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In this paper we consider the surfatron acceleration of relativistic charged particles by a strong electrostatic wave
propagating in a transverse direction relative to the background magnetic field. We investigate how high-frequency
fluctuations of the background magnetic field affect the process of the resonant acceleration. We show that the
presence of fluctuations leads to particle escape from the surfatron resonance and illustrate that fluctuations of
different components of the magnetic field have quite a distinct effect on the energy gained by particles. In the
case of the same power density, the strongest effect corresponds to fluctuations of the component directed along
the background magnetic field, while the effect of the component along the wave front is substantially weaker.
This is more important for particles with a large velocity component along the background magnetic field.
We demonstrate that the dynamics of particles can statistically be described in terms of the adiabatic invariant
diffusion. We derive the corresponding diffusion equation and compare solutions of that equation with results
obtained by the explicit particle tracing.
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I. INTRODUCTION

The resonant wave-particle interaction is one of the most
challenging problems of plasma physics and has numerous
applications. There are two main effects of such interaction:
scattering of particles by waves and capture of particles by a
wave [1]. Both effects have many manifestations (see [2–4]),
but of all the mechanisms of acceleration of captured particles,
the surfatron mechanism is probably the simplest and the
most effective one. The term “surfatron” acceleration was
introduced in [5], where the resonant interaction of relativistic
electrons with an electrostatic wave in the presence of a weak
background magnetic field was considered. Electrons captured
by the wave move with the wave and are accelerated along the
wave front. This type of motion gives rise to the name of this
process, i.e., “surfatron.”

Classical surfatron acceleration corresponds to the plasma
configurations typical for two problems: the Landau damping
in the presence of a weak magnetic field [6] and the resonant
acceleration of particles by shock waves [7]. In both systems,
charged particle acceleration along the wave front plays an
important role. Starting from the first papers on the topic
(e.g., [6]) and up to now [8,9], the influence of captured parti-
cles on Landau damping in the presence of a weak background
magnetic field is actively studied. Particle acceleration along
the wave front of a strong quasiperpendicular shock wave
is considered to be a mechanism capable of describing the
formation of high-energy populations [10]. Such a mechanism
can occur in interplanetary shock waves (see [11–13] and
references therein), in the solar corona [14,15], in planetary
magnetospheres [16], and in various astrophysical shocks
(see [17,18] and references therein). A similar mechanism of
particle acceleration was found in laboratory experiments (so
called “surface” acceleration; see [19]).

While the first investigations of the surfatron acceleration
have been done for systems with electrostatic waves [5,6],
the same effects of capture and acceleration can be found
for electromagnetic waves propagating transversely to the
background magnetic field [20–22]. Moreover, the effect of

the surfatron acceleration of electrons by electromagnetic
waves was reproduced in laboratory experiments [23]. For such
systems, the mechanism of the particle acceleration is often
called the “magnetic trapping” to distinguish it from the clas-
sical surfatron [24]. However, there is an important difference
between the systems with electrostatic and electromagnetic
waves. Electromagnetic waves can capture nonrelativistic
particles into the regime of unlimited acceleration [22,25],
while capture by electrostatic waves is unlimited only for
relativistic particles [5,26–28].

There are several generalizations of the mechanism of the
surfatron acceleration for more complex systems: effects of
wave front curvature were considered in [29]; it was shown
that the surfatron mechanism can be realized in systems with a
curved background magnetic field [30]; the combination of the
surfatron acceleration with gyroresonances was investigated in
[31]; effects of the obliqueness of the wave propagation relative
to the background magnetic field for electrostatic wave [21,27]
and electromagnetic wave [32–34] were also investigated.

The surfatron acceleration is a consequence of capture into
resonance, which is a fine resonant effect of the wave-particle
interaction. Thus the peculiarities of captured particle motion
could be expected to be very sensitive to any fluctuations of
system parameters, such as the magnitude of the background
magnetic field. Stability of the captured motion is the topic
of this paper. It was shown before for the system where
nonrelativistic particles were trapped by an electromagnetic
wave that fast fluctuations of the background magnetic field
put the upper limit on the duration of the captured motion and
reduced the corresponding energy gain [35]. In the present
paper we consider effects of magnetic field fluctuations on
the classical electrostatic surfatron acceleration of relativistic
particles.

II. MAIN EQUATIONS

We consider the dynamics of relativistic particles in the
system with the background magnetic field B0 directed along
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FIG. 1. (a) Schematic view of the system. (b) Phase portraits on
the resonance plane.

the z axis and the electrostatic wave defined by the potential
ϕ = �0 sin(kφ). Here phase φ = x − vφt ; k and vφ are the
wave number and the phase velocity, respectively. A schematic
view of the system is presented in Fig. 1(a). We also take into
account fluctuations of the magnetic field B� = {0,By,Bz} (a
corresponding vector potential is A� = {0,Bzx, − Byx}). Bx

fluctuations are not taken into account (see the Discussion
section for an explanation). Fluctuations are assumed to be
weak compared with the background magnetic field. Without
the loss of generality, the mean value of the fluctuations can be
assumed to be zero: nonzero mean values of the Bz distribution
can be accounted for by changing B0, while nonzero mean
values of By can be transformed into mean values of Bz

by a corresponding rotation of the coordinate system around
the x axis. For all numerical simulations we assumed the
distributions of Bz, Bx fluctuations to be Gaussian. However,
the obtained analytical estimates are valid for non-Gaussian
distributions as well. We assume that components of the
magnetic field B� change randomly with a period τ , i.e., the
value of B� is constant during the time interval τ , and at
the moments tn = nτ (n = 0,1,2 . . .) the value of B� changes
randomly. We consider systems where τ is the smallest of the
time scales.

