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Wakes in inhomogeneous plasmas
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The Debye shielding of a charge immersed in a flowing plasma is an old classic problem. It has been given
renewed attention in the last two decades in view of experiments with complex plasmas, where charged dust
particles are often levitated in a region with strong ion flow. Efforts to describe the shielding of the dust
particles in such conditions have been focused on the homogeneous plasma approximation, which ignores the
substantial inhomogeneity of the levitation region. We address the role of the plasma inhomogeneity by rigorously
calculating the point charge potential in the collisionless Bohm sheath. We demonstrate that the inhomogeneity
can dramatically modify the wake, making it nonoscillatory and weaker.
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I. INTRODUCTION

The Debye shielding of a charge immersed in a flow-
ing plasma is an old problem that received considerable
attention [1–14], with applications ranging from charging
of a spacecraft in the ionosphere [15,16] to spectra of ions
moving through solids [17,18]. Various forms of the potential
distribution were obtained, depending on model assumptions
and parameter values. For instance, in the collisionless case
the far-field potential has been shown to generally vary as
r−3 [4], while in the presence of collisions it can have an r−2

dependence [9]. A flowing Maxwellian plasma can generate a
series of potential wells downstream of the charge, depending
on the flow velocity [11].

The problem has been given renewed attention in the last
two decades in view of experiments with complex plasmas,
where charged dust particles are often levitated in a region with
strong ion flow (see, e.g., Refs. [19–23] for reviews of complex
plasma research). Much theoretical effort [24–36] has been
made to describe how the charged dust particles are shielded
in that region, as the shielding directly determines their mutual
electrostatic interaction. The suggested wake models range
from those assuming cold flowing ions [24–26] to advanced
kinetic models incorporating ion-neutral collisions and the
electric field that drives the ion flow and supports the dust
particles against gravity [30,34]. A great deal of numerical
simulations, based on various assumptions, have been per-
formed [35,37–43]. There have also been measurements of the
interaction between the dust particles [44–47], but it is difficult
to judge the accuracy of wake models because of experimental
uncertainties, limited measurement range of distances, and
poorly known parameters in the levitation region (see, e.g.,
Figs. 1 and 2 of Ref. [34] and Fig. 3 of Ref. [33], where the
same measurements were fitted by quite different models by
adjusting model parameters).

While theoretical and simulation efforts to describe the
wakes generated by the dust particles have been focused
on the homogeneous plasma approximation, the levitation
region is usually considerably inhomogeneous, as evidenced
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by measurements of the resonance frequency of vertical
oscillations [34,44]. The measured frequency fres = ωres/(2π )
allows calculating the field inhomogeneity length LE (via the
formula LE = g/ω2

res, neglecting the ion drag force [21] and
dust charge variations [21]), which turns out to be about
the characteristic shielding length in the region (see, e.g.,
Sec. V B of Ref. [34]).

To the best of our knowledge, there have been no studies
of the effect of the inhomogeneity on wake properties.
Presumably, this is because the inhomogeneity is challenging
to account for: The standard calculation method based on the
three-dimensional Fourier transform in space and the dielectric
function becomes inapplicable, and the resulting equations
entail substantial numerical difficulties.

In this paper, we address the role of the inhomogeneity
by rigorously calculating the point-charge potential in the
collisionless Bohm sheath [48] (which is one of the best-
known “simple” models for an inhomogeneous plasma with
ion flow) and comparing the results with the homogeneous
approximation. Here, “rigorously” means that we calculate the
exact potential, making no further approximation in addition
to the common linear perturbation approximation. As the
collisionless Bohm sheath is a model that has a number of
well-known limitations (see Sec. IV), our study is not intended
to precisely describe the wake under certain conditions. Our
results, however, indicate the essential qualitative changes
introduced by the inhomogeneity, which we believe to be
the generic features characterizing wakes in inhomogeneous
plasma flows.

Note that while our study is concerned with the single-
particle wake, dense three-dimensional dust clouds and
crystals involve dust-collective effects (i.e., the potential
perturbation due to a dust particle is influenced by other dust
particles) [49–56]. However, as stated above, our purpose is
not to precisely describe the wake under certain conditions,
but rather to point out and evaluate the very general and so far
unstudied effect of the inhomogeneity. Also, the single-particle
wake is the essential reference point to study dust-collective
effects, and, as we make clear in Sec. IV A, there are important
classes of experiments (e.g., those with dust monolayers,
strings, clusters, or pairs) where such effects should be
insignificant.
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We hope that this paper will be also interesting in that
we describe a working method to accurately and effectively
calculate the potential due to an extraneous charge in an
inhomogeneous plasma (see Appendix A). Implementation of
the method is relatively simple, so it may be further utilized
for various inhomogeneous plasma environments.

II. MODEL

A. Basic equations

We consider a point nonabsorbing charge q located at
r = 0 and immersed in an inhomogeneous plasma consisting
of Boltzmann electrons and cold flowing singly ionized ions.
A sketch of the problem is shown in Fig. 1. We assume that
at z = −∞, the plasma is homogeneous and has a number
density n∞ and an ion flow velocity v∞ directed in the positive
z direction. We set the electric potential at z = −∞ equal to
zero and assume that the unperturbed electric potential ϕs(z)
takes a value ϕ0 < 0 at z = 0. (The subscript “s” stands for
“sheath”; “unperturbed” refers, here and in the following, to
the state in the absence of the charge q.) No wall is included
in our model, as we assume that the wall towards which
the unperturbed flow is directed [48] is located sufficiently
far from the charge; we adopt this assumption in order to
investigate the pure effect of the inhomogeneity rather than
the combined effect of the inhomogeneity and proximity of the
wall. Note that in complex plasma experiments, the particles
are usually negatively charged, but in our model the sign of q is
unimportant in view of the linear perturbation approximation
introduced below.

