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“Diffuse interface” theories for single-component fluids—dating back to van der Waals, Korteweg, Cahn-
Hilliard, and many others—are currently based upon an ad hoc combination of thermodynamic principles
(built largely upon Helmholtz’s free-energy potential) and so-called “nonclassical” continuum-thermomechanical
principles (built largely upon Newtonian mechanics), with the latter originating with the pioneering work of
Dunn and Serrin [Arch. Ration. Mech. Anal. 88, 95 (1985)]. By introducing into the equation governing the
transport of energy the notion of an interstitial work-flux contribution, above and beyond the usual Fourier
heat-flux contribution, namely, jq = −k∇T , to the energy flux, Dunn and Serrin provided a rational continuum-
thermomechanical basis for the presence of Korteweg stresses in the equation governing the transport of linear
momentum in compressible fluids. Nevertheless, by their failing to recognize the existence and fundamental
need for an independent volume transport equation [Brenner, Physica A 349, 11 (2005)]—especially for the
roles played therein by the diffuse volume flux jv and the rate of production of volume πv at a point of the fluid
continuum—we argue that diffuse interface theories for fluids stand today as being both ad hoc and incomplete
owing to their failure to recognize the need for an independent volume transport equation for the case of
compressible fluids. In contrast, we point out that bivelocity hydrodynamics, as it already exists [Brenner, Phys.
Rev. E 86, 016307 (2012)], provides a rational, non-ad hoc, and comprehensive theory of diffuse interfaces, not
only for single-component fluids, but also for certain classes of crystalline solids [Danielewski and Wierzba,
J. Phase Equilib. Diffus. 26, 573 (2005)]. Furthermore, we provide not only what we believe to be the correct
constitutive equation for the Korteweg stress in the class of fluids that are constitutively Newtonian in their
rheological response to imposed stresses but, equally importantly, we establish the explicit functional forms of
Korteweg’s phenomenological thermocapillary coefficients appearing therein.
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I. INTRODUCTION

A. Background

This paper is the natural sequel to a recent bivelocity-
based publication by the author [1], bearing the seemingly
oxymoronic title “Fluid mechanics in fluids at rest.” There,
we focused upon steady-state, conduction-only transport pro-
cesses occurring in compressible single-component bivelocity
fluids, with such processes animated solely by the action of
an externally imposed, time-independent uniform temperature
gradient. Drawing upon both theoretical and experimental
data, seemingly unimpeachable arguments of a fairly ele-
mentary and transparent nature were outlined in that paper,
demonstrating the need in compressible fluid mechanics for
two independent velocities rather than one. (A single velocity
field suffices for incompressible fluids.) The centrality of
heat conduction in the demonstration enabled us to use the
phenomenon of thermophoresis [2] to make the experimental
case [1] for the existence of two different velocity fields. The
need for two independent velocities was shown therein to hold
true irrespective of whether or not the fluid was flowing or
at rest, and of whether the transport process was, or was not,
time independent. At the time of its writing, discussion of
the broader physical and philosophical ramifications of the
paper’s findings was largely postponed to a subsequent paper,

*Deceased.

so as not to distract from the paper’s main goal, namely, that
of demonstrating the viability of the dual-velocity scheme
with respect to its accord with all known pertinent physical
principles [3–5].

What follows below is that implicitly promised “subsequent
paper.” Explicitly, we return here to the same conduction-only
transport scenario addressed in that predecessor paper [1],
but now focusing on the broader, physical and philosophical
consequences of such conduction-only, steady-state transport
phenomena. In particular, the present work focuses exclusively
on the steady-state, conduction-only diffuse transport of
mass, momentum, energy, entropy, and volume (MMEEV)
through compressible, single-component, viscous fluid con-
tinua bounded externally by mass-impermeable boundaries,
when animated solely by gradients ∇ρ in the fluid’s mass
density ρ arising from nonuniformities in the distribution of
mass and, hence, of corresponding nonuniformities in the
statistical, time-averaged, spatial distribution of the fluid’s
Brownian molecules.

By default, convection and transient phenomena, constitut-
ing the only other physically recognized modes of transport,
are both now regarded from the outset as being absent, leaving
conduction as the sole mechanism enabling transport through
the fluid of the particular physical property of interest. In a few
instances we will have occasion to depart from the conduction-
only scenario and write out the complete version (i.e.,
including convection and time-dependent transport processes)
of the otherwise conduction-only equation. To avoid confusion
as to which of the two possible versions is being referred to, we
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will place an asterisk next to the equation number applicable
to the complete version of the transport-related equation.

In what follows we discuss both monovelocity and bive-
locity fluids. The “mono” prefix refers, implicitly, in the
context of our present paper to the class of fluids obeying the
Navier-Stokes-Fourier (NSF) equations [6–9]. For such fluids,
heat and entropy are the only physical properties capable of
undergoing purely conductive transport. Moreover, even if the
fluid were to be incompressible, such that ρ = const (so that
∇ρ = 0) throughout, heat and entropy would still be capable
of undergoing this conduction-only mode of transport, not only
in the NSF model, but also in the bivelocity model.

Given this prior knowledge-based background, we focus
in what follows primarily on those other physical properties,
namely, (i) a nondissipative diffuse momentum flux jM
represented by the Korteweg stress appearing in the linear
momentum transport equation, (ii) a thermomechanical work
flux jw appearing in the energy transport equation, and
(iii) the diffuse volume flux jv appearing in the volume
transport equation. These three items are absent from the
conduction-only NSF model irrespective of circumstances,
but present in the conduction-only bivelocity model whenever
∇ρ �= 0. Common to these three fluxes is the fact that each
vanishes identically when jv = 0, as is the case when the NSF
model prevails.

Physical consequences pertinent to conduction-only trans-
port phenomena in bivelocity fluids are cited in our pa-
per. Importantly, included therein is an elementary theoret-
ical demonstration of the reality (existence) of Korteweg
stresses [10], divorced from the complex, purely continuum-
thermomechanical or mathematical theoretical attempts at
proofs of its existence currently found in the literature [11–21].

Among other findings, our work establishes the presence of
a close relationship between our conduction-only bivelocity
theory and “gradient-energy” and “gradient-stress” theories
associated with the notion of diffuse interfaces [22–29]—
such commonality notwithstanding the wide gulf in their
respective theoretical foundations between thermodynamics
and continuum mechanics.

B. Compressible fluids

For the single-component fluids being studied in our
paper, mass-density gradients ∇ρ (hereafter usually referred
to simply as “density gradients”) can arise only from the
existence of temperature and/or pressure gradients, ∇T and
∇p [owing to the fluid’s equilibrium equation of state ρ =
ρ(p,T )], and then only in cases where at least one of the fluid’s
respective coefficients of thermal expansion and isothermal
compressibility [30,31], namely,

β = − 1

ρ

(
∂ρ

∂T

)
p

and κ = 1

ρ

(
∂ρ

∂p

)
p

, (1.1)*

is nonzero. In the case of gases, β is non-negative for ideal
gases. For liquids, β can be positive, zero valued (e.g., in the
case liquid water at 4 ◦C and 1 atm pressure), or negative.
On the other hand, κ is necessarily always positive for both
gases and liquids, since that attribute assures the fluid’s
thermodynamic stability [32]. Accordingly, as κ > 0, all fluids
are, strictly speaking, “compressible” to some extent, although

nowhere in the subsequent analysis will the need exist for us
to take advantage of this nonzero κ value, even in the case of
liquids. Thus, in subsequent discussions, where appropriate,
we feel free to cling to the hypothetical existence of a so-called
“incompressible” fluid, ρ = const, especially when concerned
with liquids.