For the sake of the simplicity of the main equations we
used a model of random magnetic field fluctuations that are
synchronized over the whole space. Actually, that assumption
is not important for our results and conclusions. In our
numerical simulations, we independently defined the random
magnetic field along each particle trajectory: in other words,
we assumed that magnetic field, as a given particle sees it,
changes randomly (regardless of what happens in the rest of
the space). This simplification seems reasonable because we
consider individual particle trajectories (to model dynamics
of the particle ensemble we generate a new realization of

a random magnetic field for each trajectory). In this case,
magnetic field changes randomly with the frequency 1/τ along
a given trajectory. The proposed model implies that during
every time interval ∼τ a particle covers the distance smaller
than a spatial scale of inhomogeneity of the magnetic field
fluctuations. This model can describe the charged particle
interaction with high-frequency magnetic field fluctuations
when the Doppler shift due to particle motion is smaller
than fluctuation frequency. Such high-frequency fluctuations
of magnetic field are observed in the near-Earth environment,
[36], and, especially, at the vicinity of the Earth bow shock
[37,38].

The Hamiltonian of a particle with charge q and mass m in
the system under consideration can be written as

H = c

√
c2m2 + p2

x + �2
z + �2

y + q�0 sin(kφ),

�z = pz − q

c
xBy,

�y = py + q

c
x(B0 + Bz),

where p = {px,py,pz} is the particle canonical momentum
and c is the speed of light. We use the following dimension-
less variables: p → p/mc, u = vφ/c, ϕ0 = q�0/mc2, H →
H/mc2, r → r�0/c, k → kc/�0, t → �0t , b = B�/B0

where �0 = qB0/mc is the Larmor frequency. Because ϕ0

is constant, changes (growth) in γ correspond to the increase
of the particle energy. For the numerical simulations presented
in the paper we used τ�0 = 10−2. We consider dynamics of
high-energy particles whose Larmor radius is much larger than
the wavelength, which means k � 1, while the corresponding
phase velocity of the wave is u < 1.

In dimensionless variables the Hamiltonian takes the form

H =
√

1 + p2
x + (pz − xby)2 + [py + x(1 + bz)]2

+ϕ0 sin(kφ). (1)

Because Hamiltonian (1) does not depend on the y and z

coordinates, we have py = const, pz = const. The transfor-
mation x → x − py effectively replaces the term py in the
Hamiltonian with the terms of order pyby and pybz. Both of
these terms are small as |b| � 1 and they do not depend on
x (we show below that x grows significantly). Thus, we can
neglect them. As a result, py disappears from the Hamiltonian.
However, unlike py , in a general case pz cannot be excluded
from the Hamiltonian in the similar manner: the Hamiltonian
does not depend on pz only for the system with by = 0.

After the terms with py are removed from the Hamiltonian
(1), the equations of motion become

γ ẋ = px,

γ ṗx = by(pz − xby) − x(1 + bz)
2 + γ kϕ0 cos(kφ),

where

γ = H − ϕ0 sin(kφ)

=
√

1 + p2
x + (pz − xby)2 + x2(1 + bz)2.
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III. THE SYSTEM WITHOUT MAGNETIC
FIELD FLUCTUATIONS

We start by considering the system without fluctuations of
the magnetic field (b = 0). In this case the Hamiltonian is

H =
√

1 + p2
x + x2 + ϕ0 sin(kφ).

The corresponding equations of motion are

γ ẋ = px,
(2)

γ ṗx = −x − kϕ0γ cos(kφ),

where γ = √
1 + p2

x + x2 and φ = x − ut . Thus we have the
system with one and a half degrees of freedom. We use the
generating function M = (x − ut)Pφ + xPx to introduce new
variables (x,Px), (φ,Pφ):

px = ∂M

∂x
= Pφ + Px, φ = ∂M

∂Pφ

= (x − ut),

K =
√

1 + p2
x + x2 + ϕ0 sin(kφ) + ∂M

∂t

=
√

1 + (Pφ + Px)2 + x2 + ϕ0 sin(kφ) − uPφ,

where K is the new Hamiltonian. The corresponding equations
of motion are

γ ẋ = Pφ + Px,

γ Ṗx = −x,

γ φ̇ = Pφ − γ u + Px,

Ṗφ = −kϕ0 cos(kφ)

and

γ =
√

1 + (Pφ + Px)2 + x2.