As illustrated in Fig. 1, in the unperturbed sheath, (1) the
ion flow velocity increases with z as ions are accelerated
by the electric field, (2) the ion density decreases with z

to keep the ion flux constant, and (3) the electron density
decreases with z faster than the ion density to ensure a positive
net charge density, resulting in the field being directed in the
positive z-direction.

ni
ne

q
0 z

n

s

q

FIG. 1. Sketch of the problem. The solid curves illustrate the
unperturbed sheath, showing the electric potential ϕs(z), ion number
density ni(z), electron number density ne(z), and ion flow velocity
v(z). The dashed line shows the potential perturbation ϕq (on the z

axis) due to the immersed charge q < 0.

In the presence of the charge, the system in its steady state
is described by the ion continuity equation

∇ · (niv) = 0, (1)

ion momentum equation

m (v · ∇) v = −e∇ϕ, (2)

Boltzmann distribution of electrons

ne = n∞ exp

(
eϕ

Te

)
, (3)

and Poisson’s equation

−∇2ϕ = 4π [e(ni − ne) + qδ(r)], (4)

where ni and ne are the ion and electron number densities,
respectively, v is the ion flow velocity,

ϕ = ϕs + ϕq (5)

is the electric potential, with ϕq being the potential perturbation
due to the charge (the wake potential), Te is the electron
temperature, m is the ion mass, e is the elementary charge,
and δ(r) is the delta function. The unperturbed system is
described by Eqs. (1)–(4) with q = 0. We follow the common
assumption [48] that the velocity v∞ is the Bohm velocity,

v∞ =
√

Te

m
. (6)

Below we focus on the wake potential ϕq(r). The problem
is solved in the linear perturbation approximation (its applica-
bility is discussed in Sec. IV): i.e., we linearize Eqs. (1)–(4)
with respect to the perturbations induced by the charge.

B. Solution

We first make the following transformation to rewrite
equations in a dimensionless form:

r
λe∞

→ r,
ni

n∞
→ ni,

(7)
v

v∞
→ v, ψ = −eϕ

Te
,

where

λe∞ =
√

Te

4πn∞e2
(8)

is the electron Debye length at z = −∞ and v∞ is given by
Eq. (6). In these dimensionless notations, Eqs. (1)–(4) take the
form

∇ · (niv) = 0, (9)

(v · ∇)v = ∇ψ, (10)

∇2ψ = ni − exp(−ψ) + Aδ(r), (11)

where A = q/(en∞λ3
e∞). It is convenient to introduce the

dimensionless control parameter

ψ0 = − eϕs

Te

∣∣∣∣
z=0

, (12)
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which characterizes the charge location relative to the unper-
turbed plasma structure.

Calculating the unperturbed variables is nothing but solving
the collisionless Bohm sheath model [48]. The unperturbed
momentum and continuity equations for ions yield

v =
√

1 + 2ψ, ni = 1√
1 + 2ψ

. (13)

We substitute Eq. (13) into the unperturbed Poisson’s equation
[i.e., Eq. (11) without the last term], multiply it by dψ/dz,
and integrate the resulting equation over z from z = −∞ to
an arbitrary z using the boundary conditions ψ|z→−∞ = 0
and dψ/dz|z→−∞ = 0. This yields a first-order differential
equation for ψ(z), whose solution for the boundary condition
ψ|z=0 = ψ0 is given by

z = 1√
2

∫ ψ

ψ0

dψ ′√√
1 + 2ψ ′ + exp(−ψ ′) − 2

. (14)

By using this equation, we calculate ψ(z) numerically, which is
further used to calculate v(z) and ni(z) from Eq. (13). Note that
the solid lines illustrating the unperturbed sheath in Fig. 1 are
obtained by the exact calculation for ψ0 = 1 (the range −10 <

z < 10 is shown). As seen directly from Eq. (14), choosing a
different value of ψ0 merely results in a constant being added
to z, that is, in a shift of the curves along the flow.

To calculate the perturbations, we use the two-dimensional
Fourier transform with respect to r⊥, which is the component
of r perpendicular to the z axis. We linearize Eqs. (9)–(11) with
respect to the perturbations and take the Fourier transform of
the resulting equations [i.e., we multiply them by exp(−ik⊥ ·
r⊥), where k⊥ is a vector perpendicular to the z axis, and
integrate them over r⊥]. We arrive at

d

dz
(n̂iv + niv̂z) + ik⊥niv̂⊥ = 0, (15)

d(vv̂z)

dz
= dψ̂

dz
, (16)

v
dv̂⊥
dz

= ik⊥ψ̂, (17)

− k2
⊥ψ̂ + d2ψ̂

dz2
= n̂i + exp(−ψ)ψ̂ + Aδ(z), (18)

where n̂i, v̂z, v̂⊥, and ψ̂ are the Fourier-transformed pertur-
bations (with v̂⊥ being the Fourier transform of the velocity
component in the k⊥ direction), while ni, v, and ψ are the
unperturbed quantities given by Eqs. (13) and (14).

Our next steps, described in detail in Appendix A, are (1) to
reduce Eqs. (15)–(18) to a single equation for ψ̂ , (2) to rewrite
this equation using the normalization

ϕq

q/λe∞
→ϕq, (19)

which cancels out the parameter A, (3) to determine the phys-
ically correct boundary condition by taking into consideration
the Landau damping, (4) to numerically solve the equation
using the above boundary condition, and (5) to numerically
inverse Fourier transform the result.

C. Reference point: Wake in a homogeneous plasma

To see the effect of the plasma inhomogeneity on ϕq(r), we
make a comparison with the model in which the unperturbed
plasma is homogeneous and has the same electron Debye
length, ion density, and ion flow velocity as those in our
inhomogeneous model at z = 0. The potential perturbations
ϕq(r) obtained in the two models must coincide as ψ0 → 0,
which is one of the tests we used to ensure the correctness of
our calculations.

