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Turbulent Prandtl number of a passively advected vector field in helical environment:
Two-loop renormalization group result
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Using the field-theoretic renormalization group technique in the two-loop approximation, the influence of
helicity (spatial parity violation) on the turbulent vector Prandtl number is investigated in the model of a passive
vector field advected by the turbulent helical environment driven by the stochastic Navier-Stokes equation.
It is shown that the presence of helicity in the turbulent environment can significantly decrease the value of
the turbulent vector Prandtl number by up to 15% of its nonhelical value. This result is compared to the
corresponding results obtained recently for the turbulent Prandtl number of a passively advected scalar quantity
as well as for the turbulent magnetic Prandtl number of a weak magnetic field in the framework of the kinematic
magnetohydrodynamic turbulence. It is shown that the behavior of the turbulent vector Prandtl number as function
of the helicity parameter is much closer to the corresponding behavior of the turbulent Prandtl number of the
scalar quantity than to the behavior of the turbulent magnetic Prandtl number.
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I. INTRODUCTION

One of the most significant characteristics of diffusion
processes in fluids is provided by the ratio of the coefficient
of kinematic viscosity to the diffusion coefficient of the given
admixture. The resulting value are referred to as the Prandtl
number of the corresponding admixture type [1–5]. At the
same time, it is well known that while the microscopic structure
of the fluids in the state with low values of the Reynolds number
strongly influence the numerical values of various Prandtl
numbers, in the regime of fully developed turbulence, i.e.,
in the regime with very high Reynolds number (in principle,
Re → ∞), universal values known as the effective or turbulent
Prandtl numbers are obtained [1,4,5].

On the other hand, one of the most effective techniques for
theoretical investigation of various turbulent Prandtl numbers
on the fundamental level of the corresponding microscopic
models of fully developed turbulent systems are, without
doubt, various renormalization group (RG) techniques, es-
pecially the most formal one, namely the field-theoretic
(RG) technique (see, e.g., Refs. [6–8], and references cited
therein). Quite recently, the field-theoretic RG technique was
used for determining the turbulent Prandtl numbers in the
second order of the corresponding perturbative expansion (in
the two-loop approximation in the field-theoretic language)
in the framework of the most important models of passive
fields advected by the Navier-Stokes turbulent environments
defined by the corresponding stochastic equations. Aside of
their practical importance [9–23], these models also provide a
suitable basis for comparative analysis regarding the influence
of tensorial structures of various models on the corresponding
advection-diffusion processes.

In this respect, first, in Refs. [24,25], where the turbulent
Prandtl number of the passively advected scalar field was
investigated in fully symmetric and isotropic turbulent en-
vironment driven by the stochastic Navier-Stokes equation, it
was shown that the two-loop correction to the turbulent Prandtl
number is surprisingly very small and is less than 2% of its
leading one-loop value. It also means that the turbulent Prandtl
number seems to be very stable under the perturbation theory.
In addition, it is also worth mentioning that the calculated value

of the turbulent Prandtl number is in rather good agreement
with its experimentally measured values [2,3]. At the same
time, another interesting result was obtained in Ref. [26],
where the two-loop value of the turbulent magnetic Prandtl
number of passively advected weak magnetic field in the
framework of the kinematic magnetohydrodynamic (MHD)
turbulence was calculated. Here, it was shown that not only
the turbulent magnetic Prandtl number is perturbatively stable
but also that the turbulent Prandtl number and the turbulent
magnetic Prandtl number are equal to one another at the one-
loop level as well as at the two-loop level of approximation.

In the end, there exists another model of a passively
advected vector field, namely the so-called A = 0 model, in
which the “stretching term,” which is present in the equation
for the magnetic field in the kinematic MHD, is omitted (see,
e.g., Ref. [27] for details), i.e., the vector model which is
a complete analogy of the model of a passively advected
scalar field, and which is interesting especially because the
problem of anomalous scaling in the framework of the A = 0
vector models resembles (in some important features) the
problem of the anomalous scaling in genuine Navier-Stokes
turbulence (see, e.g., Refs. [27–34]). In this respect, using
the field-theoretic RG technique the two-loop value of the
turbulent vector Prandtl number of a passively advected vector
field by the Navier-Stokes velocity field was also calculated
quite recently [35] with rather interesting observations and
conclusions. First, it was shown that, unlike the aforemen-
tioned models of passively advected scalar and weak magnetic
field, the two-loop correction to the one-loop value of the
turbulent vector Prandtl number is considerably essential and
forms 27% of its one-loop value. But a more interesting
conclusion is that the two-loop value of the turbulent vector
Prandtl number is very close to the common two-loop value
of the turbulent Prandtl number of the scalar admixture and
of the turbulent magnetic Prandtl number in the framework of
the kinematic MHD turbulence. As it was shown in Ref. [35]
the relative difference is less than 4% in respect to two-loop
value of the turbulent Prandtl number of the model of the
passive scalar advection. Thus, it seems that fully symmetric
isotropic developed turbulent environments do not in fact feel
the essential difference between the internal (tensor) structure
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of various passively advected quantities and, as a result, the
properties of diffusion processes in all such turbulent systems
are, at least, very similar.

However, on the other hand, as it was shown in
Refs. [36,37], these conclusions are definitely not valid in the
turbulent systems with violation of some symmetries. In this
respect, in Ref. [37] it was shown that the presence of helicity
(spatial parity violation) in the turbulent environments has a
nontrivial impact on the corresponding diffusion processes of
passively advected scalar and weak magnetic fields. Although
the presence of helicity decreases the value of the correspond-
ing turbulent Prandtl number in both cases, nevertheless, the
decrease of the value of the turbulent Prandtl number as func-
tion of a parameter which describes the amount of helicity in
the system is essentially faster than the corresponding decrease
of the turbulent magnetic Prandtl number (in fact, it seems
that the turbulent magnetic Prandtl number is relatively stable
against helical effects). Thus, the difference between them
increases up to almost 11% of the value of the scalar turbulent
Prandtl number in the fully hecical case (let us note that in the
nonhelical case their values are the same). However, to date
no analogous results are available for the A = 0 model of a
vector admixture [35]. Therefore, it is still unknown whether
the helical effects alter the turbulent vector Prandtl number
in a manner resembling the relatively strong dependence of
passive scalar admixtures (as could be suggested due to the
close analogy of both models) or whether tensorial effects
analogous to kinematic MHD take place. Resolution of this
question is therefore subject of the present paper.

Thus, in the present paper the behavior of the turbulent
vector Prandtl number of a vector passive admixture in the
helical turbulent environment driven by the stochastic Navier-
Stokes equation is investigated. Explicit dependence of the
turbulent vector Prandtl number on the helicity parameter is
found and it is shown that its behavior as function of the helicity
parameter is very similar to the corresponding behavior of
the turbulent Prandtl number of the passively advected scalar
quantity. It means that in helical turbulent environments the
crucial role for properties of the diffusion processes plays the
presence of the “stretching term” in the model and, at the same
time, it seems that the internal tensor structure of the advected
field is much less important.