In the vicinity of the Cherenkov resonance (φ̇ ≈ 0) we have
Pφ + Px = γ u. Substituting this expression into the above ex-
pression for γ , we obtain γ =

√
1 + u2γ 2 + x2. This equation

has the solution γ = γφ

√
1 + x2 where γφ = 1/

√
1 − u2. This

is the expression for γ in the resonance, while the system of
equations acquires the form

ẋ = u,

γ Ṗx = −x,
(3)

(φ̇ + u)
√

1 + x2/

√
1 − (φ̇ + u)2 = Pφ + Px,

Ṗφ = −kϕ0 cos(kφ).

The third equation can be expanded around φ̇ = 0 as

γ u + γ 2
φ γ φ̇ = Pφ + Px.

We introduce the new variable pφ = Pφ − P res
φ , where P res

φ =
γ u − Px , and rewrite the last two equations in (3) as

γ γ 2
φ φ̇ = pφ,

(4)
ṗφ = −xγ 2

φ /γ − kϕ0 cos(kφ).

To derive these equations we kept terms ∼φ̇ and neglected the
terms ∼φ̇2 (see Appendix B and Ref. [25]). We also took into

account that kφ changes substantially faster than x and γ due
to the condition k � 1.

System (4) corresponds to Hamiltonian

Hφ = 1

2γ γ 2
φ

p2
φ + xγ 2

φ

γ
φ + ϕ0 sin(kφ) (5)

with (φ,pφ) being a canonical couple. The phase portrait of
this system is shown in Fig. 1(b) for x > 0. One can see that for
xγ 2

φ /γ < kϕ0 (left panel) there are closed trajectories in the
phase plane (φ,pφ), while for xγ 2

φ /γ > kϕ0 (right panel) all
trajectories are open. Particles moving along closed trajectories
oscillate around the resonance pφ = 0. The separatrix (shown
by the solid curve) separates closed and open trajectories in the
phase plane. If the area S surrounded by the separatrix grows
with time, new particles can be captured into the resonance
region. The expression for S has the form

S =
∮

pφdφ = γφ

√
8γ

×
∫ φ∗∗

φ∗

√
x

γ
γ 2

φ (φ∗ − φ) + ϕ0 sin(kφ∗) − ϕ0 sin(kφ)dφ,

(6)

where (φ∗,φ∗∗) are turning points of trapped particles moving
along the separatrix; see Fig. 1(b).

For closed trajectories we can introduce the adiabatic
invariant as

Iφ =
∮

pφdφ = γφ

√
2γ

×
∮ √

Hφ − x

γ
γ 2

φ φ − ϕ0 sin(kφ)dφ,

where the integration is performed along trajectories in
the phase plane (φ,pφ) [see Fig. 1(b)]. Conservation of
Iφ guarantees the perpetuity of capture of particles in the
resonance region: due to the growth of S, after capture particle
trajectories go away from the separatrix and cannot cross it
again. If the condition xγ 2

φ /γ < kϕ0 is satisfied for x → ∞
(i.e., γφ < kϕ0), then once captured the particles stay in the
resonance forever [5].

An example of a particle trajectory obtained by numerical
integration of system (2) is presented in Fig. 2. Initially the
particle rotates around Larmor trajectory with approximately
constant energy γ ≈ const (energy fluctuations correspond to
variations of the electrostatic field ∼ϕ0 cos φ). After a certain
time, the particle is captured by the wave and starts moving
with the wave (ẋ ≈ u). The particle energy γ grows linearly
with time γ ∼ (ut). The invariant Iφ is conserved, while
the area surrounded by the separatrix S grows with time as
S ∼ √

γ ∼ (ut)1/2; see [35]. This is the classical surfatron
acceleration discovered in [5] and described by many authors
(see, e.g., [21,26,27]).

In the course of acceleration, the particle trajectory in
the phase plane (φ,pφ) evolves [see panel Fig. 2(d)]. The
amplitude of oscillations in φ decreases (the particle goes
down to the bottom of the potential well). Thus, together with
the conservation of Iφ , it yields the increase of the amplitude
of pφ oscillations.
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(a)

(b)

(c)

(d)

FIG. 2. A characteristic particle trajectory in the state of capture
in the absence of fluctuations. (a) Projection on the (x,px) plane. (b)
The adiabatic invariant Iφ for time interval in capture. (c) The particle
energy γ as a function of time. (d) Three fragments of the particle
trajectory in the (φ,pφ) plane.

Oscillations of captured particles in the (pφ,φ) plane result
in oscillations of (x,ẋ) around the resonant values (uφt,uφ).
To estimate a frequency of these oscillations, �φ , we expand
Hamiltonian Hφ around the bottom of the potential well, φ0

[see Fig. 1(b)]:

Hφ ≈ 1

2γ γ 2
φ

p2
φ − 1

2
k2ϕ0 sin(kφ0)(φ − φ0)2.

From this expression we obtain

�φ ≈
√

k2ϕ0/γ γ 2
φ , (7)

i.e., the frequency of oscillations decays with time as ∼1/
√

ut .

IV. ROLE OF MAGNETIC FIELD FLUCTUATIONS

In this section we describe effects of magnetic field
fluctuations on particle acceleration. We consider separately
bz 
= 0 and by 
= 0 fluctuations. These fluctuations can be
described by the two-dimensional system with (x,px) and
(φ,Pφ) variables.