In this homogeneous model, the unperturbed potential ϕs(r)
is obviously zero and the potential perturbation is [4]

ϕq(r) = q

r
+ q

2π2

∫
dk

exp(ik · r)

k2

[
1

D(k)
− 1

]
, (20)

where

D(k) = 1 + 1

(λe0k)2
− ω2

pi0

(kzv0 − i0+)2
(21)

is the static dielectric function. The relevant electron Debye
length and ion plasma frequency are

λe0 =
√

Te

4πne0e2
, ωpi0 =

√
4πni0e2

m
, (22)

respectively, and the subscript “0” denotes the unperturbed
quantities taken from our inhomogeneous model at z = 0. The
term −i0+ (where 0+ is an infinitesimal positive number)
represents the Landau damping [33], which is important
as it removes the singularity of the integrand in Eq. (20),
with the minus sign in −i0+ resulting in the downstream
location of the oscillatory wake structure [25]. This makes
it obvious that in our inhomogeneous model, we do need to
take into consideration the Landau damping, which is step (3)
mentioned in Sec. II B. The calculation of the integral (20) is
detailed in Appendix B.

III. RESULTS

One may expect the shielding cloud to be considerably
affected by the inhomogeneity when the respective spatial
scales are comparable. Therefore, before providing our results,
we show in Fig. 2 the following unperturbed quantities: the
electron Debye length and ion Debye length defined using the
ion kinetic energy [33],

λe =
√

Te

4πnee2
, λi =

√
mv2

4πnie2
, (23)

as well as the velocity and field inhomogeneity lengths,

Lv = v

(
dv

dz

)−1

, LE = E

(
dE

dz

)−1

, (24)

where E = −dϕs/dz is the sheath electric field. We see that
the inhomogeneity is weak at small ψ and becomes substantial
at ψ � 1—3, depending on whether Lv or LE is considered.

Let us start with the potential perturbation in the down-
stream direction. We note that the integrals over k⊥ determin-
ing ϕq (r) in both the inhomogeneous and homogeneous models
[Eqs. (A14) and (B1), respectively] logarithmically diverge at
k⊥→∞ on the line r⊥ = 0, z > 0 (while outside of that line,
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FIG. 2. The velocity and field inhomogeneity lengths, Lv and LE

[Eq. (24)], as well as the electron Debye length λe and ion shielding
length λi [Eq. (23)]. The lengths are normalized by λe∞ and shown
as functions of the normalized sheath potential ψ .

i.e., for r⊥ �= 0 or z < 0, the integrals perfectly converge).
The divergence is an artefact of the cold-ion approximation,
as explained in Appendix C, and therefore we calculate ϕq on
the line r⊥ = 0, z > 0 by truncating the integration at a certain
large k⊥. (In Appendix C, we also discuss the choice of the
truncation value.)

Figure 3 shows that the oscillatory wake structure in the
flow direction, which is always present in the homogeneous
model, disappears in the inhomogeneous model at a rather
small ψ0. The minimum in the potential perturbation is
considerably more shallow in the inhomogeneous model.
Interestingly, the minimum location is practically unaffected
by the inhomogeneity. In the limit ψ0 → 0, our numerical
calculations for both models yield exactly matching oscillatory
structures.

Figure 4 shows the potential perturbation in the direction
perpendicular to the flow. It is seen to be repulsive (for a
charge of the same sign) and not dramatically affected by

FIG. 3. Potential perturbation in the downstream direction,
ϕq (r⊥ = 0; z). The solid and dashed lines represent the results of
the inhomogeneous and homogeneous models, respectively. The
numbers near the curves indicate the values of ψ0. The graph is
obtained by truncating the integration at k⊥ = 20 (see text).

FIG. 4. Potential perturbation in the direction perpendicular to
the flow, ϕq (r⊥; z = 0), divided by the Coulomb potential and shown
on a log-log graph. The line styles and numbers near the curves bear
the same meanings as in Fig. 3.

the inhomogeneity up to ψ0 ∼ 3, starting from which the
inhomogeneity results in a substantially weaker screening.

Figure 5 shows the absolute value of the derivative
(∂ϕq/∂z)|z=0 as a function of r⊥. This quantity, as noted
in Sec. IV, is of interest in the context of the mode cou-
pling instability [57–60] observed in two-dimensional plasma
crystals. Here we see a remarkably strong effect of the
inhomogeneity: The magnitude of the derivative is strongly
reduced at r⊥ ∼ λe∞ (corresponding to a typical interparticle
distance), and the sign changes at a much smaller r⊥ than in
the homogeneous case.

Figure 6 shows the contour plots of ϕq(r⊥,z) for (a) the
inhomogeneous and (b) homogeneous models, further illus-
trating the suppression of the oscillatory structure by the
inhomogeneity as well as the difference in the derivative
(∂ϕq/∂z)|z=0 (compare the angles at which the lines of constant
ϕq cross the plane z = 0).

FIG. 5. The derivative (∂ϕq/∂z)|z=0 as a function of r⊥. Shown
are the results for ψ0 = 1.5; the line styles bear the same meanings
as in Fig. 3.
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FIG. 6. Potential perturbation ϕq (r⊥,z) for (a) the inhomogeneous
and (b) homogeneous models. Shown are lines of constant ϕq for
ψ0 = 1.5 (the potential step is not kept constant). The charge is
located in the center of the left edge; the flow is directed to the
right. In both cases, the dimensions are 15λe∞ in the flow direction
and 8λe∞ in the perpendicular direction. Note that for the cold-ion
approximation employed in this paper, in both cases the potential
perturbation logarithmically diverges as one approaches the line
r⊥ = 0, z > 0 (also drawn).

IV. DISCUSSION AND CONCLUSIONS

A. Model assumptions

To draw conclusions, let us first discuss the relevance of
our model to experiments with complex plasmas.

