,39]
and systems described by the complex Ginzburg-Landau
equation [40]. It is therefore important to study the impact
of nonlinear loss on the propagation and dynamics of NLS
solitons.

The main effect of weak nonlinear loss on the propagation
of a single NLS soliton is a continuous decrease in the soliton’s
energy. This single-pulse amplitude shift is qualitatively
similar to the one due to linear loss, and can be calculated in
a straightforward manner by employing the standard adiabatic
perturbation theory. Nonlinear loss also strongly affects the
collisions of NLS solitons, by causing an additional decrease
of soliton amplitudes. The character of this collision-induced
amplitude shift was recently studied in Refs. [41,42] for
fast soliton collisions in the presence of cubic and quintic
loss [43]. The results of these studies indicate that the
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amplitude dynamics in soliton collisions in the presence of
generic nonlinear loss might be quite complicated due to
n-pulse interaction effects. More specifically, in Ref. [41] it
was shown that the total collision-induced amplitude shift in a
fast three-soliton collision in the presence of cubic loss is given
by a sum over amplitude shifts due to two-pulse interaction,
i.e., the contribution to the amplitude shift from three-pulse
interaction is negligible. In contrast, In Ref. [42] it was found
that three-pulse interaction enhances the amplitude shift in a
fast three-soliton collision in the presence of quintic loss by a
factor of 1.38.

The results of Ref. [42] indicate that n-pulse interaction
with n � 3 might play an important role in fast NLS soliton
collisions in the presence of generic or high-order nonlinear
loss. However, the study in Ref. [42] was rather limited, in
the sense that only two- and three-soliton collisions were
studied and the effects of n-pulse interaction with n > 3 were
not considered. In addition, the scalings of the amplitude
shifts with the parameter m, characterizing the order of the
loss, were not systematically analyzed and dependences on
initial soliton positions and phase differences were not treated.
Thus, a systematic analytic or numerical study of the role of
n-pulse interaction in fast soliton collisions in the presence
of generic weak nonlinear loss is still missing. In the current
study we address this important problem. For this purpose,
we first develop a general reduced model for amplitude
dynamics, which allows us to calculate the contribution of
n-pulse interaction to the amplitude shift for collisions in
the presence of weak (2m + 1)-order loss, for any n and
m. We then use the reduced model and numerical solution
of the perturbed NLS equation to analyze soliton collisions
in the presence of septic loss (m = 3). Our calculations show
that three-pulse interaction gives the dominant contribution
to the collision-induced amplitude shift already in a full-
overlap four-soliton collision, while both three-pulse and
four-pulse interaction are important in a six-soliton collision.
Furthermore, we find that the amplitude shift is insensitive to
the initial intersoliton phase differences, but strongly depends
on the initial soliton positions, with a pronounced maximum
in the case of full-overlap collisions. We then generalize these
results for generic weak nonlinear loss of the form G(|ψ |2)ψ ,
where ψ is the physical field and G is a Taylor polynomial
of degree mc. We consider mc = 3, as an example. That is,
we take into account the effects of linear, cubic, quintic,
and septic loss on the collision. We show that in this case
three-pulse interaction gives the dominant contribution to the
amplitude shift in a six-soliton collision, despite the presence
of linear and cubic loss. Our study presents a generalized
reduced model for amplitude dynamics in fast collisions of
NLS solitons in the presence of weak nonlinear loss, which
allows us to systematically characterize the scalings of the
collision-induced amplitude shifts. Analysis with the reduced
model along with numerical solution of the perturbed NLS
equation show that n-body interaction plays a key role in
the collisions. Moreover, the scalings of n-pulse interaction
effects with n and m and the strong dependence on initial
positions lead to complex collision dynamics. This dynamics
is very different from that encountered in fast N -soliton
collisions in the presence of weak cubic loss, where the total
collision-induced amplitude shift is a sum over amplitude
shifts due to two-pulse interaction [41].

The rest of the paper is organized as follows. In Sec. II,
we obtain the generalized reduced model for amplitude
dynamics in a fast N -soliton collision in the presence of weak
nonlinear loss. We then employ the model to calculate the
total collision-induced amplitude shift and the contribution
from n-soliton interaction. In Sec. III, we analyze in detail
the predictions of the reduced model for the amplitude shifts
in four-soliton and six-soliton collisions. In addition, we
compare the analytic predictions with results of numerical
simulations with the perturbed NLS equation. In Sec. IV,
we present our conclusions. The Appendix is devoted to the
derivation of the equation for the collision-induced change
in the soliton’s envelope due to n-pulse interaction in a fast
N -soliton collision.