The persistence of the particle acceleration is a consequence
of the conservation of the adiabatic invariant Iφ . To consider
effects of fluctuations we describe evolution of Iφ in systems
with finite bz or by . We show that every (random) change of bz

or by field causes a corresponding jump of the adiabatic invari-
ant, �Iφ . In the following three subsections we show effects
of magnetic field fluctuations on individual trajectories and
derive the expressions for �Iφ . We consider the systems with
by 
= 0 for particles with pz ∼ 0 and with finite pz separately.

Destruction of the adiabatic invariant Iφ may result in
particle escape from the resonance with the wave. Thus,
magnetic field fluctuations limit the time which particles
spend in the resonance. This effect resembles the well known
effect of resonance broadening when the particle diffusion due
to the field fluctuations results in the limitation of time of
wave-particle resonant interaction [39].

As magnetic field fluctuations are random, any individual
trajectory cannot give a reliable estimate of the overall
particle energization. To obtain typical energy of accelerated
particles, we considered a particle ensemble. For each set
of parameters, we numerically integrated 104 trajectories—
each corresponding to an individual particle. Initially all the
particles were located in the resonance region with closed
trajectories in the (φ,pφ) plane [see Fig. 1(b)]. As different
particles gets captured at different time moments, each particle
experiences a different sequence of fluctuations. Therefore,
for each trajectory we generated a new realization of random
values of the magnetic field fluctuations b. Each trajectory
was integrated until the particle escaped from the resonance
and its final (exit) energy was recorded. Then the final energy
distribution was assembled.

A. Influence of fluctuations of Bz component

We start with the system with bz 
= 0 and by = 0. In this
case the Hamiltonian can be written as

H = γ + ϕ0 sin(kφ),

γ =
√

1 + p2
x + x2(1 + bz)2.

The corresponding equations of motion are

γ ẋ = px,
(8)

γ ṗx = −x(1 + bz)
2 − kϕ0γ cos(kφ).

We use the same generating function M = (x − ut)Pφ + xPx

to introduce new variables Px and Pφ and Hamiltonian K as
in the previous section. Equations of motion become

γ ẋ = Pφ + Px,

γ Ṗx = −x(1 + bz)
2,

γ φ̇ = Pφ − γ u + Px,

Ṗφ = −kϕ0 cos(kφ),
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where

γ =
√

1 + (Pφ + Px)2 + x2(1 + bz)2.

In the vicinity of the resonance φ̇ = 0 we have

ẋ = u,

γPx = −x(1 + bz)
2,

(9)
γ φ̇ = Pφ − γ u + Px,

Ṗφ = −kϕ0 cos(kφ),

where we used Pφ + Px ≈ γ u to obtain γ =
γφ

√
1 + x2(1 + bz)2 (see the previous section for details). In

terms of pφ = Pφ − P res
φ we can rewrite (9) as

γ γ 2
φ φ̇ = pφ,

ṗφ = −x(1 + bz)
2γ 2

φ /γ − kϕ0 cos(kφ).

This is a Hamiltonian system with Hamiltonian

Hφ = 1

2γ γ 2
φ

p2
φ + x(1 + bz)2γ 2

φ

γ
φ + ϕ0 sin(kφ). (10)

We assume that Iφ can be calculated for unperturbed system
(5), while jumps of Iφ correspond to perturbation ∼bz. To
estimate the jump of the adiabatic invariant �Iφ at a single
change of the magnetic field, we use the expression �φ =
2π∂Hφ/∂Iφ [40], which yields �Iφ ≈ 2π�Hφ/�φ . Change
of energy �Hφ corresponds to terms ∼bz and can be estimated
as the difference between Hamiltonians (5) and (10):

�Hφ = x
(
2bz + b2

z

)
γ 2

φ

γ
�φ.

As γ γ 2
φ φ̇ = pφ , see (5), we have �φ = τpφ/(γ γ 2

φ ). As a
result, we can derive the expression for �Iφ :

�Iφ = 2π

�φ

pφ

γ 2

(
2bz + b2

z

)
xτ

= 2π√
γ 3

φ k2ϕ0

τpφ

(
2bz + b2

z

)
x

[1 + x2(1 + bz)2]3/4
.

Here we can use an approximate expression (7) for the
frequency of oscillations �φ .

Assuming the statistical independence of pφ and bz, we
obtain that the average jump is 〈�Iφ〉 ∝ ∮

pφdt = 0 and the
variance of �Iφ is

Var(�Iφ) = (2π )2

γ 3
φ k2ϕ0

τ 2�z(x)Var(pφ),

where

�z(x) = Var

( (
2bz + b2

z

)
x

[1 + x2(1 + bz)2]3/4

)
.

Here we took into account that when the value of k is large
enough x changes slowly (i.e., x ≈ const for one period of
particle oscillation inside the resonance). Profiles of �z(x) for
various σz = Var(bz) are shown in Fig. 3 (we considered a
Gaussian distribution of bz). One can see that �z grows with

FIG. 3. (a) Profiles of the function �z(x). (b) The values of �̄z as
a function of σz = Var(bz).

x for small x. For small amplitudes of bz fluctuations the
maximum of �z(x) is proportional to ∼σz.