(1) The sheath is meant to be only a part of the plasma-
wall transition layer separating an isotropic plasma from an
electrode [48]. It is often unclear whether the dust particles in
a given experiment are levitated in the sheath or presheath. An
estimate of the electron-to-ion density ratio at the levitation
position for a typical experiment [44,45], based on Poisson’s
equation and the measured resonance frequency of vertical
particle oscillations, yields � 0.85 [34], suggesting that
particles were levitated near the boundary between the sheath
and presheath. Sufficiently heavy particles (especially under
hypergravity conditions [61]) may be levitated in the sheath.
It is noteworthy that while the Bohm sheath model represents
a dc regime, most dusty plasma experiments are performed
in rf discharges, where electrons respond to the rf field. It
is thus clear that the Bohm sheath is not a precise model to
describe the levitation region for most experiments. However,
to qualitatively understand the effect of the inhomogeneity
on the wake, we only need a self-consistent plasma profile
that resembles the actual one, and the Bohm sheath model is
certainly adequate for such a purpose.

(2) Ions in the levitation region are generally not cold, as
they experience collisions on their way through the presheath,

forming a velocity distribution with a superthermal width
[62–65]. The latter should affect the shielding, as discussed in
Sec. IV B in the context of the results of this paper. However,
to specifically identify the role of the inhomogeneity, it seems
appropriate to start with the simplifying assumption of cold
ions. Moreover, measurements of the ion velocity distribution
at the electrode show that depending on the pressure and
rf power, the characteristic width of the distribution can
be considerably smaller than the flow velocity [62], so the
cold-ion approximation can be quite reasonable for a certain
range of distances from the electrode.

(3) A necessary condition for the model of the collision-
less Bohm sheath to be applicable is that the ion-neutral
collision length must be much larger than the electron
Debye length [66]. For a typical experiment performed at
2.7 Pa [44,45], their ratio is �5 [34]. Hence, the collisionless
approximation should be quite reasonable for experiments
performed at lower pressures [67–69].

(4) We use the linear perturbation approximation. Nonlinear
effects can indeed be substantial for experiments in which
the dust particles are levitated in a more or less isotropic
region. However, for ion flow velocities of the order of the
Bohm velocity, nonlinear effects should be insignificant as the
Coulomb radii for ions and electrons, defined as

Ri = |q|e
mv2

, Re = |q|e
Te

, (25)

are usually much smaller than the both Debye lengths λi,e

[defined by Eq. (23)]. Nevertheless, nonlinear effects caused
by the presence of low-energy ions due to charge-exchange
collisions may still affect the shielding to some extent [70].

(5) The assumption of Boltzmann electrons becomes invalid
near the wall because of the absorption of electrons on it.
However, our model is fully self-consistent as we assume the
wall to be located sufficiently far from the charge. Note that
in experiments with complex plasmas in rf discharges, the
levitation height above the electrode is usually quite large,
e.g., an order of magnitude larger than the electron Debye
length at the sheath edge [44].

(6) We neglect the influence of the plasma absorption by
the dust particle on its shielding. This effect has been given
considerable attention in the isotropic case, being attributed
primarily to the absorption of ions [71–74]. In the regime
of superthermal ion flow, however, the characteristic ion
absorption cross section is considerably reduced [19], so the
effect of the absorption on the wake should be rather weak
(see Ref. [75] for a detailed discussion). To make some
estimates, we consider the case ψ0 = 0 for simplicity and
use the orbit-motion-limited (OML) cross section [19] for
cold-ion flow with the Bohm velocity, σ = πa2(1 + 2zd),
where a is the dust particle radius and zd = −qe/(aTe) is the
normalized dust charge. We assume that the absorption creates
a “shadow” (where the ion density is substantially perturbed
by the absorption) of a cross section ∼σ . The magnitude of the
resulting net charge perturbation in that “shadow” within the
distance λi(= λe, which is the characteristic shielding length)
can be estimated as ∼eniσλe = −q(a/λe)(2 + z−1

d )/4, which
is usually much less than −q since normally a/λe ∼ 10−2

and zd ∼ 3. Hence, the wake should indeed be not noticeably
influenced by the absorption.
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(7) The dust-collective effects mentioned in Sec. I are
attributed in the literature to the plasma absorption by the dust
particles [49–56]. Our model can be extended to include the
corresponding term in Eq. (1) for any given dust cloud profile.
Note that the literature indicates that this term may become
significant only at relatively large distances, e.g., of a few
hundreds ion Debye lengths (see, e.g., Fig. 3 of Ref. [51]).
Also, such effects operate in large three-dimensional par-
ticle clouds and crystals and should be insignificant for
monolayers [58,76–78], strings [79,80], clusters [81–83], and
pairs [46,84–86], which are also common in experiments.

Now that the relevance of our model has been discussed,
let us focus on our findings.

B. Effects of the inhomogeneity

The first effect is the disappearance of the oscillatory wake
structure. We note that the presence of these oscillations within
the assumption of a homogeneous plasma is model dependent.
For instance, the number of the oscillations is infinite for cold
ions and Boltzmann electrons, but becomes finite when the
ion distribution is a shifted Maxwellian (in which case the
far-field potential exhibits a monotonic r−3 dependence [4]).
In the latter model, the number of the oscillations is determined
by the flow-to-thermal velocity ratio as well as the ratio
of the temperatures. When the first ratio does not exceed a
certain value (of the order of unity), the wake exhibits a single
potential well, at least when the electron-to-ion temperature
ratio is infinitely large [11]. Hence, a homogeneous model
with a realistic ion velocity distribution (whose characteristic
width is comparable to the flow velocity [62,63]) may also
yield a nonoscillatory wake. The issue is complicated by
ion-neutral collisions, the electric field, and that the ion
velocity distribution is non-Maxwellian. A model accounting
for all these factors can still yield an oscillatory wake, as
follows from Eq. (6) of Ref. [34].