II. AMPLITUDE DYNAMICS IN N-SOLITON COLLISIONS

Consider propagation of soliton pulses of the cubic NLS
equation in the presence of generic weak nonlinear loss
L(ψ), where ψ is the physical field. In the context of
propagation of light through optical waveguides, for example,
ψ is proportional to the envelope of the electric field. Assume
that L(ψ) can be approximated by G(|ψ |2)ψ , where G is a
Taylor polynomial of degree mc. Thus, we can write

L(ψ) � G(|ψ |2)ψ =
mc∑

m=0

ε2m+1|ψ |2mψ, (1)

where 0 � ε2m+1 � 1 for m � 0. We refer to the mth
summand on the right-hand side of Eq. (1) as (2m + 1)-order
loss and note that it is often associated with (m + 1)-photon
absorption [23]. Under the aforementioned assumption on the
loss, the dynamics of the pulses is governed by

i∂zψ + ∂2
t ψ + 2|ψ |2ψ = −i

mc∑
m=0

ε2m+1|ψ |2mψ. (2)

Here we adopt the notation used in nonlinear optics, in which
z is the propagation distance and t is time. The fundamental
soliton solution of the unperturbed NLS equation with central
frequency βj is

ψj (t,z)=ηj

exp(iχj )

cosh(xj )
, (3)

where xj = ηj (t − yj − 2βjz), χj = αj + βj (t − yj ) +
(η2

j − β2
j )z, and ηj , yj , and αj are the soliton amplitude,

position, and phase, respectively.
The effects of the nonlinear loss on single-pulse propaga-

tion can be calculated by employing the standard adiabatic
perturbation theory [17]. This perturbative calculation yields
the following expression for the rate of change of the soliton
amplitude:

dηj (z)

dz
= −

mc∑
m=0

ε2m+1a2m+1η
2m+1
j (z), (4)

where a2m+1 = (2m+1m!)/[(2m + 1)!!]. The z dependence of
the soliton amplitude is obtained by integration of Eq. (4).

Let us discuss the calculation of the effects of weak
nonlinear loss on a fast collision between N NLS solitons. The
solitons are identified by the index j , where 1 � j � N . Since
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we deal with a fast collision, |βj − βk| � 1 for any j �= k. The
only other assumption of our calculation is that 0 � ε2m+1 � 1
for m � 0. Under these assumptions, we can employ a gener-
alization of the perturbation technique, developed in Ref. [44],
and successfully applied for studying fast two-soliton and
three-soliton collisions in different setups [41,42,44–50].
Note that the generalized technique in the current paper is
more complicated than the one used in Refs. [41,42,44–50].
We therefore provide a brief outline of the main steps in the
generalized calculation. (1) We first consider the effects of
(2m + 1)-order loss, and calculate the contribution of n-soliton
interaction with n � m + 1 to the collision-induced amplitude
shift, for a given n-soliton combination [51]. (2) We then
add the contributions coming from all possible n-soliton
combinations. This sum is the total contribution of n-pulse
interaction to the amplitude shift in a fast collision in the
presence of (2m + 1)-order loss. (3) Summing the amplitude
shifts calculated in (2) over all relevant m values, 1 � m � mc,
we obtain the total contribution of n-pulse interaction to
the amplitude shift in a collision in the presence of generic
nonlinear loss. (4) The total collision-induced amplitude shift
is obtained by summing the amplitude shifts in (3) over all
possible n values, 2 � n � m + 1.

Following this procedure, we first calculate the collision-
induced change in the amplitude of the j th soliton due to (2m +
1)-order loss. The dynamics is determined by the following
perturbed NLS equation:

i∂zψ + ∂2
t ψ + 2|ψ |2ψ = −iε2m+1|ψ |2mψ. (5)

We start by considering the amplitude shift of the
j th soliton due to n-pulse interaction with solitons
with indices l1,l2, . . . ,ln−1, where 1 � lj ′ � N and lj ′ �=
j for 1 � j ′ � n − 1. Employing a generalization of

the perturbation method developed in Ref. [44], we
look for an n-pulse solution of Eq. (5) in the form
ψn = ψj + φj + ∑n−1

j ′=1[ψlj ′ + φlj ′ ] + · · · , where ψk is the
kth single-soliton solution of Eq. (5) with 0 < ε2m+1 � 1,
φk describes collision-induced effects for the kth soliton,
and the ellipsis represents higher-order terms. We then
substitute ψn along with ψj (t,z) = 
j (xj ) exp(iχj ),
φj (t,z) = �j (xj ) exp(iχj ), ψlj ′ (t,z) = 
lj ′ (xlj ′ ) exp(iχlj ′ ),
and φlj ′ (t,z) = �lj ′ (xlj ′ ) exp(iχlj ′ ), for j ′ = 1, . . . ,n − 1,
into Eq. (5). Since the frequency difference for each soliton
pair is large, we can employ the resonant approximation,
and neglect terms with rapid oscillations with respect to
z. Under this approximation, Eq. (5) decomposes into a
system of equations for the evolution of �j and the �lj ′ .
(See, for example, Refs. [41,42], for a discussion of the
cases n = 2 and n = 3 for m = 1 and m = 2.) The system of
equations is solved by expanding �j and each of the �lj ′ in
a perturbation series with respect to ε2m+1 and 1/|βlj ′ − βj |.
We focus attention on �j and comment that the equations
for the �lj ′ are obtained in a similar manner. The only
collision-induced effect in order 1/|βlj ′ − βj | is a phase