Apart from the momentum transport emphasis placed on
our analysis by reference to Korteweg’s stress [10], we
also elaborate on the energy transport aspect of our work
regarding the existence of a bivelocity-based, conduction-only,
thermomechanical work flux jw lying above and beyond that of
the thermodynamically animated heat flux jq , and contributing
thereby to the complete conduction-only energy flux je = jq +
jw, whose divergence ∇ · je appears in the energy-transport
equation. In the course of doing so we relate this work flux
to the prescient prior work on the subject by Dunn and Serrin
[14] and Dunn [15], who used their continuum-mechanical
gradient-energy and gradient-stress findings to probe the
physicality of Korteweg stresses, whose existence at the time
was largely hypothetical. However, since esoteric, rational
continuum-mechanical principles alone, rather than widely
accepted elementary physical principles, were used to affect
their efforts, none of their resulting conclusions can be said to
demonstrate, unequivocally, the existence of either Korteweg
stresses or of the thermomechanical work flux. At best, the
physical existence of such stresses was merely shown to be a
theoretical constitutive possibility. Moreover, Dunn and Serrin
failed to explicitly identify the existence of the diffuse volume
flux jv [3], thereby rendering their work incomplete.

The antecedents of Dunn and Serrin (1985)—beginning
originally with van der Waals (1873) [23] and Korteweg
(1901) [10], and, later, including prominent contemporary
researchers such as Cahn and Hilliard (1951) and their
subsequent followers [27]—took a different tack towards
addressing the above-cited class of Korteweg-like problems
of interest. In particular, these precedent arguments began
by invoking thermodynamic principles based upon ad hoc
extensions of Helmholtz’s free-energy potential [32,33] from
equilibrium to near-equilibrium transport phenomena, but then
only to those transport phenomena that are nondissipative.
The latter restriction limits such free-energy-based theories
to situations in which convection (mass motion) is absent so
that v = 0, as, for example, in the case of solids. Accordingly,
the Cahn-Hilliard thermodynamic or Lagrange multiplier class
of publications [27] bearing on Korteweg stresses and the
like is limited in scope to either fluids at rest or to transport
phenomena taking place in certain classes of solids. Given our
focus on conduction-only phenomena in fluids, discussion of
the possible application of Cahn-Hilliard’s theory to transport
in solids is postponed until later. Suffice it to say here that
within its limited realm of applicability, Cahn-Hilliard-like
nondissipative theories have been shown to accord well with
experimental data on solids, but then only when used in
conjunction with experimentally established parameters for
the requisite phenomenological coefficients chosen to best fit
the data.

It would appear from the above-cited limitations of both
the pre- and post-Dunn and Serrin (1985) analyses that
there currently exists no complete, first-principle’s theory of
transport phenomena available for compressible fluids (the
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latter including both gases and liquids) that is free of ad
hoc assumptions or other rational flaws. This, however, is
not true. Rather, we—together with a few other researchers
[4,5,17,18]—believe that the bivelocity model [3] provides a
physically acceptable, first-principle’s theory, at least in the
case of rheologically Newtonian fluids [7].

It is the avowed purpose of our paper to bring to the
attention of the reader, in the most transparent manner possible,
the fact that a rational physical theory already exists under
whose heading a straightforward theory of “diffuse interfaces”
already exists—at least for Newtonian fluids—but without the
theory itself being focused exclusively on singular regions of
the fluid. We do this by focusing exclusively on conduction-
only bivelocity transport processes, despite the fact that the
results obtained in this manner are already known to apply in
the general case. Our conduction-only suppression of terms in
the general case—whose presence would surely detract from
allowing the reader to easily recognize the critical roles played
by our three different bivelocity-based nondissipative momen-
tum, thermomechanical work, and diffuse volume fluxes—will
be seen to contribute significantly towards effecting the goal
of transparency.

Apart from the goal of merely rendering already existing
bivelocity results more transparent to readers, we use this
opportunity to expose readers to the likely reasons why
recognition of the need for a separate volume transport
equation (together with the constitutive equation for the diffuse
volume flux appearing therein), independent of the mass
transport (i.e., continuity) equation, did not arise until long
after that of the other common linear diffuse fluxes. The latter
include (i) linear momentum (Navier-Newton’s rheological
law), (ii) heat (Fourier’s law), and (iii) in the case of mixtures,
Fick’s law. Moreover, we provide a physical interpretation of
the steady-state fractional rate of production of volume πv at
a space-fixed point in a completely quiescent fluid.

II. GENERIC PRECONSTITUTIVE TRANSPORT
EQUATIONS: VOLUME TRANSPORT

In this section we present universally accepted, generic,
preconstitutive transport equations applicable to both monov-
elocity and bivelocity fluids. These general balance equations
governing the transport of the extensive MMEEV physical
properties are set forth for both space-fixed (i.e., Eulerian) and
so-called material (i.e., Lagrangian) choices of control volume.
These broadly general preconstitutive laws are (or should be)
regarded by the fluid-mechanics and related scientific com-
munities as being equally applicable [1] to both monovelocity
and bivelocity fluids, independently of the fluid’s molecular,
rheological, or thermal material properties. Explicitly, for a
specific extensive physical property, the term preconstitutive
“transport” equation or preconstitutive “balance” equation
refers to that universally accepted formulation of the transport
law that exists prior to inserting therein the explicit constitutive
law (e.g., Fourier’s law) governing transport of that property
within a particular rheological fluid continuum.

Because the transport of volume is key to the subject of
bivelocity hydrodynamics in relation to NSF hydrodynamics,
we take advantage of this generically based section of our paper
to emphasize the phenomenon of volume transport in its full

generality, rather than limiting ourselves to the conduction-
only transport mode as in the case of the remaining MMEE
properties.

A. Generic transport processes

Let the symbol � generically denote one of the extensive
MMEEV properties. Let this same symbol also denote the
amount of the property contained at a given instant of time t

within a small fluid domain V bounded by a closed surface
∂V . By definition,

�(t) =
∫

V

ψ(x,t)dV . (2.1)*

Here, x denotes the position vector of a fixed point in the
continuum, and dV ≡ d3x denotes the volume element. At a
given position x and instant of time t in a fluid continuum,
we denote by the position- and time-dependent fields ψ̂(x,t)
and ψ(x,t) the respective specific (i.e., per unit mass) and
volumetric (i.e., per unit volume) densities of the extensive
generic physical property �. These two densities are related
by the expression

ψ = ρψ̂. (2.2)*

When the domain V is fixed in space (Eulerian view), the
temporal rate of change in the amount of the property contained
within the fluid domain V is given by

d�

dt

∣∣∣∣
V

=
∫

V

∂ψ

∂t
dV . (2.3)*

On the other hand, when the domain V ≡ VMFP(t) refers to
that of a “material fluid particle” or MFP (Lagrangian view),
we have that [34–37]

d�

dt

∣∣∣∣
VMFP

=
∫

VMFP

ρ
Dψ̂

Dt
dV , (2.4)*

in which

D

Dt
= ∂

∂t
+ v · ∇ (2.5)*

denotes the material derivative. Here, v is the fluid’s mass
velocity, namely, the velocity appearing in the continuity
equation,

∂ρ

∂t
+ ∇ · (ρv) = 0, or, equivalently,

(2.6)*
Dρ

Dt
= −ρ∇ · v, or ρ

Dv̂

Dt
= ∇ · v,

in which v̂ = 1/ρ is the specific volume.

B. Production of volume

It is especially important to distinguish between Eqs. (2.3)
and (2.4) when focusing on the property of volume, namely,
wherein (�,ψ,ψ̂) ≡ (V,1,v̂).
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1. Space-fixed domain V

Unsurprisingly, for the space-fixed domain V , we find from
Eq. (2.3) that

dV

dt

∣∣∣∣
V

= 0. (2.7)*

This follows from the fact that, geometrically, the Eulerian
domain V is fixed in size, shape, and location for all time.