The paper is organized as follows. In Sec. II, the A = 0
model of a passively advected vector field is defined and its
field-theoretic formulation is given. In Sec. III, the ultraviolet
(UV) renormalization of the model is briefly discussed. In
Sec. IV, the two-loop turbulent vector Prandtl number is found
as function of the helicity. Comparison with the corresponding
results obtained in the models of the passively advected scalar
field and passively advected weak magnetic field is given in
Sec. V. The obtained results are then briefly reviewed and
discussed in Sec. VI.

II. FIELD-THEORETIC FORMULATION OF THE MODEL

A. The A = 0 model of passive vector advection

Thus, consider a solenoidal vector field w ≡ w(x) (∇ · w =
0) passively advected by the incompressible turbulent velocity
field v ≡ v(x) (∇ · v = 0) obeying the following system of

stochastic equations:

∂tw = ν0u0�w − (v · ∇)w − ∂Q + fw, (1)

∂tv = ν0�v − (v · ∇)v − ∂P + fv, (2)

where Eq. (1) represents an advection-diffusion equation for
the vector field and Eq. (2) is the stochastic Navier-Stokes
equation. Here, the following standard notation is used: ∂t ≡
∂/∂t ; ∂i ≡ ∂/∂xi ; � ≡ ∂2 is the Laplace operator; ν0 is the
viscosity coefficient; ν0u0 represents the diffusion coefficient
of passively advected vector field, where dimensionless re-
ciprocal “vector” Prandtl number is extracted explicitly; and
Q ≡ Q(x) and P ≡ P(x) are the corresponding pressures.

As was already mentioned in the Introduction, the model
is also known as the A = 0 model. For completeness, let
us note that this name is given as a result of the following
consideration: The general form of the nonlinear part in Eq. (1)
can be written as −(v · ∂)w + A(w · ∂)v, where the parameter
A in front of the “stretching term” (w · ∂)v is not fixed by
Galilean symmetry and can be arbitrary [27,34]. IfA = 0, then
one obtains the aforementioned “A = 0 model” of passively
advected vector impurity.

The transverse random noises fw ≡ fw(x) and fv ≡ fv(x) in
Eqs. (1) and (2), respectively, provide sources for fluctuations
of the fields to maintain the steady state of the studied
dissipative turbulent system. Both random noises are assumed
to be Gaussian distributions with zero average and with
appropriate correlation functions. For fw, the following general
form of the correlator is assumed:

Dw
ij (x; 0) ≡ 〈

f w
i (x)f w

j (0)
〉 = δ(t)Cij (|x|/L), (3)

where L is an integral scale related to the corresponding
stirring and Cij is a function finite in the limit L → ∞ which
must decrease rapidly for |x| � L. However, all other details
of Cij are unimportant in what follows.

On the other hand, the correlation function of fv is specified
as follows:

Dv
ij (x; 0) ≡ 〈

f v
i (x)f v

j (0)
〉

= δ(t)
∫

ddk
(2π )d

g0ν
3
0k4−d−2εRij (k)eik·x, (4)

where d denotes the spatial dimension of the system [38], k is
the wave vector, the exponent ε is restricted to the interval 0 <

ε � 2 with ε = 2 being its physical value which corresponds to
the desired infrared (IR) energy pumping, and g0ν

3
0 is a positive

amplitude with explicitly extracted bare coupling constant g0

(it plays the role of a formal small expansion parameter of the
ordinary perturbation theory). It is related to the characteristic
ultraviolet (UV) momentum scale � (or inner length l ∼ �−1)
by the relation g0 � �2ε (see, e.g., Refs. [7,8] for details). The
transverse projector Rij (k) describes the geometric properties
of the random force and in the case when the spatial parity
violation of the fluid is assumed it has the form of a mixture
of a tensor and a pseudotensor,

Rij (k) = Pij (k) + Hij (k), (5)

where

Pij (k) = δij − kikj /k2 (6)
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is the ordinary isotropic and nonhelical transverse projector
and

Hij (k) = iρ εij l kl/|k| (7)

controls the presence of the helicity in the flow. Here εij l is
the Levi-Civita’s completely antisymmetric tensor of rank 3
and the real parameter 0 � |ρ| � 1 determines the amount of
helicity in the system. Setting ρ = 0 means that no violation
of spatial parity is present in the system. On the other hand,
setting |ρ| = 1, one obtains a system with maximal spatial
parity violation. Physically, the nonzero helical part expresses
the existence of nonzero correlations 〈v · rotv〉 in the turbulent
environment.

In addition, note that in Eq. (4) the IR regularization is
needed and is given by a lower integration bound m which
corresponds to another integral scale. In what follows, we
shall always suppose that L � 1/m.

B. Field-theoretic formulation of the model

According to the well-known theorem [39], the stochastic
problem (1)–(4) is equivalent to the field-theoretic model of
the doubled set of fields 
 = {v,w,v′,w′} given by the action
functional

S(
) = 1

2

∫
dx1 dx2 v′

i(x1)Dv
ij (x1; x2)v′

j (x2)

+ 1

2

∫
dx1 dx2 w′

i(x1)Dw
ij (x1; x2)w′

j (x2)

+
∫

dx{v′[−∂t + ν0�]v + w′[−∂t + ν0u0�]w}

−
∫

dx{v′(v · ∂)v + w′(v · ∂)w}, (8)

where xi = (ti ,xi) with i = 1,2; Dw
ij and Dv

ij are defined by
Eqs. (3) and (4), respectively; and v′ and w′ are auxiliary
transverse fields of the same tensor nature as the corresponding
fields v(x) and w(x). Additionally, all required summations
over dummy indices are assumed but not explicitly indicated
in Eq. (8).

The pressure terms ∂Q and ∂P in Eqs. (1) and (2) are
omitted in action functional (8) due to the fact that both
auxiliary vector fields w′(x) and v′(x) are also transverse, i.e.,
∂iw

′
i = 0 as well as ∂iv

′
i = 0, and by using the integration by

parts it is evident that they vanish. For example,∫
dt ddx v′

i∂iP = −
∫

dt ddx P ∂iv
′
i = 0.

The field-theoretic model given by the action functional in
Eq. (8) allows the standard Feynman diagrammatic perturba-
tion theory analysis of the problem. The corresponding set of
bare propagators is given as follows (in frequency-momentum
representation):

〈w′
iwj 〉0 = 〈wiw

′
j 〉∗0 = Pij (k)

iω + ν0u0k2
, (9)

〈v′
ivj 〉0 = 〈viv

′
j 〉∗0 = Pij (k)

iω + ν0k2
, (10)

wiwj 0 =

vivj 0 =

vivj 0 =

wiwj 0 =

Vijl =
v′i

vj

vl

Wijl =
w′

i

vj

wl

FIG. 1. Graphical representation of the bare propagators and the
interaction vertices of the model.