shift �αj = 4
∑n−1

j ′=1 ηlj ′ /|βlj ′ − βj |, which already exists in
the unperturbed collision [52]. Thus, we find that the main
effect of (2m + 1)-order loss on the collision is of order
ε2m+1/|βlj ′ − βj |. We denote the corresponding term in the

expansion of �j by �
(1m)
j2 , where the first subscript stands for

the soliton index, the second subscript indicates the combined
order with respect to both ε2m+1 and 1/|βlj ′ − βj |, and the
superscripts represent the order in ε2m+1 and the order of the
nonlinear loss, respectively. Furthermore, the contribution
to �

(1m)
j2 from n-soliton interaction with the l1,l2, . . . ,ln−1

solitons is denoted by �
(1mn)
j2(l1,...,ln−1). In the Appendix, we show

that the latter contribution satisfies

∂z�
(1mn)
j2(l1,...,ln−1) = −ε2m+1

m−(n−2)∑
kl1 =1

m−kl1 −(n−3)∑
kl2 =1

· · ·
m−sn−2∑
kln−1 =1

m!(m + 1)!(
kl1 ! · · · kln−1 !

)2

× [(m + 1 − sn−1)!(m − sn−1)!]−1
∣∣
l1

∣∣2kl1 · · · ∣∣
ln−1

∣∣2kln−1 |
j |2m−2sn−1
j, (6)

where sn = ∑n
j ′=1 klj ′ . Note that all terms in the sum on the right-hand side of Eq. (6) contain the products

|
l1 |2kl1 · · · |
ln−1 |2kln−1 |
j |2kj 
j , where kl1 + · · · + kln−1 + kj = m, and 1 � klj ′ � m − (n − 2) for 1 � j ′ � n − 1. Therefore,
the largest value of n that can induce nonvanishing effects is obtained by setting kj = 0 and klj ′ = 1 for 1 � j ′ � n − 1. This
yields nmax = m + 1 for the maximum value of n.

Next, we obtain the equation for the rate of change of the j th soliton’s amplitude due to n-pulse interaction with the
l1,l2, . . . ,ln−1 solitons. For this purpose, we first expand both sides of Eq. (6) with respect to the eigenmodes of the linear
operator L̂ describing small perturbations about the fundamental NLS soliton [41,42,44–46]. We then project the two expansions
onto the eigenmode f0(xj ) = sech(xj )(1,−1)T and integrate over xj . This calculation yields the following equation for the rate
of change of the amplitude:

dη
(mn)
j (l1,...,ln−1)

dz
= −ε2m+1

m−(n−2)∑
kl1 =1

· · ·
m−sn−2∑
kln−1 =1

m!(m + 1)!η
2kl1
l1

· · · η
2kln−1
ln−1

η
2m−2sn−1+1
j(

kl1 ! · · · kln−1 !
)2

(m + 1 − sn−1)!(m − sn−1)!

×
∫ ∞

−∞
dxj

[
cosh

(
xl1

)]−2kl1 · · · [
cosh

(
xln−1

)]−2kln−1 [cosh(xj )]−(2m−2sn−1+2). (7)

We now proceed to the second calculation step, in which
we obtain the total rate of change in the j th soliton’s amplitude

due to n-pulse interaction in a fast N -soliton collision in the
presence of (2m + 1)-order loss. For this purpose, we sum
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Eq. (7) over all n-soliton combinations (j,l1, . . . ,ln−1), where
1 � lj ′ � N , lj ′ �= j , and 1 � j ′ � n − 1. Thus, the total rate
of change of the amplitude due to n-pulse interaction is

dη
(nm)
j

dz
=

N∑
l1=1

N∑
l2=l1+1

· · ·
N∑

ln−1=ln−2+1


n−1
j ′=1

(
1 − δjlj ′

)

× dη
(mn)
j (l1,...,ln−1)

dz
, (8)

where δjk is the Kronecker delta function. The total rate of
change in the j th soliton’s amplitude in an N -soliton collision
in the presence of the generic nonlinear loss due to n-soliton
interaction is calculated by summing both sides of Eq. (8) over
m for n − 1 � m � mc. This yields

dη
(n)
j

dz
=

mc∑
m=n−1

dη
(mn)
j

dz
. (9)