For large x the function �z(x) decreases as 1/x:

�z(x) ≈ 1

x
Var

(
2bz + b2

z

(1 + bz)3/2

)
= 1

x
�̄z.

We plot �̄z as a function of σz = Var(bz) in Fig. 3(b). Factor
1 + bz in the denominator of �̄z leads to a rapid increase of �̄z

with σz. This is drastically different from the nonrelativistic
system, where �̄z ∼ σz (see [35]).

We use the definition of Iφ for unperturbed system to derive
the expression for Var(pφ):

2π

�φ

1

γ γ 2
φ

Var(pφ) ≈
∮

p2
φ

γ γ 2
φ

dt = Iφ.

Thus

Var(�Iφ) = 2πγ τ 2

γφk2ϕ0
�φIφ�z(x) = 2πτ 2Iφ

γ 2
φ

√
k2ϕ0

γ 1/2�z(x).

Var(�Iφ) depends on x as

Var(�Iφ) ∼ γ�φ�z(x) ∼ γ 1/2�z(x).

The function γ 1/2�z(x) has the asymptote ∼x−1/2. We finally
get for large x

Var(�Iφ) ≈ 2π√
γφk2ϕ0

τ 2 Iφ�̄z

x1/2
.

We arrived at a classical random walk of particles in the
space Iφ > 0. Recall that all the captured particles have
the value of Iφ less than the value S of the area under
the separatrix. When Iφ for a certain particle trajectory reaches
S, the corresponding particle leaves the resonance. To illustrate
this effect we integrated system (8) numerically (see Fig. 4).
Fig. 4(a) shows a characteristic particle trajectory in the (x,px)
plane: initially the particle rotates around the background
magnetic field, then the particle is captured and starts moving
along the resonant trajectory x ≈ ut and px ≈ uγφ(ut). After
a certain time the particle escapes from the resonance and
starts rotating around the background magnetic field with an
increased energy (the radius of the corresponding Larmor
circle is larger than the initial radius). The evolution of the
particle energy is shown in Fig. 4(c). Panel (b) demonstrates
the evolution of the invariant Iφ (value of S is shown by the grey
curve). The adiabatic invariant Iφ randomly changes along the

043106-5



ARTEMYEV, VAINCHTEIN, NEISHTADT, AND ZELENYI PHYSICAL REVIEW E 89, 043106 (2014)

FIG. 4. A characteristic particle trajectory in the state of capture
in the presence of fluctuations. (a) Projection on the (x,px) plane. (b)
The adiabatic invariant Iφ for the time interval in capture. The solid
line is value of the area under separatrix S. (c) The particle energy γ as
a function of time. The parameters are σz = 0.03, u = 0.5, kϕ0 = 20,
k = 100.

trajectory due to magnetic field fluctuations. One can see that
the particle escapes from the resonance just when Iφ becomes
larger than S. We show fragments of the particle trajectory in
the (φ,pφ) phase plane in Fig. 5 for three moments of time
marked in Fig. 4(b) by letters. Indeed, the area surrounded
by trajectories (or the invariant Iφ) grows with time [compare
Fig. 5 and Fig. 2(d) where similar trajectories are shown for
the system without magnetic field fluctuations].

The final energy distribution for 104 trajectories—each
corresponding to an individual particle—is presented in Fig. 6.
One can see that the increase of the fluctuation level, σz, results
in the decrease of the characteristic final energy gained by
particles (i.e., the decrease of time which particles spend in
capture).

B. Influence of fluctuations of By component:
Particles with pz ∼ 0

In this section we consider the influence of by fluctuations
on acceleration of particles with pz ∼ 0. The corresponding
Hamiltonian is

H = γ + ϕ0 sin(kφ),
(11)

γ =
√

1 + p2
x + x2

(
1 + b2

y

)
.

The change of variables with the same generating function as
the one used in Sec. IV A leads to equations of motion

γ ẋ = Pφ + Px,

γ Ṗx = −x
(
1 + b2

y

)
,

γ φ̇ = Pφ − γ u + Px,

Ṗφ = −kϕ0 cos(kφ),

where

γ =
√

1 + (Pφ + Px)2 + x2
(
1 + b2

y

)
.

In the vicinity of the resonance φ̇ = 0 we have

γ γ 2
φ φ̇ = pφ,

ṗφ = −x
(
1 + b2

y

)
γ 2

φ

/
γ − kϕ0 cos(kφ),

where pφ = Pφ − P res
φ and P res

φ = γ u − Px . This is a Hamil-
tonian system with the Hamiltonian

Hφ = 1

2γ γ 2
φ

p2
φ + x

(
1 + b2

y

)
γ 2

φ

γ
φ + ϕ0 sin(kφ).

Following Sec. IV A, we obtain the expression for the jump of
the adiabatic invariant �Iφ :

�Iφ = 2π

�φ

pφ

γ 2
b2

yxτ = 2π√
γ 3

φ k2ϕ0

τpφ

b2
yx[

1 + x2
(
1 + b2

y

)]3/4 .