The present study suggests that the inhomogeneity tends to
suppress the oscillations. Since the inhomogeneity is usually
significant in experiments (as noted in Sec. I and discussed in
Sec. IV C), one can expect the wake oscillations unlikely to be
formed in most experiments, regardless of what homogeneous
models predict.

To shed a light on how the oscillations are suppressed
by the inhomogeneity, let us focus on the large-z behavior
of the Fourier-transformed (over r⊥) potential perturbation,
considering the case k⊥ = 0 for simplicity. This behavior is
described by

d2ϕ̂q

dz2
+ ni

v2
ϕ̂q = 0, (26)

as follows from Eq. (A3). This has a form of the oscillator
equation with a variable frequency. The latter is determined
by the unperturbed ion profile [Eqs. (13) and (14)], while the
electrons do not contribute, as the Boltzmann factor exp(−ψ)
becomes exponentially small at large z. Obviously, if ni/v

2

is considered to be constant, Eq. (26) yields an oscillatory
structure of ϕ̂q . For the collisionless Bohm sheath, at large z

we have ni/v
2 = (2/9)z−2 (plus the higher-order terms), as

follows from Eqs. (13) and (14). For this dependence, the
general solution of Eq. (26) becomes nonoscillatory, ϕ̂q =

C1z
1/3 + C2z

2/3, indicating that the inhomogeneity tends to
suppress the wake oscillations.

The second effect is that the wake becomes considerably
weaker, i.e., ϕq dips to a less negative value (see Fig. 3). This
effect is not obvious. On the one hand, in comparison to the
homogeneous case, the plasma at z > 0 (where the wake is
formed) has smaller ion and electron densities and a larger
flow velocity and thus may be considered as less capable of
considerable “overshielding,” so one might indeed expect a
weaker wake. But on the other hand, the ion deflection starts
long before the ions reach the plane z = 0. At this level they
already have a transverse velocity, which may be expected to
be larger in the inhomogeneous model (because at z < 0 the
ions are slower and thus more prone to the deflection than in
the homogeneous case), so one might expect a larger resulting
transverse displacement for z > 0 and hence a stronger wake.
Our results suggest that the former effect is stronger than the
latter one.

Yet another effect is a substantially weaker screening of
the Coulomb potential in the perpendicular direction (for a
sufficiently strong inhomogeneity). Note that for very large
ψ0, the homogeneous model predicts long-range attraction
(for a charge of the same sign) in this direction [33]. In
our inhomogeneous model the attraction has not been found,
although we did not study the regime of unrealistically large
ψ0 (
 3). Also note that such attraction was obtained, for
a certain set of parameter values, in the study of Ref. [87]
including the inhomogeneity along with ion-neutral collisions,
ionization, and close proximity of the wall. Since we found the
inhomogeneity to weaken the screening in the perpendicular
direction, we suggest that the inhomogeneity generally weak-
ens or eliminates the attraction in this direction.

On the other hand, some wake parameters are practically
unaffected by the inhomogeneity, for instance, the location of
the wake focus (i.e., of the minimum of the wake potential).
The same applies to the drag force, which is the electric force
exerted by the point charge q on itself through the plasma
perturbation. Indeed, in our dimensionless variables, the drag
force can be written as

Fdr =
∫ R−1

i

0
dk⊥ k⊥

(
1

2π

dϕ̂q

dz

∣∣∣∣
z=0−

− 1

)
, (27)

which can be obtained from, e.g., Eq. (A14). The well-known
logarithmic divergence of the integral for the drag force [11]
is avoided here by truncating the integration at k⊥ = R−1

i ,
where nonlinear effects become significant. (For simplicity
we neglect finite-temperature effects, which can come into
play before k⊥ reaches R−1

i , see Appendix C. Note that
these effects do not remove the divergence of the integral
for the drag force [11].) Here Ri is defined by Eq. (25)
and normalized by λe∞, the drag force Fdr is normalized by
q2/λ2

e∞, and 0− is an infinitesimal negative number. Since the
normalized R−1

i is usually very large (which is the condition to
employ the linear perturbation approximation), the drag force
is primarily determined by the coefficient of the asymptotic
k−1
⊥ dependence of the integrand in Eq. (27) (at large k⊥).

We have found this coefficient to be exactly the same for the
inhomogeneous and homogeneous models, which reflects the
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obvious fact that the plasma inhomogeneity is negligible at
small spatial scales (∼Ri).

C. Implications

A natural question arises as to what extent the approx-
imation of a homogeneous plasma is accurate to describe
the wakes in experiments with complex plasmas. Obviously,
the levitation position and hence the local magnitude of the
inhomogeneity depend on the particle size, so let us make
some estimates.

We use the collisionless Bohm sheath model in conjunction
with the vertical force balance −qE = Mg (where M is the
particle mass), neglecting the ion drag for the moment. This
results in the following expression for the particle radius a(ψ0)
as a function of the sheath potential at the levitation height:

a2(ψ0) = 3T 2
e zd(ψ0)

2
√

2πρge2λe∞

√√
1 + 2ψ0 + exp(−ψ0) − 2,

(28)

where ρ is the particle material mass density and zd(ψ0) =
−qe/(aTe) is the normalized dust charge, which we find from
the charging equation Ii = Ie. We assume the ion and electron
fluxes on the particle, Ii,e(ψ0), to be given by the OML theory
for cold flowing ions and Maxwellian electrons [19,21], which
yields [

1 + 2zd(ψ0)

1 + 2ψ0

]
exp [zd(ψ0) + ψ0] =

√
8m

πme
, (29)

where me is the electron mass. Here we used Eqs. (3) and (13)
to express the ion and electron densities as well as the flow
velocity as functions of ψ0. Additionally, we need to take into
account the stability condition,

d

dz

[
zd[ψ(z)]

dψ(z)

dz

]∣∣∣∣
z=0

> 0. (30)

By analyzing Eqs. (28)–(30) for typical values ρ = 1.5 g/cm3,
λe∞ = 0.5 mm, Te = 2 eV, and an argon plasma [44,45], we
find the largest dust radius for which the levitation is possible
to be a � 6.6 μm, which corresponds to ψ0 � 2.7. For smaller
particles the value of ψ0 is lower, reaching 0.5 at a � 3.4 μm,
which is a typical dust radius for experiments. At this point the
inhomogeneity still affects the wake considerably (see Fig. 3),
so the dust size must be substantially further reduced for the
homogeneous approximation to become accurate. Note that
much smaller (submicron) particles should rather be levitated
in the presheath, where Eqs. (28) and (29) are inappropriate.