On the other hand, during transient flows, the amount
of mass (�,ψ,ψ̂) ≡ (M,ρ,1) instantaneously present in the
volume V , namely, M(t) = ∫

V
ρ(x,t)dV , will generally vary

with time in accordance with Eq. (2.3) applied to mass.
Explicitly, dM/dt = ∫

V
(∂ρ/∂t)dV .

2. Material domain VMFP

On the other hand, for the MFP, we have from Eq. (2.4) that

dV

dt

∣∣∣∣
VMFP

=
∫

VMFP

ρ
Dv̂

Dt
dV =

∫
VMPF

∇ · vdV =
∮

∂VMFP

dS · v.

(2.8)*

Whereas the volume of the MFP will thus generally change
with time for the case of compressible fluids, the amount of
mass M contained therein will remain constant for all time, as
follows as a consequence of the generic formula (2.4) applied
to mass: dM/dt |VMFP = 0. Accordingly, as is well known, the
mass of a MFP remains constant in time. However, whereas
the total mass of the fluid contained therein remains constant
in time, that mass does not generally consist of the same set
of individual molecules for all time, but rather only the same
number of molecules. Due to Brownian motion, molecules
constantly enter and exit the MFP through its permeable fluid
boundaries. Because of this fact, the MFP’s contents cannot
be viewed as constituting a closed system, to which one can—
with impunity—apply extensive physical laws applicable to
fixed-mass systems, such as those of extensive equilibrium
thermodynamics. Indeed, failure to recognize volume as an
independently transportable entity, and as a result to derive the
(presumably physically incorrect) compressible NSF transport
equations found in standard textbooks [6–9,34–37] solely
on the basis of balancing input, output, and accumulation
contributions for the case of a MFP (rather than for a space-
fixed body), almost certainly accounts for the inability of many
researchers to have recognized the independent role played by
volume transport in fluid mechanics.

C. Generic balance equations

A generic balance law pertaining to transport of the
extensive property �, when performed on some arbitrary
control volume V , say, bounded by a closed surface ∂V , leads
to two equivalent but distinct balance-equation formulations,
as discussed below.

1. Space-fixed (Eulerian) control volume (V)

When the control volume is fixed in space the generic
balance law takes the form [38]

∂ψ

∂t
+ ∇ · nψ = πψ. (2.9)*

The property’s flux density nψ (hereafter, for brevity, usually
referred to simply as the property’s “flux”) is defined such that
with the vector dS denoting a directed element of surface area
at a fixed point x of the fluid, the quantity dS · nψ gives the
net rate at which the property is crossing that surface per unit
time in a direction opposite to that into which the vector dS is
directed. Furthermore, πψ represents the temporal rate per unit
volume at which the property is being produced at a point of
the fluid. For conserved properties � we would thus have that
πψ = 0. Physically, the balance equation (2.9) serves to define
the notion of production (or creation) as follows: The temporal
rate of increase

∫
V

πψdV in the amount � = ∫
V

ψdV of the
property contained within a space-fixed volumetric domain
V bounded by a closed surface ∂V equals the difference
between the rate

∫
V

(∂ψ/∂t)dV at which the property is being
accumulated within V and the net rate (inflow−outflow),∮
∂V

dS · nψ at which the property is entering the domain V

through its bounding surface ∂V .

2. Material (Lagrangian) control volume (MFP)

By definition, a material control volume [6–9,38] consists
of a fluid domain VMFP, say, whose bounding surface ∂VMFP

moves through space such that each point x lying on its
surface moves with the instantaneous mass velocity v(x,t)
of the fluid appropriate to that point. The velocity v refers to
the fluid’s mass velocity appearing in the continuity equation
(2.6), wherein

v := nm/ρ. (2.10)*

The continuity equation expresses the law of conservation
of mass ∂ρ/∂t + ∇ · nm = πm. The latter derives from the
generic equation (2.9) by choosing � ≡ M in which, in terms
of symbols, ψ ≡ ρ and nψ ≡ nm. Moreover, πm = 0, owing
to mass conservation.

The generic transport equation for a material control volume
can be obtained, purely mathematically, from its predecessor,
Eq. (2.9), simply by defining the material derivative operator
(2.5). Thus, beginning with Eq. (2.9), the generic balance law
for a material domain takes the alternative, but physically
equivalent form

ρ
Dψ̂

Dt
+ ∇ · jψ = πψ. (2.11)*

The generic quantity jψ appearing in Eq. (2.11) is the
diffusive (conductive) flux of the extensive property �, defined
generically by the relation

nψ := nmψ̂ + jψ, or, equivalently, nψ := vψ + jψ.

(2.12)*

That is, the diffuse flux jψ of the property � refers to that
portion of the property’s total flux nψ that is not conveyed
piggyback style through space as a result of being entrained
within the fluid’s local mass movement. In particular, this
diffusive flux is solely a statistical consequence of the fluid
molecules’ Brownian movements acting in concert with
inhomogeneities (gradients), ∇ψ or ∇ψ̂ , in the property’s
density.

A key feature to note with regard to the preceding physical
content of this section lies in the fact that the rate of production
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of the physical property �, represented by the symbol πψ in
both of the balance equations (2.9) and (2.11), is exactly the
same physical quantity, irrespective of whether one adopts the
space-fixed or material viewpoint. This is evident from the fact
that the latter generic transport equation follows, trivially, from
the former generic transport equation merely as a consequence
of having performed formal mathematical operations upon
the balance equation (2.9). That is, no new physics was
introduced during the course of deriving (2.11) from (2.9).
This observation proves to be especially important in the case
of volume transport (see Sec. VI), where it might otherwise
appear that two independent choices of volume production rate
πψ exist, depending upon which of the two possible choices
of control volume was selected when performing the property
balance.

From an overall perspective, a principal goal of theoretical
fluid mechanics is that of formulating and ultimately solving
the set of single-component, postconstitutive transport equa-
tions governing MMEEV transport in mobile fluid continua,
jointly with that fluid’s equilibrium equation of state p =
p(ρ,T ), and subject to appropriate boundary and/or initial
conditions, so as to establish the pressure field p(x,t) [or
density field ρ(x,t)], temperature field T (x,t), and mass-
velocity field v(x,t) throughout the fluid and for all times.
Prediction of the local values of these three fields at each point
x of the fluid domain at time t depends upon the particular
fluid-mechanical model adopted, whether monovelocity or
bivelocity, and, of course, upon the constitutive equations
embodying the property-specific or material characteristics of
the fluid quantifying its response to changes [39] in state.

Relatively recently, in an attempt to improve the accuracy
of NSF-based compressible continuum predictions—at least
in circumstances involving the simplest class of materials,
namely, those manifesting linear constitutive responses to
change—the above-cited program was expanded so as to
now include, in addition to the fluid’s usual mass velocity
v, a second velocity, the fluid’s so-called volume velocity
vv [38,40]. Thus, after a number of false starts, there came
into being the subject of bivelocity hydrodynamics [1,3,41,42]
for rheologically Newtonian fluids, above and beyond con-
ventional monovelocity NSF hydrodynamics. Independent
macroscopic and molecular modeling concepts entered into
the foundations of both models, with the former based upon
the principles of linear irreversible thermodynamics (LIT)
[34–37,43], and the latter upon variants [5] of Boltzmann’s
gas-kinetic equation [44–48].