To obtain the total rate of change of the amplitude in the
collision, we sum Eq. (9) over n for 2 � n � mc + 1, and also
take into account the effects of single-pulse propagation, as
described by Eq. (4). We arrive at the following equation:

dηj

dz
=

mc+1∑
n=2

dη
(n)
j

dz
−

mc∑
m=0

ε2m+1a2m+1η
2m+1
j , (10)

for j = 1, . . . ,N . Equations (7)–(10) provide the generalized
reduced model for amplitude dynamics in fast collisions of
N NLS solitons. The model can be employed to obtain the

contribution of n-pulse interaction to the collision-induced
amplitude shifts for any values of n, m, and mc. Furthermore,
it can be used for both full-overlap collisions, in which the
envelopes of all N solitons overlap at a certain distance zc, and
for more general collisions, in which the solitons’ envelopes
do not fully overlap. In this sense the reduced model given by
Eqs. (7)–(10) is a major generalization of the reduced models
in Refs. [41,42,44–50], which were limited to full-overlap
collisions and to n-pulse interaction with n = 2 [41,42,44–
48,50] or 2 � n � 3 [49].

Useful insight into the effects of n-pulse interaction on
the collisions can be gained by studying full-overlap colli-
sions. More specifically, we would like to calculate the total
collision-induced amplitude shift �ηj in these collisions, and
compare it with the contributions of n-pulse interaction to
the amplitude shift �η

(n)
j , for n = 2, . . . ,mc + 1. For this

purpose, we consider first a full-overlap N -soliton collision in
the presence of (2m + 1)-order loss. The rate of change in the
j th soliton’s amplitude due to n-pulse interaction with solitons
with indices l1,l2, . . . ,ln−1, where 1 � lj ′ � N and lj ′ �= j

for 1 � j ′ � n − 1, is given by Eq. (7). In a fast full-overlap
collision in the presence of weak (2m + 1)-order loss, the
main contribution to the amplitude shift comes from the close
vicinity of the collision point zc. Therefore, an approximate
expression for the contribution of n-pulse interaction to
the amplitude shift can be obtained by integrating Eq. (7) over
z from −∞ to ∞, while taking the amplitude values on the
right-hand side of the equation as constants [53]: ηk = ηk(z−

c ).
Employing these steps, we arrive at

�η
(mn)
j (l1,...,ln−1) = −ε2m+1

m−(n−2)∑
kl1 =1

· · ·
m−sn−2∑
kln−1 =1

m!(m + 1)!η
2kl1
l1

· · · η2kln−1
ln−1

η
2m−2sn−1+1
j(

kl1 ! · · · kln−1 !
)2

(m + 1 − sn−1)!(m − sn−1)!

×
∫ ∞

−∞
dxj [cosh(xj )]−(2m−2sn−1+2)

∫ ∞

−∞
dz

[
cosh

(
xl1

)]−2kl1 · · · [
cosh

(
xln−1

)]−2kln−1 . (11)

The total contribution of n-pulse interaction to the amplitude
shift in a fast full-overlap N -soliton collision in the presence
of (2m + 1)-order loss is obtained by summing Eq. (11) over
all n-soliton combinations (j,l1, . . . ,ln−1):

�η
(mn)
j =

N∑
l1=1

N∑
l2=l1+1

· · ·
N∑

ln−1=ln−2+1


n−1
j ′=1

(
1−δjlj ′

)
�η

(mn)
j (l1,...,ln−1).

(12)

Summation of Eq. (12) over m yields the total contribution
of n-pulse interaction to the amplitude shift in a full-overlap
collision in the presence of the generic nonlinear loss:

�η
(n)
j =

mc∑
m=n−1

�η
(mn)
j . (13)

Thus, the approximate expression for the total amplitude shift
in a fast full-overlap collision is

�ηj =
mc+1∑
n=2

�η
(n)
j . (14)

Note that since Eqs. (7)–(14) are independent of the soliton
phases, the total collision-induced amplitude shift and the
contribution of n-soliton interaction are expected to be phase
insensitive.

III. ANALYSIS AND NUMERICAL SIMULATIONS

The generalized reduced models given by Eqs. (7)–(14)
enable a systematic study of n-pulse interaction effects in
fast N -soliton collisions. We are especially interested in
finding whether n-pulse interaction with n � 3 can give the
dominant contribution to the amplitude shift and in analyzing
the sensitivity of the amplitude shift to the initial soliton
parameters. For this purpose, we analyze the scaling with n of
the contribution of n-pulse interaction to the collision-induced
amplitude shift. This is done for both collisions in the presence
of weak (2m + 1)-order loss and for collisions in the presence
of generic weak nonlinear loss. Furthermore, we investigate
the dependence of the total amplitude shift on the initial
soliton positions and phases. We note that the reduced models
are based on a perturbative approximation, which neglects
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high-order effects due to radiation emission and collision-
induced frequency shifts. For this reason, it is important to
check the predictions of the reduced models by comparison
with results obtained with the more complete NLS model. In
the current section we take this important task by numerically
solving the perturbed NLS equations (2) and (5).