To estimate the role of the ion drag, we use the following
expression:

Fdr = q2ω2
pi0

v2
0

ln �0, (31)

where the prelogarithmic factor is the coefficient of the
asymptotic k−1

⊥ dependence of the integrand in Eq. (27) at
large k⊥ (written in the dimensional variables), the Coulomb
logarithm is taken to be

ln �0 = ln

(
λi0

Ri0

)
, (32)

and the subscript “0” is used to explicitly refer to the particle
location. By using Eq. (31), we find the ratio of the ion drag
to gravity forces to be � 0.2 at ψ0 = 0.5. Since this ratio
decreases with ψ0, the ion drag should not considerably affect
the vertical force balance unless the particle is rather small.

These simple estimates indicate that for experiments with
complex plasmas, homogeneous wake models are accurate
only under rather special conditions, e.g., if the dust particles
are rather small or levitated by the thermophoresis force [88],
gas flow [89], or under microgravity conditions [90–94].
Speaking in terms of the inhomogeneity scale, the velocity
inhomogeneity length Lv must be at least an order of mag-
nitude larger than λi (the length characterizing the collective
ion response) in order for the inhomogeneity to not affect the
wake considerably (see Fig. 3 in conjunction with Fig. 2).

By modifying the wakes, the plasma inhomogeneity affects
a variety of static and dynamic phenomena. For instance,
the inhomogeneity effect on the derivative ∂ϕq/∂z|z=0 (see
Fig. 5) should influence the development of the mode-coupling
instability in two-dimensional plasma crystals [57–60,95]: The
growth rate of the instability is proportional to the above
derivative [57], so that the critical pressure (at which the
instability is suppressed by the gas friction) strongly depends
on the inhomogeneity. Furthermore, the weakening of the wake
should affect the stability of vertical dust pairs [46,84–86],
while the weakening of the screening in the perpendicular
direction implies stronger interparticle interactions in two-
dimensional plasma crystals.

Yet another implication is that since the inhomogeneity
tends to suppress the long-range attraction in the perpendicular
direction (for a charge of the same sign), it may be difficult to
experimentally realize a molecular-type interaction potential
in two-dimensional plasma crystals.

D. Conclusions

We have demonstrated that the plasma inhomogeneity
can dramatically modify the wake, making it nonoscillatory
and weaker. We expect this to occur in many laboratory
experiments with complex plasmas as the inhomogeneity in
such experiments is usually quite significant.
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APPENDIX A: CALCULATION OF ϕq FROM EQS. (15)–(18)

In this appendix, we explain steps (1)–(5) mentioned in
Sec. II B. Concerning step (1), we first express v̂z and v̂⊥ via ψ̂

by using Eqs. (16) and (17) as well as the boundary conditions
v̂z|z=−∞ = 0, v̂⊥|z=−∞ = 0, and ψ̂ |z=−∞ = 0, which yields

v̂z = ψ̂

v
(A1)
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and

v̂⊥ = ik⊥
∫ z

−∞
dz′ ψ̂(z′)

v(z′)
. (A2)

This allows us to express n̂i via ψ̂ , by substituting Eqs. (A1)
and (A2) into Eq. (15) and integrating it from z = −∞ to
an arbitrary z with the boundary condition n̂i|z=−∞ = 0. By
substituting the result into Eq. (18), we obtain an integro-
differential equation for ψ̂ . By rewriting it in terms of the
normalized ϕq [see Eq. (19)], which is step (2), we get

d2ϕ̂q

dz2
=

[
k2
⊥ − ni

v2
+ exp(−ψ)

]
ϕ̂q

+ k2
⊥
v

∫ z

−∞
dz′ ni(z

′)
∫ z′

−∞
dz′′ ϕ̂q(z′′)

v(z′′)
− 4πδ(z),

(A3)

where ϕ̂q is the Fourier transform (with respect to r⊥) of the
potential perturbation normalized as per Eq. (19).

To find the physically correct boundary condition for
Eq. (A3), which is step (3), we employ the fact that the
physically correct solution ϕ̂q(z) must vanish at z→ − ∞ after
correction for the Landau damping. At z→ − ∞, Eq. (A3)
becomes an equation with constant coefficients, so all its
possible asymptotic solutions are linear combinations of
exp(ikz∗z). The numbers kz∗ can be easily found analytically
from Eq. (A3) to be two real roots as well as two imaginary
roots with opposite signs. The numbers kz∗ can also be obtained
as the roots of the dielectric function (21) with ne0 and ni0

replaced by n∞, and v0 by v∞:

1 + 1

k2
z∗ + k2

⊥
− 1

(kz∗ − i0+)2
= 0. (A4)

The term −i0+ represents the Landau damping, as stated in
Sec. II A. By solving the above equation, we find that the
Landau damping results in infinitesimal positive imaginary
corrections to both “real” roots, meaning that the correspond-
ing solutions grow exponentially as z→ − ∞. Excluding these
roots as well as the imaginary root with a positive imaginary
part, we get only one kz∗ remaining. This kz∗ yields the
following long-distance behavior:

z→ − ∞ : ϕ̂q ∝ exp(γ z), (A5)

where

γ =

√√√√k2
⊥
2

+ k⊥

√
1 + k2

⊥
4

. (A6)

For the numerical integration, we convert Eq. (A3) into a
system of first-order differential equations by introducing the
following new variables:

χ = dϕ̂q

dz
, I1 =

∫ z

−∞
dz′ ϕ̂q(z′)

v(z′)
,

(A7)

I2 =
∫ z

−∞
dz′ ni(z

′)I1(z′).