D. The fluid’s volume velocity vv

Bivelocity fluid mechanics recognizes the existence of
two conceptually distinct velocities, these being, respectively,
the fluid’s mass velocity v and its volume velocity vv . By
definition, the fluid’s volume flux density nv corresponds,
dimensionally, to a volume flow per unit area per unit time.
With L ≡ length, a volume V has the units of L3 whereas
an area A has the units of L2. Consequently, the vector field
nv possesses the units of length per unit time, namely, those
of a vector velocity field. Thus, physically, we define the
fluid’s “volume velocity” vv such as to be synonymous with

its volume flux density nv:

vv := nv. (2.13)*

In that case we find from the second equality in Eq. (2.12) that

vv = v + jv, or, equivalently, jv = vv − v. (2.14)*

Thus, the diffuse volume flux jv represents the flux of volume
nv measured relative to the fluid’s mass velocity.

E. Production of volume

Application of the generic relation (2.9) to the transport of
volume furnishes the expression

πv = ∇ · nv, or, equivalently, πv = ∇ · vv. (2.15)*

Consider a MFP wending its way through space. Suppose
that, at some instant of time t , the MFP momentarily wholly
occupies a given space-fixed Eulerian domain V , whose center
of volume is instantaneously situated at the space-fixed point
x0. At that particular moment, the respective Eulerian and
Lagrangian domains of the MFP coincide, such that VMFP ≡
V . By definition, the quantity

•
V (x0,t) : =

∫
V

πv(x − x0,t)dV, or, equivalently,

•
V : =

∮
∂V

dS · nv, (2.16)*

represents the instantaneous temporal rate at which volume
is issuing into the fluid from those points contained in its
interior. This rate generally differs from the rate dV/dt |VMFP

[see Eq. (2.8)] at which the particular MFP momentarily
occupying the specified Eulerian domain V is increasing its
volume. Upon subtracting the last term of Eq. (2.8) from the
last term of Eq. (2.16), we obtain

dV

dt

∣∣∣∣
VMFP

− •
V =

∮
∂VMFP

dS · jV , (2.17)*

in which we have used Eqs. (2.13) and (2.14) in the form
jv = nv − v.

F. Interpretation of diffuse volume flux jv

Equation (2.17) provides the physical interpretation of the
diffuse volume flux jv as constituting a flow of volume into
the MFP through its surface without accompaniment by a
corresponding flow of mass. This is a consequence of the
fact that the MFP consists for all time of the same amount
of mass, whereas the volume entering the MFP from all of the
points lying in its interior does not bring any mass along with
it owing to the law of conservation of mass; that is, despite the
quantity called “volume” being created at points within the
MFP, no mass is simultaneously being created at these points.
Accordingly, the increase in the MFP’s volume is attributed
to the massless (i.e., “diffuse”) flow of volume through the
MFP’s surface ∂VMFP into its interior.

The notion of fluid volume being transported through space
independently of that of mass is obviously a difficult concept
to assimilate. The conceptual difficulty can be traced to the fact
that whereas mass is a conserved physical property, volume—
likewise viewed as a physical property—is not generally
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conserved. Basically, the relation between an object’s volume
V and the object’s mass M , namely,

V = M

ρ
(when ρ = const, or, equivalently, when ∇ρ = 0),

(2.18)*

holds in all circumstances where the fluid’s density ρ is
constant throughout the body. Recall that whereas V and
M are extensive physical properties, the density ρ is an
intensive continuum property. The equilibrium relation (2.18)
has always been believed to imply the credibility of the
corresponding nonequilibrium continuum flux relation

nv(x,t) = nm(x,t)

ρ(x,t)
, (2.19)*

under any and all circumstances, even when ρ varies with
position or time, that is, even when ∇ρ �= 0 and/or ∂ρ/∂t �= 0.
Remarkably, the continuum relation (2.19) appears not to
have been subjected to a critical experimental test. It is this
fundamental issue that bivelocity theory has brought into
question, and shown in prior work [3] that it is not, in fact,
true in any and all circumstances.

Rather, more generally, when applied to volume transport,
the first equality in Eq. (2.12) yields, for the case of
compressible fluids [3],

nv = nm

ρ
+ jv, (2.20)*

with the latter now appearing in place of (2.19). Accordingly,
the credibility of (2.19) under all circumstances hinges upon
whether or not

jv = 0 (2.21)*

under any and all circumstances. Indeed, the NSF equations
are implicitly based upon the validity of Eq. (2.21). This issue
has been implicitly overlooked ever since the founding of
rational fluid mechanics by Euler in 1755 [49], almost 275
years ago. Recall in this context that fluid mechanicians of
that era would have been primarily familiar with experiments
performed on liquids, but hardly with any at all on gases. And
since liquids are largely incompressible, rendering ρ(x,t) ≈
const, Eq. (2.19) would surely have constituted a natural
working hypothesis, applicable to all single-component fluids.
Nevertheless, Euler’s pioneering paper constituted the first
time that the continuity equation was formulated in its general
compressible form ∂ρ/∂t + ∇ · (ρv) = 0. As such, Euler’s
work was clearly intended to apply to compressible fluids
(perhaps the flow of gases in the atmosphere, since vertical
pressure gradients arising from gravity were already known
to exist in the atmosphere since the times of Pascal and
Toricelli). However, the interpretation of both experiments and
theory during the past decade, leading, among other things, to
the creation of bivelocity hydrodynamics, has shown us that
jv �= 0 in general.

In particular, it has been argued, at least in the linear
approximation, that the constitutive equation governing this
diffuse volume flux in the absence of body forces such as
gravity is, for both gases and liquids,

jv = α∇ ln ρ (f̂ = 0), (2.22)

where α is the thermometric diffusivity [see Eq. (4.11)], and
f̂ is the specific body force. Further discussions pertaining
to the existence of a nonzero diffuse volume flux are inter-
spersed throughout the remainder of this paper, especially
in Sec. VI, where the difficulties associated with intuitive
attempts to understand the physics underlying the phenomenon
of massless volume transport are noted to be comparable
to those encountered in the comparable case of entropy
transport. However, before proceeding, we briefly discuss
why—despite volume being a regularly encountered extensive
physical property � on a par with the other common MMEE
properties—there is no NSF volume transport equation.

G. Why is volume transport not included along with mass,
momentum, energy, and entropy transport phenomena?

In the case of volume transport [38] we write, as a
consequence of the generic transport equation (2.11), that

ρ
Dv̂

Dt
= −∇ · jv + πv. (2.23)*

The absence of this volume transport equation from the
transport literature stems from confusion over the constitutive
equation for the production term πv . In the current literature
it is universally believed that, under any and all monovelocity
circumstances,

πv

?= ∇ · v, (2.24)

whereas, in fact, the correct expression is [see Eq. (2.16)]

πv(x0,t) = lim
V →0

1

V

•
V . (2.25)

The supposed “proof(s)” of Eq. (2.24) offered in the literature,
which we briefly review below, can be found in virtually any
standard fluid-mechanics textbook [6–9,34–36]. These, as well
as our above proof of Eq. (2.25), begin with the observation
that, at any given moment t , every space-fixed Eulerian fluid
domain V comprising the fluid continuum embodies a material
fluid particle, the latter represented by the Lagrangian domain
VMFP. That is, proceeding to its ultimate destination, the
moving Lagrangian domain VMFP momentarily occupies the
stationary Eulerian domain V . However, whereas the volume
of the stationary domain V maintains its same value for all
time [see Eq. (2.7)], the volume VMFP of the particular MFP
instantaneously occupying this domain V is changing with
time in accordance with Eq. (2.8), namely,

1

VMFP

dVMFP

dt
= lim

VMFP→0

1

VMFP

∫
VMPF

∇ · vdV . (2.26)*

As the volume production rate πv(x0) is operationally defined
by virtue of its presence in the space-fixed Eulerian balance
equation (2.11)—rather than through its presence in the
Lagrangian MFP relation—we see that

πv �= lim
VMFP→0

1

VMFP

dVMFP

dt
, when πv �= ∇ · v. (2.27)*

Specifically, the correct definition of the volume production
rate is that already noted in Eq. (2.25). Indeed, we see that

1

V

dV

dt

∣∣∣∣
VMFP

− 1

V

•
V = lim

V →0

1

V

∮
∂VMFP

dS · jV . (2.28)
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If Eq. (2.24) were to be correct, it would follow from Eq. (2.23)
together with the third equality in continuity equation (2.6) that
∇ · jv = 0 and, hence, in general, that jv = 0. In other words,
the volume transport equation (2.23) would simply become
synonymous with the continuity equation (2.6) governing the
transport law for mass. As a consequence, the transport law
for volume would cease to furnish a transport law that was
independent of the already existing MMEE transport laws.
Rather, such a law would be redundant. It is for this mistaken
reason that an independent law governing the transport of
volume has not existed until recently. And, as an important
consequence thereof, the existence of the diffuse volume flux
jv, and its fundamental role in fluid mechanics, has remained
hidden for almost 250 years, ever since Euler’s [49] rational
formulation in 1755–1757 of the subject of single-component,
compressible fluid mechanics.