Statistical independence of pφ and by values results in a zero
value of averaged jump 〈�Iφ〉 ∼ ∫

pφdt = 0. For the variance
Var(�Iφ) we have

Var(�Iφ) = (2π )2

γ 3
φ k2ϕ0

τ 2Var(pφ)�y(x)

= 2π

γφk2ϕ0
τ 2γ�φIφ�y(x)

= 2πτ 2Iφ

γ 2
φ

√
k2ϕ0

γ 1/2�y(x),

where

�y(x) = x2Var

(
b2

y[
1 + x2

(
1 + b2

y

)]3/4

)
.

Here once again we assumed that x changes slowly and x ≈
const during one period of particle oscillations in the resonance
∼2π/�φ .

Profiles of �y(x) are presented in Fig. 7(a) for various
values of σy = Var(by). Comparison of Figs. 3 and 7(a) shows
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FIG. 5. Three fragments of the particle trajectory in the (φ,pφ) plane for the A, B, and C moments of time indicated in Fig. 4.

that both functions �z(x) and �y(x) have similar profiles, but
absolute values of �z(x) are substantially larger than values of
�y(x). For example, for a small amplitude of by fluctuations
the maximum value of �y(x) is proportional to Var(b2

y) ∼ σ 2
y .

For large enough values of x, we have

�y(x) ≈ 1

x
Var

(
b2

y(
1 + b2

y

)3/4

)
= 1

x
�̄y

and

Var(�Iφ) ≈ 2π√
γφk2ϕ0

τ 2 Iφ�̄y

x1/2
.

Characteristic profiles of �̄y as a function of σy is shown in
Fig. 7(b).

Typical particle trajectories in the systems with bz and by

demonstrates the qualitatively similar behavior: we observe
particle capture and escape from the resonance with a certain
energy gain. The smallness of �̄y in comparison with �̄z

should manifest itself in the energy distributions of a particle
ensemble. We performed an integration of 104 trajectories

FIG. 6. Energy distributions for four values of σz = Var(bz). The
grey strips indicate the initial energy range.

as was done in Sec. IV A. Final energy distributions are
shown in Fig. 8. Comparison of Figs. 6 and 8 shows that
for the same values σz = σy = 0.08 and σz = σy = 0.12 the
maximum energies differ by more than one order of magnitude:
particles are accelerated more effectively in the system with
bz = 0, by 
= 0 in comparison with the system with bz 
= 0,
by = 0.

C. Influence of fluctuations of By component:
Particles with pz �= 0

In this section we consider the influence of by fluctuations
on acceleration of particles with finite values of pz. The
corresponding Hamiltonian is

H = γ + ϕ0 sin(kφ),
(12)

γ =
√

1 + p2
x + x2 + (pz − xby)2

and pz = const. Using a renormalization of Hamiltonian
H → H/

√
1 + p2

z , (px,x) → (px,x)/
√

1 + p2
z , and ϕ0 → ϕ0/√

1 + p2
z , we get

H = γ + ϕ0 sin(kx − kvφt),

γ =
√

1 + p2
x + (

1 + b2
y

)
(x − x0)2,

x0 = bypz/
(
1 + b2

y

)
.

Here we assumed that by is small enough to use the approxi-
mation 1 + p2

z/(1 + b2
y) ≈ 1 + p2

z . The same transformations
as in Sec. IV B result in equations of motion in the vicinity of

FIG. 7. (a) Profiles of the function �y(x). (b) The values of �̄y as
a function of σy = Var(by).
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FIG. 8. Energy distributions for four values of σy = Var(by). The
grey strips indicate the initial energy range.

the resonance φ̇ = 0; we have

γ γ 2
φ φ̇ = pφ,

ṗφ = −(x − x0)
(
1 + b2

y

)
γ 2

φ

/
γ − kϕ0 cos(kφ).

The corresponding Hamiltonian is

Hφ = 1

2γ γ 2
φ

p2
φ + (x − x0)

(
1 + b2

y

)
γ 2

φ

γ
φ + ϕ0 sin(kφ).

The jump of the adiabatic invariant �Iφ is

�Iφ = 2π

�φ

pφ

γ 2

[
b2

yx − x0
(
1 + b2

y

)]
τ

≈ 2π√
γ 3

φ k2ϕ0

τpφ

b2
yx − x0[

1 + x2
(
1 + b2

y

)]3/4 .

Here we took into account that |by | � 1 to exclude the constant
term b2

yx0 ∼ b3
y . For the variance Var(�Iφ) we have

Var(�Iφ) = 2πτ 2γ�φIφ

γφk2ϕ0
�y(x,pz) = 2πτ 2Iφ

√
γ

γ 2
φ

√
k2ϕ0

�y(x,pz),

where

�y(x,pz) = Var

(
b2

yx − x0[
1 + x2

(
1 + b2

y

)]3/4

)
.