〈wiwj 〉0 = Cij (k)

|−iω + ν0u0k2|2 , (11)

〈vivj 〉0 = g0ν
3
0k

4−d−2εRij (k)

|−iω + ν0k2|2 , (12)

where ω is the frequency and Cij (k) is the Fourier transform
of the function Cij (r/L) in Eq. (3). Graphically, each of the
propagators is represented by a corresponding line as shown in
Fig. 1. Propagators involving w or w′ are given by solid lines,
those involving v or v′ are given by dashed lines, and a slash
always denotes the corresponding primed field. In addition, the
model contains two triple (interaction) vertices which are given
by the last line in Eq. (8), namely −w′

i(vj∂j )wi = w′
ivjVijlwl

and −v′
ivj ∂j vi = v′

ivjWijlvl/2. In the frequency-momentum
representation, they read Vijl = ikj δil and Wijl = i(klδij +
kj δil) with momentum k flowing into the vertices via auxiliary
fields. Their graphical representation is also shown in Fig. 1.

In the end, note that formulation of the stochastic problem
given by Eqs. (1)–(4) in the form of the field-theoretic model
given by action functional (8) allows one to use standard
RG technique to analyze the problem in the framework of
which statistical averages of random quantities of the original
stochastic problem are replaced with the corresponding func-
tional averages with weight exp S(
) (see, e.g., Ref. [8] for
details).

III. RENORMALIZATION GROUP ANALYSIS
OF THE MODEL

Typically, the RG analysis of a field-theoretic model is
based on the analysis of UV divergences which, on the
other hand, is given by the corresponding analysis of the
canonical dimensions of the model [7,8]. Dimensional analysis
of our two-scaled model shows that the coupling constant
g0 is dimensionless at ε = 0, i.e., the model is the so-called
logarithmic at this point. Consequently, in the framework of the
minimal subtraction (MS) scheme [8,40], which is always used
in what follows, all possible UV divergences in the correlation
functions of the model have the form of poles in ε.

Using symmetry properties of the model and the general
expression for the total canonical dimension of an arbitrary
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1-irreducible Green’s function 〈
 · · · 
〉1−ir , which plays the
role of the formal index of the UV divergence, one finds
that for d > 2 the superficial UV divergencies are present
only in the 1-irreducible Green’s functions 〈v′

ivj 〉1−ir and
〈w′

iwj 〉1−ir . At the same time, action functional (8) has all
necessary terms to remove divergences multiplicatively (see
Refs. [8,40] for details). All divergencies can be removed by
introducing counterterms of the form v′�v and w′�w. It can
be expressed explicitly in the multiplicative renormalization
of the parameters g0, u0, and ν0 in the form

ν0 = νZν, g0 = gμ2εZg, u0 = uZu, (13)

where the dimensionless parameters g, u, and ν represent the
renormalized counterparts of the corresponding bare ones; μ is
the renormalization mass (a scale setting parameter), an artifact
of the dimensional regularization; and the quantities Zν , Zg ,
and Zu are the corresponding renormalization constants which
contain poles in ε.

Furthermore, the renormalized action functional acquires
the following form:

S(
) = 1

2

∫
dx1 dx2 v′

i(x1)Dv
ij (x1; x2)v′

j (x2)

+ 1

2

∫
dx1 dx2 w′

i(x1)Dw
ij (x1; x2)w′

j (x2)

+
∫

dx v′[−∂t + ν0Z1�]v

+
∫

dx w′[−∂t + ν0u0Z2�]w

−
∫

dt ddx {v′(v · ∂)v + w′(v · ∂)w}, (14)

where Z1 and Z2 are other renormalization constants which
are related to the renormalization constants defined in Eq. (13)
by the following relations:

Zν = Z1, Zg = Z−3
1 , Zu = Z2Z

−1
1 . (15)

Thus, the present model can be renormalized by using two
independent renormalization constants, Z1 and Z2, and, in
the framework of the MS scheme, they can be written in the
following general perturbation form:

Z1(g; d; ε) = 1 +
∞∑

n=1

gn

n∑
j=1

z
(1)
nj (d)

εj
, (16)

Z2(g,u; d; ε) = 1 +
∞∑

n=1

gn

n∑
j=1

z
(2)
nj (u,d)

εj
, (17)

where coefficients z
(1)
nj and z

(2)
nj are independent of ε and

follow from the requirement of UV finiteness when the
1-irreducible Green’s functions 〈v′

ivj 〉1−ir and 〈w′
iwj 〉1−ir are

written in terms of the renormalized parameters, i.e., they
have no singularities in the limit ε → 0. On the other hand,
the 1-irreducible Green’s functions 〈v′

ivj 〉1−ir and 〈w′
iwj 〉1−ir

are related to the corresponding self-energy operators 
v′v

and 
w′w, which obey the Dyson equations (the frequency-

momentum representation is used)

〈v′
ivj 〉1−ir = [iω − ν0p

2 + 
v′v(ω,p)]Pij (p), (18)

〈w′
iwj 〉1−ir = [iω − ν0u0p

2 + 
w′w(ω,p)]Pij (p). (19)

Consequently, Z1 and Z2 are found from the requirement
that UV divergences do not appear in (18) and (19) after the
substitution of e0 = eμdeZe for e = {g,u,ν}. This determines
Z1 and Z2 up to the UV finite contributions. In the MS scheme,
one fixes this ambiguity by prescribing renormalization con-
stants in a general form of 1 + poles in ε, a restriction
that fully determines the coefficients z

(i)
nj ,i = 1,2 within the

corresponding order of the perturbation theory.
The renormalization constant Z1 is already known up to

the second order in g, i.e., up to the two-loop approximation,
in the nonhelical case [41] as well as in the helical case [42].
It means that the coefficients z

(1)
11 , z

(1)
21 , and z

(1)
22 in series (16)

are already known (see Refs. [41,42] for their explicit forms).
As it was shown in Refs. [42], the renormalization constant
Z1, at least up to the second-order approximation, is actually
independent of the helicity parameter ρ.

On the other hand, the three-dimensional result for the
nonhelical two-loop expansion of the renormalization constant
Z2 was calculated in Ref. [35], where it was used for
calculation of the isotropic and nonhelical turbulent vector
Prandtl number. However, its explicit general form was not
shown in Ref. [35]. Therefore, for completeness, in the present
paper we shall determine and show the full form of the
coefficients z

(2)
11 , z

(2)
21 , and z

(2)
22 in the series (17) valid in the

helical case with ρ 
= 0 as well as in the nonhelical case with
ρ = 0.