III. CONDUCTION-ONLY TRANSPORT PROCESSES

This section specializes the generic preconstitutive trans-
port equations set forth in Sec. II to the case where steady-
state, conduction-only transport is the only mode of transport
available to any member � of the MMEEV class.

In the case of such purely conductive transport pro-
cesses, for which by definition nm = 0 (and hence v =
0), it follows from (2.10) and (2.12) that nψ = jψ . Fur-
thermore, since transient phenomena are also assumed to
be absent, one has that ∂ψ/∂t = 0. As a consequence of
Eq. (2.2), together use of the first equality in continuity
equation (2.6), we have that ∂ψ/∂t = ρ∂ψ̂/∂t + ψ̂∂ρ/∂t =
ρ∂ψ̂/∂t − ψ̂∇ · (ρv). In conjunction with the fact that v = 0,
this shows that ∂ψ̂ /∂t = 0 for the present class of steady-state
conduction problems.

Consequently, both of the control volume balance equations
(2.9) and (2.11) merge into a single conduction-only, steady-
state transport equation:

∇ · jψ = πψ. (3.1)

Accordingly, if the property undergoing conduction were to be
a conserved property, such that πψ = 0, Eq. (3.1) would then
simply become ∇ · jψ = 0.

Equation (3.1) represents the fundamental generic pre-
constitutive equation governing steady-state, conduction-only
transport phenomena. In what follows we apply this rela-
tion, individually, to the respective transport of MMEEV.
Furthermore, to avoid needless repetition, it will henceforth
be implicitly understood from this point on that the phrase
“conduction-only” disallows transient conduction; that is, only
steady-state conduction phenomena are being considered.

A. Mass, momentum, energy, entropy, and volume
(MMEEV) transport

This section provides explicit preconstitutive equations for
the conduction fluxes jψ and production rates πψ governing
the conduction-only transport of the respective extensive
properties of mass (� ≡ M), momentum (� ≡ M), energy
(� ≡ E), entropy (� ≡ S), and volume (� ≡ V ). The diffuse
fluxes and production rates in each case are related through the
generic relation (3.1). These preconstitutive, conduction-only

expressions apply to all fluids, irrespective of whether their
transport through space is governed by the monovelocity NSF
or bivelocity equations.

1. Mass transport: (�,ψ̂,ψ) ≡ (M,1,ρ)

From (3.1) the transport of mass is seen to be governed by
the preconstitutive equation

∇ · jm = πm. (3.2)

As mass constitutes a conserved physical property, one has
that, constitutively, πm = 0. This requires that ∇ · jm = 0.
Furthermore, from the first equality in Eq. (2.12), one sees
in the case of mass, since nψ = nm and ψ̂ = 1, that jm = 0.
Consequently, in the case of mass we see that Eq. (3.2) is
automatically satisfied. In particular, and unsurprisingly, mass
cannot be transported by conduction alone, irrespective of
whether the fluid in question is monovelocity or bivelocity
in nature.

2. Momentum transport: (�,ψ̂ψ) ≡ (M,M̂ = v,ρv)

With M̂ = v = 0 the conduction-only specific-momentum
density, the generic equation (3.1) adopts the form

∇ · jM = πM, (3.3)

wherein [see Eqs. (A8) and (A2)]

jM := −[T̄ + I(p − p̄)] (3.4a)

and

πM = −(∇p − ρ f̂). (3.4b)

Here, T̄ is the symmetric and traceless nondissipative devia-
toric Korteweg stress, p̄ is the mean stress, and f̂ is the specific
body force. Each of these is operationally defined in context
in Appendix A.

3. Energy transport: (�,ψ̂ψ) ≡ (E,ê,ρ ê)

With the energy of a body consisting generally of its inter-
nal, kinetic, and potential energies, it is shown in Appendix B
that the conduction-only energy flux satisfies the solenoidal
relation

∇ · je = 0. (3.5)

As a consequence of the generic relation (3.1) applied to energy
transport, it is thus required that

πe = 0, (3.6)*

with the latter representing the fact that energy is conserved
in accordance with the first law of thermodynamics. In
connection with that law, the preconstitutive conduction-only
energy flux consists of the sum

je = jq + jw (3.7)

of a heat flux jq and a thermomechanical work flux jw. The
notion that mechanical work is capable of being transported
solely by conduction is implicit in the structure of bivelocity
hydrodynamics, as it is too in the prescient work of Dunn and
Serrin [14,15]. The contributions of these authors are discussed
in Sec. VII.
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4. Entropy transport: (�,ψ̂ψ) ≡ (S,ŝ,ρ ŝ)

The conduction-only transport of entropy through monov-
elocity and bivelocity fluids is, from the perspective of the
generic balance equation (3.1), governed by the balance
equation

∇ · j s = πs, (3.8)

wherein j s is the diffuse entropy flux and πs the fractional
volumetric rate of entropy production. On physical grounds the
entropy production rate is necessarily non-negative, requiring
satisfaction of the inequality

πs � 0. (3.9)*

5. Volume transport: (�,ψ̂,ψ) ≡ (V,v̂,1)

For the case of volume it follows from Eq. (3.1) that the
preconstitutive conduction-only transport equation governing
volume transport through space obeys the relation

πv = ∇ · jv, (3.10)

with jv the diffuse volume flux, and πv the rate of production
of volume per unit volume at a space-fixed point of the fluid.
From the generally applicable case, where Eq. (2.14) applies,
the diffuse flux of volume in the conduction-only case becomes

jv = vv ≡ nv. (3.11)

IV. CONSTITUTIVE EQUATIONS FOR THE BIVELOCITY
CONDUCTION FLUXES jψ AND PRODUCTION RATES πψ

In the context of anticipating specific physical applications
of our preconstitutive conduction-only relations set forth in
Sec. III, constitutive equations are required for the various
conduction fluxes. The conduction fluxes of interest in our
present single-component bivelocity and NSF cases are jM
[or, alternatively, T and p̄ − p as in Eq. (3.4a)], jq , jw,
js , and jv . When these constitutive equations are in hand,
their respective insertions into the appropriate preconstitutive
transport equations of Sec. III, which govern conduction-only
transport phenomena, bring about closure of the respective
sets of bivelocity and NSF differential equations, thus fur-
nishing the appropriate “postconstitutive” conduction-only
balance equations for use in applications. These constitutive
expressions are given below only for the bivelocity case. The
corresponding constitutive equations for NSF fluids may be
obtained from these by simply setting jv = 0 in the expressions
given below for the bivelocity case, as we later do explicitly
in Sec. V.