The resulting system (for z �= 0) is

dχ

dz
=

[
k2
⊥ − ni

v2
+ exp(−ψ)

]
ϕ̂q + k2

⊥
v

I2,

(A8)
dϕ̂q

dz
= χ,

dI1

dz
= ϕ̂q

v
,

dI2

dz
= niI1.

The delta-function in Eq. (A3) leads to the following condition:

χ |z=0+ − χ |z=0− = −4π, (A9)

while ϕ̂q(z), I1(z), and I2(z) must be continuous at z = 0.
We set the starting point z = z− of the numerical integration

of Eq. (A8) to be a large negative number such that varying
the latter does not affect the wake potential in the region of
interest. (Similar variation tests are performed for all “internal”
parameters of the numerical procedure detailed below.) We use
the following boundary conditions at z = z−:

z = z− : χ = γ ϕ̂q, I1 = ϕ̂q

γ
, I2 = ϕ̂q

γ 2
, (A10)

which follow from Eqs. (A5) and (A7). We find ϕ̂q(z−) by
requiring that the numerical integration of the system (A8)
with the boundary conditions (A10) yields ϕ̂q = 0 at the end
point z = z+. The latter is a large positive number such that
varying it does not affect the wake potential in the region
of interest (similar to the starting point z−). Note that the
condition ϕ̂q(z+) = 0 implies a conducting wall at z = z+.
We use the bisection method to find ϕ̂q(z−), initially choosing
two guess values resulting in opposite signs of ϕ̂q at z = z+.
To integrate Eq. (A8), we simply use Euler’s method with a
sufficiently small fixed integration step.

A difficulty arises at this point: It turns out that unless k⊥
is not small enough, even a tiny relative difference between
the “upper” and “lower” values of ϕ̂q(z−) obtained by the
above bisection method results in a strong deviation between
the corresponding “upper” and “lower” curves ϕ̂q (z) at positive
z. Clearly, this does not hinder calculation of ϕ̂q(z−), but the
problem is to achieve the sufficient accuracy for ϕ̂q(z).

To resolve the difficulty, we employ the following method.
We stop the bisection procedure as soon as the difference
between the “upper” and “lower” values of ϕ̂q(z−) becomes
smaller than a certain threshold �min, and then we integrate
the system (A8) to the point of the z axis at which the deviation
between the corresponding “upper” and “lower” curves ϕ̂q(z)
exceeds another threshold �max(>�min). The next step is to
reduce the uncertainty of ϕ̂q at this point to �min. To do this,
we first integrate Eq. (A8) from this point using the middle
values of ϕ̂q , χ , I1, and I2 at this point as the initial conditions.
Depending on the resulting sign of ϕ̂q(z+), the above middle
values become the new “upper” or “lower” values, and this
bisection procedure continues until the uncertainty in ϕ̂q at the
above point is reduced to �min. Then we find the next point
of the z axis at which the deviation between the “upper” and
“lower” ϕ̂q curves again exceeds �max. The cycle continues
until the difference between the “upper” and “lower” ϕ̂q at z =
z+ does not exceed �max. Obviously, the numbers �min,max are
chosen to be sufficiently small. Interestingly, the computation
time turns out to be quite insensitive to �min for a fixed �max.
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The wake potential is the inverse Fourier transform (over
k⊥) of the resulting solution ϕ̂q(z,k⊥):

ϕq(r) = 1

(2π )2

∫
dk⊥ ϕ̂q(z,k⊥) exp(ik⊥ · r⊥). (A11)

We rewrite the integral in the polar coordinates k⊥, α and
integrate analytically over the angle α, which yields

ϕq(r) = 1

2π

∫ ∞

0
dk⊥ k⊥ϕ̂q(z,k⊥)J0(k⊥r⊥), (A12)

where J0 is the zero-order Bessel function of the first kind.
The integral in Eq. (A12) diverges on the line r⊥ = 0, z � 0.
Outside of that line, it converges, but for sufficiently small
|z| the convergence is quite slow at large k⊥, where the
numerical integration of the system (A8) using the method
described above turns out to be particularly time consuming. To
circumvent the difficulty, we separate the unscreened Coulomb
potential from the total potential perturbation. The Fourier
transform (over r⊥) of the Coulomb potential ϕC = 1/r is

ϕ̂C =
∫

dr⊥
exp(−ik⊥ · r⊥)√

r2
⊥ + z2

= 2π

k⊥
exp(−k⊥|z|). (A13)

The potential perturbation ϕq can then be written as the sum
of ϕC and the inverse Fourier transform of ϕ̂q − ϕ̂C:

ϕq(r) = 1

r
+ 1

2π

∫ ∞

0
dk⊥ k⊥J0(k⊥r⊥)

×
[
ϕ̂q(z,k⊥) − 2π

k⊥
exp(−k⊥|z|)

]
. (A14)

Outside of the line r⊥ = 0, z > 0, the resulting integral
converges rather fast even for small |z|. We calculate it using
Boole’s rule with a sufficiently small fixed step. Note that for
z > 0, the integrand is ∝J0(k⊥r⊥)k−1

⊥ at large k⊥. As soon as it
reaches this asymptotic dependence, we use the corresponding
proportionality coefficient to calculate the integrand for larger
k⊥ without solving Eq. (A8).