Thus, to determine the coefficients z
(2)
11 , z

(2)
21 , and z

(2)
22 it is

necessary to calculate the corresponding self-energy operator

w′w in the Dyson equation (19). On the other hand, up to the
second-order approximation, the self-energy operator 
w′w is
given by the sum of singular parts of the corresponding set
of the 1-irreducible Feynman diagrams which are shown in
Fig. 2. Therefore, in two-loop approximation one can write


w′w = �1 + �2 = �1 +
8∑

l=1

sl�
2
l , (20)

where �1 stands for one-loop contribution (given by single
one-loop diagram); �2 denotes the sum of all two-loop
contributions, i.e., the sum of eight two-loop diagrams; and
sl with l = 1, . . . ,8 are components of the vector

s = (1,1,1,1/2,1,1,1,1), (21)

which represents the symmetry coefficients of the correspond-
ing two-loop diagrams �2

l .
The singular part of �1 has the following analytic form:

�1 = − Sd

(2π )d
gνp2

4ε

(
μ

m

)2ε
d2 − 3

d(2 + d)(u + 1)
, (22)

which is valid in nonhelical case as well as in helical case
(however, only for d = 3), i.e., the model is helicity blind at the
one-loop level of approximation. Here, Sd = 2πd/2/�(d/2)
denotes the surface area of the d-dimensional unit sphere,
�(x) is the Euler’s Gamma function, and m is an integral scale
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Γ1 =

Γ2
3 =

Γ2
1 = Γ2

2 =

Γ2
4 =

Γ2
5 = Γ2

6 =

Γ2
8 =Γ2

7 =

FIG. 2. The one-loop and two-loop diagrams that contribute to
the self-energy operator 
w′w(ω,p) in Eq. (19).

related to the IR regularization. From Eq. (22) one immediately
obtains

z
(2)
11 = − Sd

(2π )d
d2 − 3

4d(2 + d)u(u + 1)
, (23)

On the other hand, the result for the two-loop contribution
�2 to the self-energy operator 
w′w can be written in the
following integral form:

�2 = g2ν p2 Sd

16(2π )2d

(
μ

m

)4ε 1

ε

[
Sd

2d(d + 2)(1 + u)ε
A

+B(0) + ρ2δ3dB
(ρ)

]
, (24)

where

A =
8∑

l=1

slAl (25)

and

B(i) = Sd−1

∫ 1

0
dx (1 − x2)(d−1)/2

8∑
l=1

slB
(i)
l , (26)

for i = 0,ρ, which represent the nonhelical (i = 0) and
the helical (i = ρ) contributions. The explicit expressions
for the coefficients Al,B

(0)
l , and B

(ρ)
l for l = 1, . . . ,8 are

given in the Appendix. In addition, in Eq. (24) the Kronecker
symbol δ3d was introduced to demonstrate the fact that the
helical part makes sense only for spatial dimension d = 3,
although, for completeness, all calculations are performed in
the general d-dimensional case. Note also that in Eq. (26) x is
the cosine of the angle between two independent momenta k
and q over which the integration is taken in two-loop diagrams,
i.e., x = k.q/|k||q|.

Now, using the explicit expression (24) in the Dyson
equation (19), the two-loop coefficients z

(2)
21 and z

(2)
22 can be

immediately written as

z
(2)
21 = Sd

16u(2π )d
[
B(0) + ρ2δ3dB

(ρ)
]
, (27)

z
(2)
22 = S2

d

(2π )2d

C

128d2(d + 2)2u(1 + u)3
, (28)

where B(0) and B(ρ) are given in Eq. (26) and

C = 36 − d3(1 + u)2 + d(1 + u)(9 + 5u)

+ 2d4[4 + u(3 + u)] − 6d2[6 + u(3 + u)]. (29)

Thus, it is evident that the coefficient z
(2)
22 is helicity inde-

pendent and the helicity enters the model only through the
coefficient z

(2)
21 which contains the part proportional to ρ2 [see

Eq. (27)].
To proceed further it is necessary first to establish the

properties of the corresponding IR scaling regime in the
presence of helicity. Let us discuss it briefly.

The fact that the fields v,v′,w, and w′ are not renormalized
in the framework of the present model leads to the following
relation:

WR(g,u,ν,μ, . . . ) = W (g0,u0,ν0, . . . ) (30)

between the renormalized connected correlation functions
WR = 〈
 . . . 
〉R and their unrenormalized counterparts W =
〈
 . . . 
〉, where the dots stand for other arguments which
are untouched by renormalization, e.g., the helicity param-
eter or coordinates. The difference is only in the choice
of variables (renormalized or unrenormalized) and in the
corresponding perturbation expansion (in g or g0). Further,
because unrenormalized correlation functions are independent
of the scale-setting parameter μ, one can apply the differential
operator μ∂μ at fixed unrenormalized parameters on both sides
of Eq. (30), which leads to the basic differential RG equation

[μ∂μ + βg∂g + βu∂u − γνν∂ν]WR(g,u,ν,μ, . . . ) = 0, (31)

where the so-called RG functions (the β and γ functions) are
given as follows:

βg ≡ μ∂μg = g(−2ε + 3γ1), (32)

βu ≡ μ∂μu = u(γ1 − γ2), (33)

γi ≡ μ∂μ ln Zi, i = 1,2, (34)

where relations among renormalization constants (15) were
used and Z1 and Z2 are given in (16) and (17), respectively.

Finally, the IR asymptotic scaling behavior of correlation
functions of the model, i.e., the scaling behavior deep inside
of the inertial interval, is driven by the IR stable fixed points of
the RG equations. The coordinates (g∗,u∗) of the fixed point
are given by the requirement of simultaneous vanishing of the
β functions,

βg(g∗) = 0, βu(g∗,u∗) = 0. (35)

In the two-loop approximation the nontrivial fixed point with
g∗ 
= 0 and u∗ 
= 0 has the following form:

g∗ = g(1)
∗ ε + g(2)

∗ ε2 + O(ε3), (36)

u∗ = u(1)
∗ + u(2)

∗ ε + O(ε2). (37)
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Here (see, e.g., Ref. [41]),

g(1)
∗ = (2π )d

Sd

8(d + 2)

3(d − 1)
, (38)

g(2)
∗ = g(1)

∗ λ, (39)

where λ is related to the coefficient z
(1)
21 in Eq. (16) as follows:

λ = 2

3

(2π )2d

S2
d

[
8(d + 2)

d − 1

]2

z
(1)
21 . (40)

On the other hand, the coordinate u∗ of the fixed point in the
two-loop approximation is given by expressions

u(1)
∗ = 1

2

[
−1 +

√
1 + 8(d2 − 3)

d(d − 1)

]
, (41)

u(2)
∗ = u

(1)
∗

(
u

(1)
∗ + 1

)
1 + 2u

(1)
∗

[
λ − 128(d + 2)2

3(d − 1)2
B

(
u(1)

∗
)]

, (42)

where λ is given in Eq. (40) and the coefficient B(u(1)
∗ ) is

directly related to the coefficient z
(2)
21 in Eq. (27) by the

following simple relation:

B(u(1)
∗ ) = (2π )2d

S2
d

z
(2)
21 (u(1)

∗ ). (43)

Let us stress once more that in the helical case (ρ 
= 0) the
model has nontrivial sense only for spatial dimension d = 3,
although, for completeness, we retain the d dependence of our
formulas. Therefore, they can be directly used for analysis of
the model in general d-dimensional space in the model without
the presence of helicity.