A. Conduction-only constitutive equations for bivelocity fluids

The respective conduction-only bivelocity constitutive
equations governing the pertinent diffuse fluxes take the
following forms.

1. Momentum transport

Here

T = 2μ∇jv, p − p̄ = ζ∇ · jv, and πM = −(∇p − ρ f̂)

(4.1)

[see also Eq. (3.4a)]. In these expressions μ and ζ are,
respectively, the fluid’s shear and dilatational viscosities
for Newtonian fluids. Note from Eqs. (3.3) and (3.4) in
conjunction with (4.1) that in the present conduction-only case,
were one to set jv = 0, it would follow that ∇p − ρ f̂ = 0, and
hence from (4.1) that πM = 0, as would be expected in that
conventional NSF case. On the other hand, in the bivelocity
case, where jv �= 0, one has from Eq. (4.13) that πM �= 0. This
is an indicator of the fact that, based upon bivelocity theory,
the hydrostatic equation does not strictly hold true in quiescent
fluids when mass-density gradients ∇ρ �= 0 are present, as
already pointed out explicitly in Sec. IX of Ref. [1]. [This can
also be clearly seen from the union of Eqs. (4.2) and (4.10).]

It follows from use of Eqs. (3.3) and (3.4), in conjunction
with the above-cited constitutive stress-related and production
rate expressions (4.1), that the differential equation governing
conduction-only momentum transport in bivelocity fluids is

2∇ · (μ∇jv) + ∇ (ζ∇ · jv) = ∇p − ρ f̂. (4.2)

2. Energy transport

Here

jq = −k∇T , (4.3a)*

jw = P · jv, (4.3b)

and

πe = 0. (4.4)*

The relation P = Ip̄ − T̄ given in Eq. (A2) for the pressure
tensor, when considered in conjunction with Eqs. (4.11) and
(4.12), shows, as a consequence of Eq. (4.3b), that the work
flux density is

jw = pjv − ζ (∇ · jv) jv − 2μjv · ∇jv.

As was noted in Eq. (2.22), and as will be set forth later in this
section, the constitutive equation for the diffuse volume flux
in the absence of body forces such as gravity is jv = α∇ ln ρ.
Consequently, apart from nonlinear constitutive contributions
embodied in the last two terms on the right-hand side of the
equation displayed above, each of those terms also involve
three consecutive gradient operations. Given the foundational
principles of linear irreversible thermodynamics (LIT)—as
were originally used in establishing the hypothesized range
of applicability of the NSF constitutive relations resulting
therefrom [34–37]—the two last terms appearing on the right-
hand side of the above are negligible compared with the linear,
leading-order term on the right. Accordingly, consistency with
LIT requires that the constitutive equation for the work flux be
given by the expression

jw = pjv. (4.5)

Introduction of the latter into (3.7) yields

je = jq + pjv, (4.6)

in which the constitutive equation for the heat flux is given
by Fourier’s law [50,51], Eq. (4.3a). We note from (3.5)
that ∇ · je = 0 in the present conduction-only case. As such,
the conduction-only energy transport equation satisfies the
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following differential equation:

∇ · (jq + pjv) = 0. (4.7)

3. Entropy transport

The bivelocity constitutive equation for the diffuse entropy
flux is [3]

js = jq + pjv
T

. (4.8)*

Consequently, from Eqs. (3.8) and (4.7) we find in the
conduction-only case that

πs = (jq + pjv) · ∇ 1

T
. (4.9)

4. Volume transport

Based upon the principles of LIT, the constitutive equation
governing the diffusive, conduction-only flux of volume is
found to be [3]

jv = α[β∇T + κ(∇p − ρ f̂)], (4.10)*

where

α = k

ρĉp

(4.11)*

is the thermometric diffusivity. Appearing in Eq. (4.11) are
ĉp, the isobaric specific heat, and k, the thermal conductivity
coefficient appearing in Fourier’s law. The compressibility
coefficients β and κ are defined in Eq. (1.1).

Equation (4.10) can be rewritten as

jv = α∇ ln ρ − ακρ f̂. (4.12)*

Moreover, as in Eq. (3.10), we have in the conduction-only
case that

πv = ∇ · jv. (4.13)

Given our limited experience to date in dealing with volume
transport problems in which body forces are present, we urge
caution when using Eq. (4.12) in cases where f̂ �= 0. In the
absence of such forces one has that

jv = α∇ ln ρ (f̂ = 0). (4.14)*

An additional need for caution stems from the fact that
were we to consider the case of an incompressible fluid,
where ρ = const throughout, one would have simply that
jv = −ακρ f̂. And it is difficult to understand how a body
force alone would give rise to the production of volume, as
required by (4.13). On the other hand, were the fluid to be truly
incompressible, one would have that κ = 0, in which case the
body-force contribution would vanish, and the issue would
cease to be relevant. However, as discussed in connection with
the first equality in Eq. (1.1), the stability of fluids requires
satisfaction of the inequality κ > 0 [32,33], in which case the
possibility of addressing situations where ρ = const becomes
moot.

In connection with the issue of (conservative) body forces it
should also be noted in the present conduction-only transport
case that such forces, if present, do not appear capable of
performing work, in the sense of contributing to the work flux
jw in Eq. (4.5). This represents yet another need for caution.

B. Comments on the thermomechanical work-flux contribution
to the energy flux

The equation of state for ideal gases is such that

p = nkBT , (4.15)*

in which n is the volumetric number density of molecules
(molecules per unit volume) and kB is Boltzmann’s constant.
As kBT represents the thermal energy per molecule [44–48],
it follows that the pressure p could be regarded as serving
a dual role, not only as a stress (i.e., force per unit area)
but also as constituting the fluid’s thermal energy per unit
volume at a point of the fluid continuum. Given that latter
interpretation, together with the fact that dS · jv represents the
volume crossing the surface dS per unit time, the scalar dS ·
pjv ≡ nkBT (dS · jv) then represents the temporal rate at which
thermal energy is being conducted across the areal surface
element.

While the preceding thermally oriented view might suggest
that pjv , as jq , is a heat flux rather than a work flux, that
alternative view is inconsistent with the origin of the work
flux; for in the general case, where both convection and
unsteady-state transport processes (in addition, of course,
to conduction) are allowed, the work term jw originates
with the presence of the predecessor of Eq. (4.3b) in the
energy equation—explicitly, jw = P · vv in the bivelocity
case and jw = P · v in the NSF case. The vector dS · P
constitutes a force dF, say, whereas v = dx/dt , in which dx
denotes a spatial displacement, namely, a “distance” traversed
during a time interval dt . It is obvious that the term dF · dx
constitutes a force × distance mechanical work term, the latter
then appearing in the expression dS · jw ≡ (dF · dx)/dt for
the rate of working per unit time.

V. MONOVELOCITY, NSF CONDUCTION-ONLY
CONSTITUTIVE EQUATIONS

In the case of incompressible fluids, where ρ = const
throughout, one has from Eq. (4.14) that jv = 0, certainly
in the case where body forces are absent. In that case it is
seen upon comparison of the latter equation with the results of
Sec. IV that bivelocity and NSF fluid mechanics merge into a
single theory.

Explicitly, in the bivelocity conduction-only constitutive
equations set forth in Sec. IV, the only nonzero flux contribu-
tions that remain upon setting jv = 0 therein are

je = jq = −k∇T (5.1)

and

js = jq
T

. (5.2)

It follows from Eqs. (3.5) and (5.1) that ∇ · j q = 0, when
the usual NSF heat conduction equation ∇ · (k∇T ) = 0 is
satisfied. Furthermore, in view of the preceding relations in
conjunction with (3.8), it follows that πs = k(∇ ln T )2. Hence,
since k � 0, this confirms that the entropy production-rate
inequality (3.9) is properly satisfied, at least for NSF fluids.