We start the analysis by considering the effects of fast full-
overlap N -soliton collisions in the presence of (2m + 1)-order
loss, where the dynamics is described by Eq. (5). We first focus
attention on collisions in the presence of septic loss (m = 3),
since analysis of this case is sufficient for demonstrating the
importance of n-soliton interaction with n � 3. For concrete-
ness, we consider four-soliton and six-soliton collisions with
soliton frequencies, β1 = 0, β2 = −�β, β3 = �β, β4 = 2�β

for N = 4, and β1 = 0, β2 = −2�β, β3 = −�β, β4 = �β,
β5 = 2�β, β6 = 3�β for N = 6, where 3 � �β � 40. To
ensure full-overlap collisions with this choice of the βj , the ini-
tial positions are taken as y1(0) = 0, y2(0) = 20, y3(0) = −20,
y4(0) = −40 for N = 4, and y1(0) = 0, y2(0) = 40, y3(0) =
20, y4(0) = −20, y5(0) = −40, y6(0) = −60 for N = 6. The
initial amplitudes and phases are ηj (0) = 1 and αj (0) = 0 for
1 � j � N , respectively. This choice of soliton parameters
corresponds, for example, to the one used in optical waveguide
links employing wavelength division multiplexing [54]. It
should be emphasized, however, that similar behavior is
observed for other setups of full-overlap N -soliton collisions,
e.g., in setups where the group velocity difference and temporal
separation between the j and j + 1 solitons vary with j . Notice
that with the above choice of the initial positions, the solitons
are well separated before the collision. In addition, the final
propagation distance zf is taken to be large enough, so that the
solitons are well separated after the collision. The value of the
septic loss coefficient is taken as ε7 = 0.002.

Figure 1 shows the �β dependence of the total collision-
induced amplitude shift in four-pulse and six-pulse colli-
sions, for the j = 1 (βj = 0) soliton. Both the prediction of
Eqs. (11)–(14) and the result obtained by numerical solution
of Eq. (5) are presented. The figure also shows the analytic
prediction for the contributions of two-, three-, and four-soliton
interaction to the amplitude shift, �η

(2)
1 , �η

(3)
1 , and �η

(4)
1 , re-

spectively. The agreement between the analytic prediction and
the numerical simulations is very good for �β � 15, where
the perturbation description is expected to hold. Moreover,
our calculations show that the dominant contribution to the
total amplitude shift in a four-soliton collision comes from
three-soliton interaction. The contribution from four-soliton
interaction increases from 15.9% in a four-soliton collision to
39.4% in a six-soliton collision. Consequently, in a six-soliton
collision the effects of three-pulse and four-pulse interaction
are both important, while those of two-pulse interaction are
relatively small (about 9.6%).

An important prediction of the reduced models presented
in Sec. II is the independence of the total collision-induced
amplitude shifts and the contributions from n-pulse interaction
on the initial soliton phases. In order to check this prediction,
we carry out numerical simulations with Eq. (5) for the full-
overlap four-soliton and six-soliton collisions in the presence
of septic loss, discussed in the previous two paragraphs,
with ε7 = 0.002 and �β = 30. The initial values of soliton

FIG. 1. (Color online) The total collision-induced amplitude
shift of the j = 1 soliton �η1 vs frequency difference �β in a
full-overlap four-soliton collision (a) and in a full-overlap six-soliton
collision (b) in the presence of septic loss with coefficient ε7 = 0.002.
The solid black line is the analytic prediction of Eqs. (11)–(14)
and the squares represent the result of numerical simulations with
Eq. (5). The dotted red, dashed blue, and dash-dotted green lines
correspond to the contributions of two-, three-, and four-soliton inter-
actions to the amplitude shift, �η

(2)
1 , �η

(3)
1 , and �η

(4)
1 , respectively.