Profiles of �y(x,pz) are shown in Fig. 9 for various values of
σy = Var(by) and pz. An increase of pz leads to larger values of
�y(x,pz) for small x compared with �y(x,0). For small x, large
values of �y(x,pz) result in particle escape from the resonance
in the initial stage of acceleration. The function �y(x,pz) has
the same asymptote for large x as �y(x,0) ∼ 1/x. Therefore,
the long-time evolution of the system does not depend
on pz. Similar to Sec. IV B, we performed the numerical

FIG. 9. Profiles of function �y(x,pz) for pz = 0.25 (left panel)
and pz = 1 (right panel). Black dotted curves correspond to the
function �y(x) for pz = 0.

integration of 104 trajectories to assemble energy distributions
(see Fig. 10). The comparison of the energy distributions
for pz = 0.25 and pz = 1.0 confirms our conclusions: for
pz = 1.0 there is a large amount of particles which escaped
from the resonance with small energies (i.e., in the beginning
of acceleration). The distribution of particles which stay in
resonance for a long time is similar for both values of pz.
(When normalized by the number of particles that were not
released from the resonance immediately, the distribution
for pz = 0 and pz = 1.0 almost overlap.) Moreover, the
increase of σy leads to the decrease of the duration of particle
acceleration. As a result, for large σy there is no difference
between the energy distributions obtained for pz = 0.25 and
pz = 1.0.

V. DIFFUSION EQUATION

Due to a random nature of magnetic field fluctuations,
a behavior of Iφ for any individual trajectory cannot give

FIG. 10. Energy distributions for four values of σy = Var(by) and
two values of pz. The grey strips indicate the initial energy range.
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any statistically significant quantitative information. Thus, we
need to consider an ensemble of trajectories with a certain
distribution of adiabatic invariants F (Iφ). The evolution of
F (Iφ) can be described by the diffusion equation

∂F

∂t
= ∂

∂Iφ

(
DIφIφ

∂F

∂Iφ

)

with the diffusion coefficient DIφIφ
= Var(�Iφ)/τ .

For the nonrelativistic system it was shown that the
distribution of the gained energy obtained from integration of
full trajectories for the particle ensemble is very similar to one
obtained from consideration of the ensemble of trajectories in
the one-dimensional space of invariants Iφ with random jumps
�Iφ , [35]. In this section, we consider the diffusion equation
for the relativistic system with bz 
= 0 and by 
= 0 fluctuations.
For the sake of simplicity we consider here only systems with
pz ∼ 0. The diffusion coefficient is given by

DIφIφ
≈ 2πτIφ

γ 2
φ

√
k2ϕ0

γ 1/2(t)�(t)

and �(t) = �z,y(t). In the course of acceleration the particle
energy γ grows almost linearly with time (γ ≈ γφut). Thus it
is convenient to introduce the time scale t0 = γ0/γφu where
γ0 is the initial energy. In this case the area surrounded by
the separatrix can be written as S ∼ √

γ = S0
√

t/t0 where
S0 is the value of S at the initial moment of time. At
this moment the adiabatic invariants of all the particles are
equal to S0 and we can introduce the initial distribution as
Ft=t0 = δ(Iφ/S0 − 1) with δ(·) is the Dirac δ function. We
use the new dimensionless time variable t ′ = (t/t0)1/2 and
dimensionless invariant I = Iφ/S0, and rewrite the diffusion
equation as

∂F

∂t ′
= Dg(t ′)

∂

∂I

(
I
∂F

∂I

)
,

Ft ′=1 = δ(I − 1) (13)

where

D = 4πτS0�̄

γ 2
φ u

√
k2ϕ0/γ0

,

g(t ′) = √
ut0t

′[1 + (ut0)2t ′4]1/4 �(t ′)
�̄

.

The function g(t ′) → 1 as t ′ → ∞. The constant coefficient D
depends only on system parameters (u, ϕ0, k, τ ) and the initial
energy of particles γ0 [the initial value of the area, S0, depends
on γ0 and on ϕ0, k; see Eq. (6)]. Particles escape from the
resonance when I > t ′ (i.e., Iφ > S = S0

√
t/t0). We solved

system (13) numerically and at each time step we excluded
from the distribution F (I,t) the part with I > t ′. We collected
these excluded particles as the “exit” distribution Q.

The solution of (13) for different moments of time is
presented in Fig. 11. One can see that the value of F (I,t)
slowly shifts towards large values of I and becomes smoothed
(without a central maximum). This is a typical behavior of
solutions of diffusionlike equations.

The distribution function of excluded particles Q can be
recalculated to the energy distribution for a given moment t .
Particles escape from the resonance when I = t ′ ≈ √

γ /γ0.

FIG. 11. The distribution function F (I,t) for six moments of
time: t1 = 1.1t0, t2 = 1.5t0, t3 = 2t0, t4 = 6t0, t5 = 10t0, and t6 =
30t0. System parameters correspond to magnetic field fluctuations
by 
= 0 with σy = 0.08. The initial distribution is shown by grey
color.