The two fluxes, (5.1) and (5.2), constitute the only nonzero
conduction-only contributions to transport in the case of
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NSF fluids. Comparison with their bivelocity counterparts
in Sec. IV shows the significant extent to which the notion
of volume transport has enriched even as trivial a subject as
steady-state heat conduction, much less that of other transport
phenomena. It will be seen in Sec. VII that some of these
bivelocity features with respect to conduction-only momentum
and energy transport processes are explicit in the earlier works
of others, although not necessarily constitutively formulated
in a manner wherein unequivocal agreement exists between
those results and ours. These earlier momentum and energy
conduction-only additions to transport especially include
(i) the 1901 work of Korteweg [10] in relation to Eq. (4.11),
who built upon prior diffuse interface contributions by
Rayleigh [22] and van der Waals [23], (ii) the gradient-stress
and gradient-energy contributions by Cahn and Hilliard and
others [27–29], also to diffuse interfaces [24], and (iii) the 1985
work of Dunn and Serrin [14] in the context of their proposal
to add a thermomechanical work-flux contribution jw—not
necessarily identical, constitutively, to our Eq. (4.5)—to the
heat flux jq , as in our Eq. (3.7), in order to reconcile Ko-
rteweg’s theory with the broad general principles of continuum
thermomechanics [15].

The NSF-based equality (5.1) between the respective
energy and heat fluxes depends implicitly upon belief in
the currently accepted NSF view that, because the fluid is
quiescent and the temperature field is time independent, the
fluid cannot undergo a volume change. And if the volume
cannot change, it is implicitly concluded by these NSF
researchers that the production of mechanical work (possibly
accompanying the flow of heat jq) is impossible.

Consequently, according to established thermodynamic
principles [32], in the strictly NSF conduction-only case,
wherein Korteweg stresses and work fluxes are absent, the
energy flux and the heat flux are regarded as being syn-
onymous. It is in this context that our belief in the superior
accuracy of bivelocity theory over that of NSF brings about a
fundamental change in the presently established [7–9,34–37]
transport phenomena scenario.

VI. INTUITIVE INTERPRETATION OF jv AND πv

In this section we discuss the physical significance of both
the (massless) diffuse volume flux jv and the production rate
πv of volume at a fixed point in space. Neither concept is easy
to assimilate intuitively owing to one’s inevitable tendency
to associate volume with mass, as in Eq. (2.18), both of
which are extensive properties [52]. As a consequence of
this virtually inescapable associative tendency, the notion of a
massless volume flux, as well as the apparent ability to create
volume independently of that of mass, would appear to be
oxymoronic.

The underlying difficulty in assimilating volume-based
concepts can be traced, at least in part, to the fact that
volume, as entropy, is not generally a conserved property.
This lack of conservation contrasts with that of the more
familiar extensive properties undergoing transport, namely,
those of mass, momentum, and energy (MME), all of which
are conserved [7–9]. Moreover, unlike its sister quality mass,
volume is neither a material substance nor is it a physical

attribute that exists in its own right, again in contrast with
MME. Nor, again in contrast therewith, does volume or specific
volume come to mind when attempting to rationally intuit
continuum-mechanical principles from Newton’s discrete-
body mechanical principles. Rather, volume, as entropy, is
an ethereal extensive attribute, not assignable to a point. How,
then, is one to understand, even if only intuitively, the notions
of a massless volume flux or the rate of production of volume
at a fixed point in space without a comparable production of
mass?

Nevertheless, just as one is able to deal operationally—
albeit without much intuitive physical insight—with well-
established, but abstract, physical concepts such as the diffuse
flux of entropy js , or the temporal rate πs of entropy production
at a fixed point of a quiescent fluid, so too can one eventually
learn to accept the operational existence of the comparable
attributes for volume. Despite such reassuring statements
regarding volume’s operational acceptance as a transportable
extensive physical property, independently of that of mass,
volume’s integration into the foundations of fluid mechanics
is unlikely to come free of controversy [53].

A. Characteristic length scale L

In regard to fluid continua, the association of mass with
volume at a point (strictly in the neighborhood of that point)
arises in connection with the notion of the fluid’s density
ρ as mass per unit volume or, in terms of its reciprocal,
the fluid’s specific volume v̂ = 1/ρ. The issue comes to
attention when one contemplates compressible fluid continua,
wherein density gradients ∇ρ exist. The ratio (|∇ρ|/ρ)−1 ≡
|∇ ln ρ|−1, whose dimensions are those of length, obviously
provides a quantitative measure of the possible importance of
density gradients in applications. In this context it often proves
convenient to define the intrinsic length scale

L := min(|∇ ln ρ|−1), (6.1)

an assignation accompanying a given physical application.
The importance of the length parameter L arises in the

context of its relation to the other length scales characterizing
the particular physical problem of interest, be they, for
example, (i) the mean-free-path length δ in dealing with
Knudsen number (Kn) effects, or (ii) the radius a of a sphere
in the course of, say, deriving the correction to Stokes law
for the case where the sphere moves through a nonisothermal,
strongly thermally stratified compressible fluid, or (iii) the
radius Ro, say, of a circular cylindrical microfluidic tube
through which a gas is flowing isothermally under the influence
of an externally imposed pressure gradient [54–57]. Thus,
when scaling the gradient operator ∇ in order to produce
a suitable dimensionless gradient operator ∇∗, say, for use
in a particular application, one may encounter a multiplicity
of length-scale choices during the course of rendering the
fluid-mechanical equations dimensionless prior to solving
them subject to appropriate boundary conditions. For the
examples cited, the possible nondimensional scalings of the
gradient operator include ∇∗ = (a,δ,Ro,L) ∇.

How is one to choose the correct scalings of the pertinent
dimensional parameters? Clearly, the choice in the examples
cited above lies in the magnitudes of the dimensionless
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size ratios, such as a/L and δ/L (as well, of course, on
the Knudsen number δ/a = Kna). It is in circumstances
where one (or both) of these size ratios become of O(1), or
larger, that the magnitude of L enters the fluid-mechanical
analysis. Explicitly, given the constitutive relation (4.14), the
obvious universal choice for rendering the diffuse volume flux
dimensionless in all cases is

j∗v = (L/α)jv. (6.2)

Thus, say, if a compressible fluid were to be flowing through
a circular tube of radius Ro, wherein the radial distance of a
point from the tube axis was the circular cylindrical coordinate
R, it would be natural to attempt, at least initially, to effect
the scalings ∇∗ = Ro∇ and/or R∗ = R/Ro. Consequently,
were the ratio Ro /L to be of O(1) or larger in the particular
compressible tube-flow problem of interest (see the examples
cited in Refs. [54,55]), it would be necessary to retain diffuse
volume effects.

Indeed, experimental data already exist [54–57] to support
this view, showing the superiority of the bivelocity equations
over those of NSF for compressible fluids, especially in
cases of low density (i.e., rarefied) gases. While there exist
monovelocity fluid-mechanical transport equations other than
those of NSF that also agree with experiment [58,59], they
are invariably based upon empirical hypothetical concepts,
such as ad hoc slip velocities at the system’s boundaries,
embodying fitting parameters such as experimental data-based
accommodation coefficients [58,59]. In contrast, bivelocity
theory involves no empirical parameters, either in the transport
equations themselves or in the boundary conditions to be
imposed upon these equations in the course of effecting their
solutions. Rather, the boundary condition prevailing at solid
surfaces bounding the flow is one of no slip of the fluid’s
volume velocity vv [54,56,57], as defined in Eqs. (2.13) or
(2.14).