positions and amplitudes are the same as the ones considered in
the previous two paragraphs. The initial phases are αj (0) = 0
for j = 1,2,4 and 0 � α3(0) � 2π for N = 4, and αj (0) = 0
for j = 1,2,3,5,6 and 0 � α4(0) � 2π for N = 6. That is,
the initial phase of the soliton with frequency β = 30, which
is denoted by α3(0) in a four-soliton collision and by α4(0)
in a six-soliton collision, is varied, while the initial phases
of the other solitons are not changed. The dependence of
the collision-induced amplitude shift of the j = 1 soliton
on the initial position of the β = 30 soliton is shown in
Fig. 2. The agreement between the predictions of the reduced
model and numerical simulations with Eq. (5) is excellent for
four-soliton collisions and good for six-soliton collisions. In
the latter case, the values of |�η1| obtained by simulations
with the NLS equation are smaller than the ones predicted by
Eqs. (11)–(14). Based on the results presented in Figs. 1 and 2
and similar results obtained for fast full-overlap collisions
with other choices of the physical parameters, we conclude
that phase-insensitive n-pulse interactions with high n values,
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FIG. 2. (Color online) The collision-induced amplitude shift of
the j = 1 soliton �η1 vs the initial phase of the soliton with
frequency β = 30 in full-overlap N -soliton collisions in the presence
of septic loss with ε7 = 0.002. The blue (upper) and red (lower)
circles represent the results of numerical simulations with Eq. (5)
for four-soliton and six-soliton collisions, respectively. The solid
blue and dashed red lines correspond to the analytic predictions of
Eqs. (11)–(14) for four-soliton and six-soliton collisions. The initial
phase of the β = 30 soliton is denoted by α3(0) in the four-soliton
collision and by α4(0) in the six-soliton collision.

satisfying 2 < n � m + 1, play a crucial role in fast full-
overlap N -soliton collisions in the presence of (2m + 1)-order
loss.

We now turn to analyze more generic fast N -soliton
collisions, in which the solitons’ envelopes do not completely
overlap. Based on Eq. (7), the contribution of n-pulse inter-
action to the total amplitude shift should strongly depend on
the degree of soliton overlap during the collision, for n � 3,
m � 2, and N � 3. Consequently, the total collision-induced
amplitude shift might strongly depend on the initial soliton
positions in this case. We therefore focus our attention on
this dependence. We consider, as an example, a four-soliton
collision in the presence of septic loss with ε7 = 0.02, where
the soliton frequencies are β1 = 0, β2 = −10, β3 = 10, and
β4 = 20. The initial amplitudes and phases are ηj (0) = 1 and
αj (0) = 0 for 1 � j � 4. The initial positions are y1(0) = 0,
y2(0) = 20, y4(0) = −40, and −39 � y3(0) � −1. That is, the
initial position of the j = 3 soliton is varied, while the initial
positions of the other solitons are not changed. Notice that
in this setup, the four-soliton collision is not a full-overlap
collision, except at y3(0) = −20. As a result, Eqs. (11)–(14),
which were used in earlier studies of fast soliton collisions, do
not apply and the more general reduced model, consisting
of Eqs. (7)–(10), should be employed. We therefore solve
Eqs. (7)–(10) with the aforementioned initial parameter values
for 0 � z � zf , where zf = 6, and plot the final amplitudes
ηj (zf ) vs y3(0). The curves are shown in Fig. 3 along with
the curves obtained by numerical solution of Eq. (5). The
agreement between the analytic prediction and the simulations
result is good. As can be seen, each ηj (zf ) vs y3(0) curve
has a pronounced minimum at y3(0) = −20, i.e., at the initial
position value of the j = 3 soliton corresponding to a full-
overlap collision. Thus, a strong dependence of the collision-

FIG. 3. (Color online) The final soliton amplitudes ηj (zf ) vs the
initial position of the j = 3 soliton y3(0) in a four-soliton collision
in the presence of septic loss with ε7 = 0.02. The solid black curve,
dashed red curve, short-dashed blue curve, and dash-dotted green
curve represent the analytic predictions of Eqs. (7)–(10) for ηj (zf )
with j = 1,2,3,4, respectively. The black up triangles, red down
triangles, blue squares, and green circles correspond to the results
obtained by numerical solution of Eq. (5) for ηj (zf ) with j = 1,2,3,4,
respectively.

induced amplitude shift on the initial soliton positions is
observed already in a four-soliton collision in the presence
of septic loss. This means that the collision-induced amplitude
dynamics in fast N -soliton collisions in the presence of weak
generic loss can be quite complex due to the dominance of
contributions from n-pulse interaction with high n values. This
behavior is sharply different from the one encountered in fast
N -soliton collisions in the presence of weak cubic loss. In
the latter case, the total collision-induced amplitude shift is
a sum over contributions from two-pulse interaction, and the
collision can be accurately viewed as consisting of a collection
of pointwise two-soliton collisions [41].