In the end, it is also necessary to show that the fixed point
is IR stable, i.e., that it really drives the IR asymptotics of the
model. To this end, it is necessary to investigate the properties
of the matrix of the first derivatives,

�ij =
(

∂βg/∂g ∂βg/∂u

∂βu/∂g ∂βu/∂u

)
, (44)

calculated at the fixed point (g∗,u∗). To have an IR stable fixed
point the real parts of all eigenvalues of matrix (44) must be
positive. However, in our case, the matrix element ∂βg/∂u

vanishes identically (βg does not depend on u), therefore the
eigenvalues are given directly by the diagonal elements. It can
be shown by numerical analysis that both diagonal elements
of the matrix (44) have positive real parts for ε > 0, regardless
of the value of the helicity parameter (|ρ| � 1), i.e., the fixed
point is IR attractive and its IR attractiveness is not disturbed
by the presence of the spatial parity violation.

In the end, it is also worth mentioning that the form of
the β functions of the present model, namely βg and βu

in Eqs. (32) and (33), does not depend on the order of the
perturbation expansion, i.e., it is exactly given by the one-loop
approximation without higher-loop corrections. This fact leads
to the exact values for the anomalous dimensions γ1 and γ2 at
the IR stable fixed point (g∗,u∗) given in Eqs. (36) and (37),
namely

γ ∗
1 = γ ∗

2 = 2ε

3
. (45)

The very existence of the stable IR fixed point means that
the correlation functions of the model exhibit scaling behavior
with given critical dimensions in the IR range. However, these
questions are out of scope of the present paper.

IV. THE TURBULENT VECTOR PRANDTL NUMBER IN
HELICAL ENVIRONMENT

Thus, in the previous section we have performed the
two-loop RG analysis of the model and all two-loop quantities
needed for determining the influence of helicity on the
turbulent vector Prandtl number were calculated.

Note that the two-loop RG analysis of the turbulent Prandtl
number in the framework of the model of passively advected
scalar quantity by the turbulent environment driven by the
stochastic Navier-Stokes equation was done in Ref. [24]. There
the second-order approximation RG formula for the inertial
range inverse turbulent (effective) Prandtl number was derived
which is independent of the renormalization scheme. The
corresponding formula for the inverse turbulent vector Prandtl
number was introduced recently in Ref. [35] and formally it
can be written in a similar form, namely

ueff = u(1)
∗

(
1 + ε

{
1 + u

(1)
∗

1 + 2u
(1)
∗

[
λ − 128(d + 2)2

3(d − 1)2
B

(
u(1)

∗
)]

+ (2π )d

Sd

8(d + 2)

3(d − 1)

[
av − aw

(
u(1)

∗
)]})

, (46)

where u
(1)
∗ is the one-loop fixed point value of the parameter u

given in Eq. (41) (it also represents the one-loop value for the
inverse turbulent vector Prandtl number) and the quantities λ

andB(u(1)
∗ ) are directly related to the coefficients z

(1)
21 and z

(2)
21 by

the corresponding Eqs. (40) and (43), respectively. On the other
hand, the quantities av and aw are given by the corresponding
expansions to the leading order in ε of the scaling functions of
the response functions 〈vv′〉 and 〈ww′〉 for the velocity field
and the advected vector field, respectively (see Ref. [24] for
details). The explicit form of av can be found, e.g., in Ref. [24]
and the explicit form of aw in the general d-dimensional case is

aw = − 1

2u(d − 1)

Sd−1

(2π )d

∫ ∞

0
dk

∫ 1

−1
dx(1 − x2)

d−1
2

×
{

k[d(1 + k2 + 2kx) + k2(x2 − 2) − 2kx − 1]

[k2(1 + u) + 2ku + u](k2 + 2kx + 1)

− θ (k − 1)
d − 2 + x2

(1 + u)k

}
, (47)

where θ (y) represents the standard Heaviside step function.
Thus, now we have all the necessary tools for determining

the influence of helicity on the turbulent vector Prandtl number.
As was already mentioned, the presence of helicity has sense
only for spatial dimension d = 3. In this case, one obtains

u(1)
∗ = 1, (48)

λ = −1.0994, (49)

av = −0.047718/(2π2), (50)

aw = −0.079407/(2π2), (51)

B = −3.9709×10−3 − 0.6684×10−3ρ2, (52)
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and, using all these facts, the final two-loop expression for the
inverse turbulent vector Prandt number in helical environment
has the form

ueff(ρ) = 1 + (0.18426 + 0.11882ρ2)ε + O(ε2), (53)

and for physical value ε = 2, one finally obtains the two-loop
value of the turbulent vector Prandtl number

Prv,t (ρ) = u−1
eff = 1

1.36851 + 0.23764ρ2
. (54)

In the nonhelical case, i.e., when ρ = 0, the result of Ref. [35]
is recovered, i.e., Prv,t = 0.7307. According to Eq. (54), the
turbulent vector Prandtl number decreases under the presence
of the helicity monotonically down to its lowest possible value
Prv,t = 0.6226 which is obtained for |ρ| = 1, i.e., in fully
helical system. The difference between both extreme cases is
approximately 14.8% of the nonhelical value.

Thus, we can conclude that now the behavior of the
turbulent vector Prandtl number in the helical turbulent
environment given by the stochastic Navier-Stokes equation
is known up to the second order of the perturbative expansion.
In the next section, we shall compare the obtained results to
the corresponding results obtained recently for the turbulent
Prandtl number of passively advected scalar field as well as for
the turbulent magnetic Prandtl number of passively advected
weak magnetic field in the framework of the kinematic MHD
turbulence.

V. TURBULENT PRANDTL NUMBERS IN
HELICAL TURBULENT ENVIRONMENTS: ROLE OF
TENSOR STRUCTURES IN SELECTED MODELS OF

PASSIVE ADVECTION

Apart from being physically significant itself, the depen-
dence of the turbulent vector Prandtl number on the helicity
allows insights into the role of intrinsic tensor properties of
advected quantities in the corresponding advection-diffusion
processes. To this end, we perform comparative analysis
of three different models of passively advected admixtures
based on the helical effects manifested as ρ dependence of
the corresponding turbulent Prandtl numbers. For the case
of the A = 0 model of a passively advected vector field,
the calculation of the turbulent vector Prandtl number as
function of the helicity parameter has been performed in
the previous sections of this paper. The other two models
involve the kinematic MHD turbulence, which describes a
passive advection of the weak magnetic field, and the model
of passively advected scalar field. In this respect, however,
a comprehensive comparison of the corresponding turbulent
Prandtl numbers in the helical environments of the last two
models has been given in Ref. [37]. Let us then discuss briefly
the results obtained in the present paper with respect to those
obtained in Ref. [37].