For a given moment t we obtain the energy distribution Q(γ ),
which contains all particles escaped from the resonance before
this moment. Late in the evolution, when 90% of particles
escaped from the resonance, these distributions are shown for
three parameter sets in Fig. 12: with by 
= 0 fluctuations for
two values of σy and with bz 
= 0 fluctuations for one value
of σz. Comparison of Fig. 12 with Figs. 6 and 8 shows that
distributions Q(γ ) can reproduce main characteristics of en-
ergy distributions obtained by integrating particle trajectories.
We observe the maximum of Q(γ ) distribution for σy = 0.08
at the same energy as was expected from Fig. 8, while the
characteristic energies for other distributions are also similar.
The distribution of Q(γ ) has a more gradual tail compared
with the profiles shown in Figs. 6 and 8. This is the effect of a
finite number of particles in the numerical ensembles used in
Figs. 6 and 8: for large γ (i.e., large values of energy) when
relatively few particles are left in the resonance, the statistics
cannot be representative.

FIG. 12. Energy distributions Q(γ ) for three systems. Q(γ ) is
renormalized for comparison with Figs. 6 and 8.
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VI. DISCUSSION AND CONCLUSIONS

In the present paper we studied the influence of magnetic
field fluctuations on the relativistic surfatron acceleration in
a strong electrostatic wave. We restricted our consideration
to magnetic field fluctuations along the direction of particle
acceleration (by 
= 0) and along the background magnetic
field (bz 
= 0), while fluctuations along the direction of wave
propagation (bx 
= 0) are not taken into account. The Bx

component of magnetic field cannot be included into the
Hamiltonian without introducing the additional degree of
freedom, i.e., the corresponding vector potential will have the
component ∼Bxy (or ∼Bxz). Thus, fluctuations bx 
= 0 can
be considered only for the two dimensional system where the
canonical momentum py (or pz) is not conserved. Although
the violation of conservation of py occurs only in the presence
of random fluctuations (for the unperturbed system we still
can use py = const), this generalization requires a separate
study. Here we only mention that nonzero mean value 〈bx〉 of
bx is analogous to the oblique wave propagation when the
wave phase is φ ∼ x cos θ + z sin θ − ut and tan θ ∼ 〈bx〉.
The relativistic system with an electrostatic oblique wave
was considered in [27]. Surfatron acceleration by oblique
electromagnetic waves was considered for nonrelativistic
systems [33,34].

Comparison of the obtained dependence of Var(�Iφ) on
time with the one derived for the nonrelativistic system
in [35] shows the main effect of relativistic energies. For
the relativistic system we have Var(�Iφ) ∼ t−1/2 (i.e., the
more time has passed since the capture, the smaller are
typical values of �Iφ jumps). Therefore, the corresponding
diffusive growth of the adiabatic invariant is 〈Iφ〉 ∼ t1/2,
which is substantially weaker than the one obtained for the
nonrelativistic system 〈Iφ〉 ∼ t5/2 (see [35]). Thus, the process
of acceleration of relativistic particles is more stable (robust).
This effect can be explained with the help of comparison of
Lorentz forces corresponding to magnetic field fluctuations.
For the nonrelativistic system the amplitude of this force
∼vyδBz ∼ utδBz grows with time, while for the relativistic
system the corresponding amplitude is finite, vyδBz < cδBz.

Our results were obtained for harmonic waves ϕ ∼ cos φ.
However, the same conclusions are valid for nonharmonic
waves (e.g., the surfatron mechanism for systems with non-
harmonic electrostatic waves was considered in [12,13,41],
while nonharmonic electromagnetic waves were considered

in [16,24]). It should be noted that the energy distributions
obtained in our paper (see Figs. 6 and 8) do not depend on
the chosen wave form ∼cos φ. We considered the acceleration
of particles after they were captured by the wave until they
escape from the resonance. Thus, we did not take into account
the wave periodicity to obtain the energy distributions. As a
result, Figs. 6 and 8 represent energy distributions of captured
particles even for nonharmonic waves. For nonharmonic
(shocklike) waves the ratio k � 1 means that the thickness
of the wave front is smaller than the ion Larmor radius. These
conditions are typical for shock waves (see, e.g., review [42]
and references therein).

Our results on the stability of surfatron capture relative to
fluctuations of the magnetic field point out the robustness of
this mechanism of acceleration. The influence of fluctuations
on particle acceleration was estimated before for shock waves
in [13,43], where fluctuations were produced by a broad
spectrum of Alfven waves. We used a simplified model of
fluctuations and obtained more general results. We showed
that the final energy gained by particles was determined
directly by the fluctuation levels σz,y . Thus, for small levels of
fluctuations of magnetic field (σy < 0.1 and σz < σ 2

y < 0.01)
particles can gain substantial energy before escaping from the
resonance. These results can be used to describe small groups
of high-energy (but still nonrelativistic) ions and relativistic
electrons observed in the vicinity of the Earth and Saturn
bow shocks [44–46]. In addition, surfatron acceleration by
electromagnetic nonlinear waves can be observed close to the
region of the magnetic reconnection [16], where shocklike
structures are formed by accelerated particle jets [47,48].

In conclusion, we considered the influence of the magnetic
field fluctuations on stability of the surfatron capture and
acceleration for relativistic charged particles. We showed that
fluctuations of the magnetic field component directed along
the background magnetic field were the most “dangerous” for
surfatron capture, while fluctuations along the wave front did
not play so essential a role in particle dynamics [17].
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