The analysis of the effects of (2m + 1)-order loss on
N -soliton collisions is very valuable, since it explains the
importance of n-pulse interaction and uncovers the scaling
laws for this interaction. However, in most systems one has to
take into account the impact of the low-order loss terms, whose
presence can enhance the effects of two-pulse interaction. It
is therefore important to take into account all the relevant
loss terms when analyzing collision-induced dynamics in the
presence of generic loss. We now turn to address this aspect
of the problem, by considering the effects of generic weak
nonlinear loss of the form (1) on fast N -soliton collisions.
For concreteness, we assume mc = 3 and loss coefficients
ε1 = 0.002, ε3 = 0.004, ε5 = 0.006, and ε7 = 0.001. We also
assume full-overlap collisions, but emphasize that the analysis
can be extended to treat the general case by the same
method described in the preceding paragraph. We consider
four-soliton and six-soliton collisions with the same pulse
parameters used for full-overlap collisions in the presence
of septic loss. Figure 4 shows the �β dependence of the
total collision-induced amplitude shift in four-soliton and
six-soliton collisions for the j = 1 soliton, as obtained by
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FIG. 4. (Color online) The total collision-induced amplitude
shift of the j = 1 soliton �η1 vs frequency difference �β in a
full-overlap four-soliton collision (a) and in a full-overlap six-soliton
collision (b) in the presence of generic nonlinear loss of the
form (1) with mc = 3 and loss coefficients ε1 = 0.002, ε3 = 0.004,
ε5 = 0.006, and ε7 = 0.001. The solid black line is the analytic
prediction of Eqs. (11)–(14) and the squares correspond to the result
of numerical simulations with Eq. (2). The dotted red, dashed blue,
and dash-dotted green lines represent the contributions of two-, three-,
and four-soliton interactions to the amplitude shift, �η

(2)
1 , �η

(3)
1 , and

�η
(4)
1 , respectively.

Eqs. (11)–(14). The result obtained by numerical solution
of Eq. (2) and the analytic predictions for the contributions
of two-, three-, and four-soliton interactions, �η

(2)
1 , �η

(3)
1 ,

and �η
(4)
1 , are also shown. We observe that in four-soliton

collisions, �η
(2)
1 is comparable to �η

(3)
1 , while �η

(4)
1 is much

smaller. That is, the inclusion of the low-order loss terms
does lead to an enhancement of the fractional contribution
of two-pulse interaction to the amplitude shift. In contrast, in
six-soliton collisions, �η

(3)
1 (53.2%) is significantly larger than

�η
(2)
1 (22.2%), while �η

(4)
1 (24.6%) is comparable to �η

(2)
1 .

Based on the latter observation, we conclude that when the low-
order loss coefficients ε1 and ε3 are comparable in magnitude
to the higher-order loss coefficients, the contributions to the
amplitude shift from n-pulse interaction with n � 3 can be
much larger than that coming from two-pulse interaction.

IV. CONCLUSIONS

In summary, we studied n-pulse interaction in fast collisions
of N solitons of the cubic NLS equation in the presence of
generic weak nonlinear loss, which can be approximated by
the series (1). Due to the presence of nonlinear loss, the solitons
experience collision-induced amplitude shifts that are strongly
enhanced by n-pulse interaction. We first developed a general
reduced model that allowed us to calculate the contribution
of n-pulse interaction to the amplitude shift in fast N -soliton
collisions in the presence of (2m + 1)-order loss, for any n and
m. We then used the reduced model and numerical simulations
with the perturbed NLS equation to analyze four-soliton and
six-soliton collisions in the presence of septic loss (m = 3).
Our calculations showed that three-pulse interaction gives the
dominant contribution to the collision-induced amplitude shift
already in a full-overlap four-soliton collision, while in a full-
overlap six-soliton collision, both three-pulse and four-pulse
interactions are important. Furthermore, we found that the
collision-induced amplitude shift has a strong dependence on
the initial soliton positions, with a pronounced maximum in
the case of a full-overlap collision. We then generalized these
results by considering N -soliton collisions in the presence of
generic weak nonlinear loss of the form (1) with mc = 3. Our
analytic calculations and numerical simulations showed that
three-pulse interaction gives the dominant contribution to the
amplitude shift in a full-overlap six-soliton collision, despite
the presence of linear and cubic loss. All the collision-induced
effects were found to be insensitive to the soliton phases for
fast collisions. Based on these observations, we conclude that
phase-insensitive n-pulse interaction with high n values plays
a key role in fast collisions of NLS solitons in the presence of
generic weak nonlinear loss. The complex scalings of n-pulse
interaction effects with n and m and the strong dependence on
initial soliton positions lead to complex collision dynamics.
This dynamics is very different from that observed in fast
collisions of N NLS solitons in the presence of weak cubic
loss, where the total collision-induced amplitude shift is a sum
over amplitude shifts due to two-pulse interaction [41].