In Fig. 3, the dependence of the two-loop RG values of the
turbulent Prandtl number, Prt , of a passively advected scalar
field; of the turbulent magnetic Prandtl number, Prm,t , of the
weak magnetic field in the framework of the kinematic MHD
turbulence; and the turbulent vector Prandtl number, Prv,t , of a
passively advected vector field in the framework of the A = 0
model on the absolute value of the helicity parameter ρ are

0.0 0.2 0.4 0.6 0.8 1.0

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Pr
v,t

Pr
t

Pr
m,t

|ρ|

FIG. 3. The dependence of the two-loop values of various turbu-
lent Prandtl numbers on the absolute value of the helicity parameter ρ.
Here, Prt denotes the turbulent Prandtl number of the passive scalar
admixture, Prm,t stands for the turbulent magnetic Prandtl number
of the kinematic MHD turbulence, and Prv,t represents the turbulent
vector Prandtl number of the A = 0 model of the passively advected
vector field studied in this paper.

shown simultaneously. It is evident from this figure that the
behavior of the turbulent vector Prandtl number as function of
the helicity is very similar to the corresponding behavior of the
turbulent Prandtl number of the scalar model. In addition, quite
surprisingly, their mutual difference becomes even smaller
with increasing absolute value of the helicity parameter.
On the other hand, the behavior of the turbulent magnetic
Prandtl number as function of the helicity is quite different,
namely, the difference between the turbulent magnetic Ptandtl
number and the turbulent Prandtl number of the scalar model,
which vanishes in the corresponding fully nonhelical turbulent
environments, increases when the helicity is present and
reaches the maximal value in fully helical systems. This is
quite interesting behavior; therefore, let us try to understand
it at the mathematical level of the tensor structure of the
models.

First, note that all three models describes advection-
diffusion processes of various fields by the same underlying
fully developed turbulent velocity field v driven by the
stochastic Navier-Stokes equation. However, because only
passive advection is considered, the motion of the velocity field
remains completely undisturbed by the presence of admix-
tures. It means that the evolution of the velocity field as well
as all quantities related solely to the turbulent velocity field
(e.g., the turbulent viscosity) are completely independent of the
passive admixtures under study. In the mathematical language
of the field-theoretic approach it means that all propagators,
vertices, and quantities that involve only the velocity field are
necessarily the same for all three studied models. Thus, it is
evident that distinctive properties of all models are therefore
exclusively connected to the mathematical structure of the
stochastic equations which describe advected fields or, in the
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field-theoretic language, to the structure of propagators and
interactive vertices related to the advected fields.

In this respect, the vertex Vjkl (see Sec. II), which involves
the velocity field as well as the advected field (in the present
paper it is the vector field), i.e., which describes the interaction
between the turbulent velocity field and the field of a passive
admixture, ends up being the most distinctive feature among
the models, whereas the vertex Wjkl , which involves only the
fields related to the velocity field itself, remains the same for
all three models. As a matter of fact, two of the models, namely
the A = 0 model of a passive vector admixture and the model
of a passively advected scalar admixture, share the similar
vertex structure even of the V vertex, namely Vjkl = ipkδjl

in the case of the vector model (see Sec. II) and Vj = ipj

in the case of the scalar model (see, e.g., Ref. [24]). On the
other hand, in the case of the corresponding model of the
kinematic MHD turbulence the vertex Vjkl obeys additional
antisymmetric property and has the form i(pkδjl − plδjk)
(see, e.g., Ref. [37]). Thus, because the formal mathematical
difference between the A = 0 model of a passive vector
admixture and the kinematic MHD turbulence is given only by
the structure of the V vertex, it is evident that the antisymmetric
nature of the V vertex causes a partial cancellation of the
helicity contribution to the turbulent magnetic Prandtl number,
i.e., the turbulent magnetic Prandtl number is much more
stable against the presence of helicity than the turbulent vector
Prandtl number (see Fig. 3).

On the other hand, from Fig. 3 it is immediately evident that
the internal tensor structure of the advected fields has much less
important impact on the diffusion processes in helical turbulent
environments. This is given by the fact that the corresponding
curves which describe the dependence of the turbulent Prandtl
number and the turbulent vector Prandtl number on the helicity
parameter have qualitatively completely the same behavior.

It is also interesting that in the nonhelical turbulent
environments the situation differs substantially (at least, at the
two-loop level of approximation). Here, the tensor structure
of the advected field is much more important and it causes the
difference between the turbulent Prandtl number of the scalar
model and the turbulent vector Prandtl number of the A =
0 vector model. On the other hand, the presence of the
“stretching term” in the kinematic MHD model, i.e., that the
interaction vertex of the model is antisymmetric, causes an
exact cancellation of the tensor effects related to the vector
nature of the magnetic field and, as a result, the turbulent
Prandtl number of the scalar model and the turbulent magnetic
Prandtl number of the kinematic MHD turbulence have exactly
the same numerical value (see Fig. 3). However, let us stress
once more that this is valid only in fully nonhelical systems.

In the end, it is also worth mentioning that, due to the
fact that the fixed point value of the coupling constant g∗
is independent of ρ (see discussion in Sec. III as well as
Refs. [42]) and, consequently, the turbulent viscosity also
remains independent of the spatial parity violation, from
the general definition of the corresponding turbulent Prandtl
numbers (defined as ratios of the turbulent viscosity to the
corresponding coefficients of turbulent diffusivity), we come
to the conclusion that the corresponding turbulent diffusion
coefficients increase with ρ when helicity is present in the
underlying advecting environments. At the same time, all

general conclusions valid for the behavior of the inverse
turbulent Prandtl numbers in the helical systems are also valid
for the corresponding turbulent diffusion coefficients.

VI. CONCLUSION

In this paper, we have studied the influence of helicity
(spatial parity violation) on the turbulent vector Prandtl
number in the framework of the model of a passive vector
field advected by the turbulent helical environment driven by
the stochastic Navier-Stokes equation, i.e., in the framework
of the so-called A = 0 model of passively advected vector
field. The explicit dependence of the turbulent vector Prandtl
number on the helicity parameter ρ [see Eq. (54)] has been
determined using the field-theoretic RG technique in the two-
loop approximation. It is shown that the presence of helicity in
the turbulent environment decreases monotonically the value
of the turbulent vector Prandtl number from its nonhelical
value Prv,t = 0.7307 down to the value Prv,t = 0.6226, which
corresponds to fully helical system with |ρ| = 1. The resulting
change of the turbulent vector Prandtl number represents about
14.8% of its nonhelical value. The fact that the turbulent
vector Prandtl number decreases as a function of the absolute
value of the helicity parameter together with the fact that the
turbulent viscosity is independent of helicity also means that
the corresponding coefficient of turbulent diffusivity increases
as function of the helicity parameter.