APPENDIX B: CALCULATION OF ϕq FROM EQ. (20)

To calculate the potential perturbation ϕq in the homoge-
neous approximation, we first rewrite the integral (20) in the
cylindrical coordinates kz, k⊥, α and analytically integrate over
the angle α. This yields

ϕq(r) = 1

r
+ 1

π

∫ ∞

0
dk⊥ k⊥

∫ ∞

−∞
dkz J0(k⊥r⊥) exp(ikzz)

×
⎡
⎣ 1

k2
⊥ + k2

z + ne0 − (k2
⊥+k2

z )ni0

(kzv0−i0+)2

− 1

k2
⊥ + k2

z

⎤
⎦ ,

(B1)

where the distances are normalized by λe∞, ni0 and ne0 by n∞,
v0 by v∞, and ϕq as per Eq. (19).

The next step is to analytically perform the integration over
kz in Eq. (B1) by using the residue theorem and Jordan’s
lemma. The poles of the integrand include two real numbers
unless the −i0+ term is accounted for. The latter results in
infinitesimal positive imaginary corrections to both of them.

We get for z > 0:

ϕq(r) = 1

r
+

∫ ∞

0
dk⊥ J0(k⊥r⊥)

×
⎡
⎣ 3∑

j=1

Sj (k⊥,z) − exp(−k⊥z)

⎤
⎦ , (B2)

where

Sj (k⊥,z) = ik⊥ exp[ikzj (k⊥)z]

kzj (k⊥) + ni0k
2
⊥

k3
zj (k⊥)v2

0

,

kz1,z2(k⊥) = ±
√

B(k⊥) + C(k⊥),

kz3(k⊥) = i
√

−B(k⊥) + C(k⊥), (B3)

B(k⊥) = ni0

2v2
0

− k2
⊥ + ne0

2
,

C(k⊥) =
√

B2(k⊥) + ni0k
2
⊥

v2
0

.

We numerically calculate the integral (B2) by using Boole’s
rule with a fixed integration step.

APPENDIX C: ON THE CHOICE OF THE
MAXIMUM k⊥ FOR r⊥ = 0, z > 0

For any point on the line r⊥ = 0, z > 0, the integrals over
k⊥ in Eqs. (A14) and (B1) diverge at k⊥→∞ as

∫
dk⊥ k−1

⊥ .
Outside of that line these integrals converge, behaving at large
k⊥ as

∫
dk⊥ k−1

⊥ J0(k⊥r⊥) for z > 0.
The divergence is due to the cold-ion approximation as

it is absent for a shifted Maxwellian ion distribution and
Boltzmann electrons [27]. Let us consider the latter case,
assuming a homogeneous plasma with ion and electron number
densities n∞, the Bohm ion flow velocity, and a finite ion
temperature Ti. Then the potential perturbation for r⊥ = 0 is
(in our dimensionless notations)

ϕq(z) = 1

|z| +
∫ ∞

0
dk⊥ F (z,k⊥), (C1)

where the integrand is

F (z,k⊥) = − exp(−k⊥|z|) + k⊥
π

∫ ∞

−∞
dkz exp(ikzz)

× {
k2
z + k2

⊥ + 1 + τ−1 [1 − ξZ (−ξ )]
}−1

,

(C2)

ξ (kz,k⊥) = kz√
2τ

(
k2
z + k2

⊥
) , (C3)

Z(x) = 2i exp(−x2)
∫ ix

−∞ exp(−η2) dη is the plasma disper-
sion function, and τ = Ti/Te [4,27]. For τ = 5 × 10−3 (cor-
responding to Te = 5 eV, Ti = 300 K) and z ∼ 1 we find that
F (z,k⊥) starts substantially deviating (by a factor of 2) from
the integrand of Eq. (B2) (for ψ0 = 0) at k⊥ ∼ 20, which is
the truncation value we used to plot Fig. 3.

043108-9



KOMPANEETS, IVLEV, NOSENKO, AND MORFILL PHYSICAL REVIEW E 89, 043108 (2014)

Note that the finite ion temperature affects the period of the
spatial potential oscillations downstream of the charge, so the
difference in the oscillation phase accumulates with z. Thus,
ϕq calculated at z 
 1 for zero and finite ion temperatures
may be quite different despite little change of the oscillatory
structure. For this reason, we only used z ∼ 1 to estimate the
proper truncation value.

As pointed out in Sec. IV B, nonlinear effects become
significant at k⊥ ∼ R−1

i , where Ri is defined by Eq. (25) and
normalized by λe∞. To estimate R−1

i , we consider the case
ψ0 = 0 and use typical values λe∞ = 0.5 mm, Te = 5 eV,
a = 3 μm as well as the charging equation (29), which yields
R−1

i � 40. Thus, for the above parameter values, nonlinear
effects should become significant at k⊥ larger than (or at least
of the same order as) the truncation value for finite-temperature
effects.

We have numerically confirmed that for both the inho-
mogeneous and homogeneous models, the chosen truncation
value of 20 is large enough for ϕq(r⊥ = 0; z > 0) to reach its
asymptotic logarithmic dependence on the truncation value

(except for very small z). To illustrate this, we note that
Eq. (B2) yields the following logarithmic dependence in the
limit of large truncation value ktr:

r⊥ = 0, z > 0 : ϕq = −2
√

ni0

v0
sin

(
z

√
ni0

v0

)
ln ktr. (C4)

For ktr = 20, this analytic expression quite accurately de-
scribes ϕq(z) shown in Fig. 3 for the homogeneous case (except
for very small z); for instance, the difference in the value of
ϕq at the first minimum is � 5 % for ψ0 = 0.5 and � 10 % for
ψ0 = 1.5.

We have also numerically confirmed that our inhomoge-
neous and homogeneous models yield different prelogarithmic
coefficients characterizing the logarithmic dependence of
ϕq(r⊥ = 0; z > 0) on ktr at large ktr. Thus, to see the effect
of the inhomogeneity, it is sufficient to choose ktr to be
large enough for ϕq(r⊥ = 0; z > 0) to reach its asymptotic
logarithmic dependence on ktr.
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