We conclude by remarking that the analysis carried out in
the current paper might have important practical implications.
Indeed, a fast N -pulse collision in the presence of generic
weak nonlinear loss can be used as an effective mechanism
for localized energy transfer from the electromagnetic field to
the nonlinear medium. In this process, the dissipative inter-
pulse interaction during the collision significantly enhances
energy transfer to the medium. Furthermore, the large group
velocity difference between the colliding pulses guarantees the
localized character of the process. In view of this one might
expect that in applications where effective and localized energy
transfer between the electromagnetic field and the nonlinear
medium is required, a fast N -pulse collision with N � 3 would
be a better option compared with a two-pulse collision or
singe-pulse propagation.
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APPENDIX: DERIVATION OF EQ. (6)

In this Appendix, we derive Eq. (6) for the collision-induced
change in the envelope of a soliton due to n-pulse interaction
in a fast N -soliton collision in the presence of weak
(2m + 1)-order loss. More specifically, we consider the change
in the envelope of the j th soliton induced by n-pulse interaction
with solitons with indexes l1,l2, . . . ,ln−1, where 1 � lj ′ � N

and lj ′ �= j for 1 � j ′ � n − 1. The derivation is based on
a generalization of the perturbation procedure developed in
Ref. [44]. Following this procedure, we look for a solution of
Eq. (5) in the form ψn = ψj + φj + ∑n−1

j ′=1[ψlj ′ + φlj ′ ] + · · · ,
where ψk is the kth single-soliton solution of Eq. (5) with
0 < ε2m+1 � 1, φk describes collision-induced effects for the
kth soliton, and the ellipsis represents higher-order terms.
We then substitute ψn along with ψj (t,z) = 
j (xj ) exp(iχj ),
φj (t,z) = �j (xj ) exp(iχj ), ψlj ′ (t,z) = 
lj ′ (xlj ′ ) exp(iχlj ′ ),

and φlj ′ (t,z) = �lj ′ (xlj ′ ) exp(iχlj ′ ) for j ′ = 1, . . . ,n − 1, into
Eq. (5). Next, we use the resonant approximation, and neglect
terms with rapid oscillations with respect to z. We find that the
main effect of (2m + 1)-order loss on the envelope of the j th
soliton is of order ε2m+1/|βlj ′ − βj |. We denote this collision-

induced change in the envelope by �
(1m)
j2 , and the contribution

to this change from n-soliton interaction with the l1,l2, . . . ,ln−1

solitons by �
(1mn)
j2(l1,...,ln−1). Within the resonant approximation,

the phase factor of terms contributing to changes in the j th soli-
ton’s envelope must be equal to χj . Consequently, these terms
must be proportional to: |
l1 |2kl1 · · · |
ln−1 |2kln−1 |
j |2kj 
j ,
where kl1 + · · · + kln−1 + kj = m, and 1 � klj ′ � m − (n − 2)
for 1 � j ′ � n − 1. Summing over all possible contributions
of this form, we obtain the following evolution equation for
�

(1mn)
j2(l1,...,ln−1):

∂z�
(1mn)
j2(l1,...,ln−1) = −ε2m+1

m−(n−2)∑
kl1 =1

m−kl1 −(n−3)∑
kl2 =1

· · ·
m−sn−2∑
kln−1 =1

bk
∣∣
l1

∣∣2kl1 · · · ∣∣
ln−1

∣∣2kln−1 |
j |2m−2sn−1
j, (A1)

where sn = ∑n
j ′=1 klj ′ , bk are constants, and k = (kl1 ,kl2 , . . . ,kln−1 ).

To calculate the expansion coefficients bk, we first note that

|
|2m
 =
⎛
⎝
j +

n−1∑
j ′=1


lj ′

⎞
⎠

m+1 ⎛
⎝
∗

j +
n−1∑
j ′=1


∗
lj ′

⎞
⎠

m

. (A2)

Employing the multinomial expansion formula for the two terms on the right-hand side of Eq. (A2), we obtain
⎛
⎝
j +

n−1∑
j ′=1


lj ′

⎞
⎠

m+1

=
m+1∑
kl1 =0

· · ·
m+1∑

kln−1 =0

(m + 1)!(
kl1 ! · · · kln−1 !

)
(m + 1 − sn−1)!



kl1
l1

· · · 

kln−1
ln−1



m+1−sn−1
j (A3)

and ⎛
⎝
∗

j +
n−1∑
j ′=1


∗
lj ′

⎞
⎠

m

=
m∑

kl1 =0

· · ·
m∑

kln−1 =0

m!(
kl1 ! · · · kln−1 !

)
(m − sn−1)!



∗kl1
l1

· · · 

∗kln−1
ln−1



∗m−sn−1
j . (A4)

Combining Eqs. (A2)–(A4), we find that the expansion coefficients bk are given by

bk = m!(m + 1)!(
kl1 ! · · · kln−1 !

)2
(m + 1 − sn−1)!(m − sn−1)!

. (A5)

Substituting this relation into Eq. (A1), we arrive at Eq. (6).
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