Additionally, we have compared the dependence of the
turbulent vector Prandtl number of passively advected vector
quantity on the helicity with the corresponding dependence
on the helicity of the turbulent Prandtl number of passively
advected scalar field as well as of the turbulent magnetic
Prandtl number of passively advected weak magnetic field
obtained in the framework of the kinematic MHD turbulence.
It is shown that the behavior of the turbulent vector Prandtl
number as function of the helicity parameter is more similar
to the behavior of the turbulent Prandtl number of passively
advected scalar quantity than to the corresponding behavior
of the turbulent magnetic Prandtl number. The reasons for
such kinds of behavior are analyzed from the point of view
of the mathematical structure of the individual models. It
seems that in helical turbulent environments the properties
of the diffusion processes strongly depend on the form as
well as on symmetry properties of the nonlinear terms in the
corresponding advection-diffusion equations, which describe
the interactions of advected fields with the turbulent velocity
field (e.g., the presence of the “stretching term” in the
kinematic MHD turbulence and its absence in the models of
passively advected scalar and vector fields). At the same time,
it also seems that the internal tensor structure of the advected
fields is much less important in this respect.
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APPENDIX

The explicit form of the coefficients Al,B
(0)
l and B

(ρ)
l for

l = 1, . . . ,8 in Eqs. (25) and (26) is as follows:

A1 = (d2 − 3)2

d(d + 2)(1 + u)2
, A2 = (d − 1)2(3 + u)

4(1 + u)
,

A3 = (d − 1)(d2 − 3)

4(d + 2)
, Ai = 0, i = 4, . . . ,8

B
(0)
1 = (d2 − 3)

[
B

(0)
11 X1 − B

(0)
12 X2

]
d(d − 1)(d + 2)x(1 + u)3

,

B
(0)
2 = − (d2 − 3)

2d(d − 1)(d + 2)(1 + u)2
,

× [
B

(0)
21 X1 + B

(0)
22 X3 + B

(0)
23 (X4 + X5) + B

(0)
24 X6

]
,

B
(0)
3 = 2(d2 − 3)

[
B

(0)
31 X1 − B

(0)
32 X3

]
d(d − 1)(d + 2)x(1 + u)

,

B
(0)
4 = − d2 − 3

4d(d − 1)(d + 2)x3

× [
B

(0)
41 + B

(0)
42 X2 + B

(0)
43 X3 − B

(0)
44 X7

]
,

B
(0)
5 = B

(0)
51 X1 − B

(0)
52 X2

d(d − 1)(d + 2)(1 + u)2x
,

B
(0)
6 = 2x[d2 − 3 − d(1 − x2)]

(d − 1)d(2 + d)[1 + u2 − 2u(1 − 2x2)](1 + u)

× [
B

(0)
61 X1 + B

(0)
62 (X4 + X5) + B

(0)
63 X6

]
,

B
(0)
7 = 1

4d(u + 1)

[
B

(0)
71 + B

(0)
72 X3 + B

(0)
73 (X4 + X5)

+B
(0)
74 X2 + B

(0)
75 X6 + B

(0)
76 X7

]
,

B
(0)
8 = B

(0)
81 + B

(0)
82 X1 + B

(0)
83 X2 + B

(0)
84 X3

2(1 + u)(d − 1)d(2 + d)x3
,

B
(ρ)
1 = 0,

B
(ρ)
2 = (d2 − 3)(d − 2)

d(d − 1)(d + 2)(1 + u)2
,

× [
B

(ρ)
21 Y1 + B

(ρ)
22 Y3 + B

(ρ)
23 (Y4 + Y5)

]
,

B
(ρ)
3 = 4(d2 − 3)(d − 2)

d(d − 1)(d + 2)(1 + u)
,

×
(

2
√

1 − x2Y1 − 3 − x2

√
4 − x2

Y3

)
,

B
(ρ)
4 = (d2 − 3)(d − 2)

d(d − 1)(d + 2)(1 + u)x2
,

× [
B

(ρ)
41 Y1 + B

(ρ)
42 Y2 + B

(ρ)
43 Y3

]
,

B
(ρ)
5 = (d − 2)

[
B

(ρ)
51 Y1 + B

(ρ)
52 Y2

]
d(d − 1)(d + 2)(1 + u)2

,

B
(ρ)
6 = 2(d − 2)[d2 − 4 + x2 − d(1 − x2)]

d(d − 1)(2 + d)(1 + u)2[1 + u2 − 2u(1 − 2x2)]
,

× [
B

(ρ)
61 Y1 + B

(ρ)
62 (Y4 + Y5)

]
,

B
(ρ)
7 = (d − 2)

2d(1 + u)
,

× [
B

(ρ)
71 Y1 + B

(ρ)
72 Y2 + B

(ρ)
73 Y3 + B

(ρ)
74 (Y4 + Y5)

]
,

B
(ρ)
8 = (d − 2)

[
B

(ρ)
81 Y1 + B

(ρ)
82 Y2 + B

(ρ)
83 Y3

]
2d(d − 1)(d + 2)(1 + u)x2

,

where

B
(0)
11 = (1 + u)(1 − 3x2 + 2x4)√

1 − x2
,

B
(0)
12 = 1 − x2 + 2u(1 − dx2) + u2(1 − 3x2 + 2x4)√

1 + 2u + u2(1 − x2)
,

B
(0)
21 = 2

√
1 − x2[1 + 12x2 − u3(1 − 4x2) − u2(1 − 16x2)

+u(1 − 16x2 + 48x4)]/{x[1 + u2 − 2u(1 − 2x2)]},

B
(0)
22 = (1 + u)2[4 − (7 + d)x2 + 2x4]

(u − 1)x
√

4 − x2
,

B
(0)
23 = 2x{2u3 − 3 + 2x2 + u2(13 − 14x2)

+ 4u(1 − 4x2 + 2x4) − d[1 + u2 − 2u(1 − 2x2)]}/
{(1 − u)

√
2(1 + u) − x2[1 + u2 − 2u(1 − 2x2)]},

B
(0)
24 = 2{1 − 2x2 − 3u2(1 − 2x2) + 2u[1 + 4x2(1 − x2)]

+ d[1 + u2 − 2u(1 − 2x2)]}/
{(u − 1)[1 + u2 − 2u(1 − 2x2)]},

B
(0)
31 = 2(1 − 5x2 + 4x4)√

1 − x2
,

B
(0)
32 = 4 − (7 + d)x2 + 2x4

√
4 − x2

,

B
(0)
41 = 2x[2 + x2(2d − 5)]

(1 + u)(1 − x2)
,

B
(0)
42 = 4{1 + u2(1 − x2) + u[2 + (d − 2)x2]}

(1 − u)
√

1 + 2u + u2(1 − x2)
,

B
(0)
43 = 8u[4 + (d − 3)x2]

(u2 − 1)
√

4 − x2
,

B
(0)
44 = 3x2 − 2 + 2[u − 2ux2 + (d − 2 + u)x4]

(1 + u)(x2 − 1)3/2
,

B
(0)
51 = (1 − dx2)

√
1 − x2,

B
(0)
52 = 1 + (5 + d − 2d2)x2 − dx4 + u(1 − x2)(1 − dx2)√

1 + 2u + u2(1 − x2)
,

B
(0)
61 = −4

√
1 − x2

1 + u
,

B
(0)
62 = 3 + u − 2x2

(1 + u)
√

2(1 + u) − x2
,
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B
(0)
63 = 2x

1 − u
,

B
(0)
71 = 2(6 + u + u3 + 8ux2 + 4u2x2)

(1 + u)[1 + u2 − 2u(1 − 2x2)]
,

B
(0)
72 = 4(2d − x2)

(u − 1)x
√

4 − x2
,

B
(0)
73 = 8x{u4 − 2 + 2x2 − 3u3(4x2 − 5)

+u(12x2 − 11) + u2(8x4 − 2x2 − 3)

− d(1 + 3u)[1 + u2 − 2u(1 − 2x2)]}/
{(u2 − 1)[1 + u2 − 2u(1 − 2x2)]

√
2(1 + u) − x2},

B
(0)
74 = − 4[1 − d(1 + u) − u2(1 − x2)]

(1 + u)x
√

1 + 2u + u2(1 − x2)
,

B
(0)
75 = 8{2x2 − 1 + u3(4x2 − 3) + u(4x2 − 1)

+u2(5 + 6x2 − 8x4)

+ d(u − 1)[1 + u2 − 2u(1 − 2x2)]}/
{(1 − u2)[1 + u2 − 2u(1 − 2x2)]2},

B
(0)
76 = (−(u − 1)5u

+ [u(u{u[(u − 8)(u − 4)u − 32] − 31} − 76) − 10]x2

+ 8[2 + u(12 + u{4 + u[5 + (u − 4)u]})]x4

+ 16u2(2 + u2)x6 − d[(u − 1)2 + 4ux2]

×{u − 2 + u3 + 4[2 + u(2 + u)]x2})/
{(1 + u)x

√
x−1[1 + u2 − 2u(1 − 2x2)]2},

B
(0)
81 = −dx(1 − 3x2 + 2x4),

B
(0)
82 =

√
1 − x2{8x2 − 3d2x2d(1 − x2)

× [3 − 2x2 + u(1 − 2x2)]},
B

(0)
83 = {2d3(1 + u)x2

+ d2x2[−2 + u(1 − x2) + 3u2(1 − x2)]

+ 2x2[3 − u(1 − x2) − 4u2(1 − x2)]

− d[1 + 5x2 + u3(1 − x2)2(1 − 2x2)

+u2(3 − 7x2 + 4x4) + u(3 + 2x2 + x4)]}/
[(u − 1)

√
1 + 2u + u2(1 − x2)],

B
(0)
84 = 2[2d3x2 + x2(5x2 − 2) + d2x2(1 − 2x2)

+ d(−4 + 2x2 − 5x4 + x6)]/[(1 − u)
√

4 − x2],

B
(ρ)
21 = 2

√
1 − x2{3 + u[u − 1 + u2 + 4(3 + u)x2]}

1 + u2 − 2u(1 − 2x2)
,

B
(ρ)
22 = (1 + u)2(3 − x2)

(1 − u)
√

4 − x2
,

B
(ρ)
23 = 2[2 − x2 + 4ux2(2 − x2) − u2(2 − 5x2)]

(1 − u)
√

2(1 + u) − x2[1 + u2 − 2u(1 − 2x2)]
,

B
(ρ)
41 = 2x2 − 1

(1 − x2)3/2
,

B
(ρ)
42 = (1 + u)2

(1 − u)
√

1 + 2u + u2(1 − x2)
,

B
(ρ)
43 = 4u

(u − 1)
√

4 − x2
,

B
(ρ)
51 = (d + 1)

√
1 − x2,

B
(ρ)
52 = 7 − 2d2 − x2 + [d(1 − u) − u](1 − x2)√

1 + 2u + u2(1 − x2)
,

B
(ρ)
61 = 4

√
1 − x2,

B
(ρ)
62 = − 3 + u − 2x2√

2(1 + u) − x2
,

B
(ρ)
71 = − 6 + u + u3 + 8ux2 + 4u2x2

[1 + u2 − 2u(1 − 2x2)]
√

1 − x2
,

B
(ρ)
72 = 2u√

1 + 2u + u2(1 − x2)
,

B
(ρ)
73 = 2(1 + u)

(u − 1)
√

4 − x2
,

B
(ρ)
74 = 4(u2 − 2ux2 − 1)

(u − 1)[1 + u2 − 2u(1 − 2x2)]
√

2(1 + u) − x2
,

B
(ρ)
81 = (d + 1)(1 − 3x2 + 2x4)√

1 − x2
,

B
(ρ)
82 = {(1 + d)(1 + u)2 − [1 + d + 2(d2 + d − 2)u

+ 3(1 + d)u2]x2 + 2(1 + d)u2x2}/
[(1 − u)

√
1 + 2u + u2(1 − x2)],

B
(ρ)
83 = 2[2 − d2x2 + x4 + d(2 − 3x2 + x4)]

(u − 1)
√

4 − x2
,

and

X1 = arctan

(
1 + x√
1 − x2

)
− arctan

(
1 − x√
1 − x2

)
,

X2 = arctan

[
1 + u(1 + x)√

1 + 2u + u2(1 − x2)

]

− arctan

[
1 + u(1 − x)√

1 + 2u + u2(1 − x2)

]
,

X3 = arctan

(
2 + x√
4 − x2

)
− arctan

(
2 − x√
4 − x2

)
,

X4 = arctan

[
2 + x√

2(1 + u) − x2

]
− arctan

[
2 − x√

2(1 + u) − x2

]
,

X5 = arctan

[
1 + u + x√

2(1 + u) − x2

]
− arctan

[
1 + u − x√

2(1 + u) − x2

]
,

X6 = ln

(
2

1 + u

)
,

X7 = iπ + ln

(
1 − x2 + x

√
x2 − 1

x2 − 1 + x
√

x2 − 1

)
,
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Y1 = π − arctan

(
1 + x√
1 − x2

)
− arctan

(
1 − x√
1 − x2

)
,

Y2 = π − arctan

[
1 + u(1 + x)√

1 + 2u + u2(1 − x2)

]

− arctan

[
1 + u(1 − x)√

1 + 2u + u2(1 − x2)

]
,

Y3 = π − arctan

(
2 + x√
4 − x2

)
− arctan

(
2 − x√
4 − x2

)
,

Y4 = π − arctan

[
2 + x√

2(1 + u) − x2

]

− arctan

[
2 − x√

2(1 + u) − x2

]
,

Y5 = π − arctan

[
1 + u + x√

2(1 + u) − x2

]

− arctan

[
1 + u − x√

2(1 + u) − x2

]
.
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