Similar issues with respect to the magnitude of a/L would
arise when attempting, for example, to establish the correction
to Stokes law for the case of a sphere moving through a
strongly stratified isothermal gas. For example, in the case
of a colloidal-sized sphere or large polymer molecule of
effective radius a sedimenting through an isothermal gas in an
ultracentrifuge of radius Ro rotating with angular velocity �,
one has (since the pressure distribution is given approximately
by the formula ∇p = ρ�2R) that the characteristic length is
[60–63]

L := min
(1 − ĉv/ĉp)ĉpT

�2Ro

. (6.3)

Were this length proven to be small, the ratio a/L could
conceivably be non-negligible when establishing the sphere’s
Stokes-law settling velocity. In contrast, “wall effects” on the
sphere’s motion—as embodied in either of the dimension-
less parameters a/Ro or L/Ro—would likely prove to be
negligible.

1. Diffuse interfaces

Comparable lessons also exist (see Sec. VII) in the case of
so-called diffuse interfaces [24], where a continuous transition

in density ρ(x) (−∞ < x < ∞) between, say, a liquid and
its vapor in single-component fluids [28,29], is characterized
by steep density gradients ∇ρ in the neighborhood of the
interfacial region near x = 0. In circumstances where the
magnitude of the length scale (6.1) is small compared with
the respective linear extents of the bulk liquid and vapor
regions bounding the interfacial region x = 0, a perturbation
scheme, involving passage to the mathematical limit of zero
interfacial “thickness” in the near-singular region proximate to
x = 0, then furnishes a discontinuous surface, the “interface,”
a separate phase, endowed with unique physical properties
different from those of the surmounting bulk phases, including
surface tension and surface free energy (at least in equilibrium
circumstances).

Given the central role played by the existence of density
gradients ∇ρ in the continuum-mechanical analysis of diffuse
interfaces, the success of this diffuse interface scheme is seen to
involve exactly the same fundamental bivelocity principles as
we have been discussing in the preceding length-scale contexts
cited. Whereas, by deliberate omission, our diffuse interface
comments focused on systems in a state of thermodynamic
equilibrium [32,33], it is obvious that similar ideas can be
applied in a more general, near-equilibrium, transport process
context in order to develop, say, a comprehensive LIT-based
theory of interfacial transport processes [9,64,65].

Finally, we note that shock waves [66], especially when they
occur in rarefied gases, provide yet another example wherein
recognition of the importance of the diffuse volume flux jv in
the context of the intrinsic length scale L is likely to prove
relevant.

2. Homogeneous versus inhomogeneous molecular distributions

Our analysis clarifies the importance of distinguishing
between Brownian motion occurring in statistically homoge-
neous fluids, where ρ is uniform throughout the fluid, and
Brownian motion occurring in statistically inhomogeneous
fluids, where, as a result of the existence of density gradients
∇ρ, the density ρ—and hence the spatial distribution of
molecules—is no longer statistically uniform throughout the
fluid. Moreover, the fundamental difference between the
homogeneous and inhomogeneous cases explains why heat
can, as a result of stochastic Brownian motion, be transported
purely conductively (i.e., jq �= 0), irrespective of whether the
fluid is compressible as in the inhomogeneous distribution case
(∇ρ �= 0), or incompressible as in the homogeneous distribu-
tion case (ρ = const). There, it is the Brownian motion alone,
irrespective of the local molecular distribution in space, that
proves pertinent. On the other hand, fundamental differences
exist between the compressible and incompressible cases as
regards the role played by the Brownian motion in regard to,
say, the existence or nonexistence of the thermomechanical
work flux pjv . After all, if no expansion or contraction of
volume was possible during the conduction-only process, such

that
•
V = dV/dt , as in Eq. (2.16) [see also Eq. (2.25)], there

could then be no nonequilibrium work-flux analog pdV/dt ,
say, of the equilibrium thermodynamic work pdV . In that
conduction-only case, energy transport would be synonymous
with heat flow.
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VII. DIFFUSE INTERFACES: RELATIONSHIP OF
BIVELOCITY THEORY TO GRADIENT-STRESS AND

GRADIENT-ENERGY THEORIES

A. Diffuse interfaces

This section focuses on nonlocal, bivelocity-based,
conduction-only contributions to both the stress tensor ap-
pearing in the linear momentum equation and the energy flux
appearing in the energy equation for the case of inhomoge-
neous, single-component, fluid continua. Each contribution
arises as a consequence of mass-density gradients ∇ρ present
in these fluids. These gradient stress and energy additions
are in addition to the usual (Cauchy) stress and energy
contributions already present in the NSF equations [6–9].
These contributions arise in the context of the present section
whenever the characteristic length scale L defined by Eq. (6.1)
is comparable in magnitude to the so-called thickness of the
diffuse interfacial region. That near-singular region serves to
separate two, more or less, homogeneous bulk fluid phases in
mutual contact along a common interface. The two bulk fluids
can either be immiscible or miscible. If miscible, the existence
of an interface will be transient [67] rather than permanent.

Currently, continuum-thermomechanical analyses of dif-
fuse interfaces are being modeled based, primarily, upon the
work of Dunn and Serrin [14], and focused on understanding
the origin and properties of Korteweg stresses and related
transport phenomena, including the notion of an interstitial
thermomechanical work flux. In what follows, we show that
bivelocity theory provides a simple entree into their scheme, in
addition to filling in missing aspects of their work pertaining
to the transport of volume.

B. Gradient-stress and gradient-energy contributions

As already suggested following Eq. (6.3), a close physical
and constitutive relationship exists between single-component
bivelocity theory for inhomogeneous compressible fluids
and comparable gradient-stress and gradient-energy theories,
although the latter embodies nonuniform density distributions
only in selected regions of the fluid (i.e., in the so-called
“diffuse interface” region [24]), rather than possibly through-
out the entire fluid, as in the bivelocity case. In general, the
thickness of these diffuse, near-singular regions is assumed
to be small compared with the physical extent of the bulk
fluid regions. As such, in the (mathematically) singular limit,
where the thickness of the diffuse interfacial region is small
compared with that of the two bulk regions bounding it on
either side, the diffuse region becomes asymptotically singular
at a macroscopic level of description. That mathematically
singular surface, the “interface,” is then regarded as a distinct
(two-dimensional) phase in its own right. The singular stress
and singular energy additions to be discussed then serve,
ultimately, to impose interfacial stress-related and interfacial
energy-related boundary conditions [9,36,64,65] upon the
bulk-fluid momentum and energy equations at their common,
now zero-thickness, interfacial phase boundary.

Gradient-stress contributions to momentum transport arise
as a consequence of steep density gradients ∇ρ normal to
the diffuse interfacial region. These are manifested in the
form of Korteweg stresses [10] and, at least in conduction-

only circumstances, constitute a nondissipative momentum
transport mechanism. Gradient-energy contributions to energy
transport have a similar origin, and are manifested in the
form of a thermomechanical work-related flux [14], analogous
to our bivelocity work-related flux jw, with the latter to be
added to the heat flux jq in order to obtain the complete
conduction-only energy flux je, as in Eq. (3.7).

The backgrounds behind diffuse interface theories are
reviewed in some detail by Anderson et al. [24], as well as more
extensively in recent books by Mauri [26] and Hemmerich
[25], to which the reader is referred for greater theoretical
and experimental background. On a more definitive note, the
potential existence of a relationship between bivelocity theory
and diffuse interface gradient theories was recently recognized
explicitly by a number of authors, including Feireisl and
Vasseur [4] and Kotschote [17,18] among others, at least in
those cases where the stresses arose directly from Korteweg’s
momentum-stress mechanical model.

Following the conduction-only theme permeating our
paper, and in the present spirit of simply advocating the
potential utility of bivelocity theory in the context of de-
veloping a more comprehensive diffuse interface theory
than currently exists, we limit our discussion exclusively to
such elementary, single-component, single-phase conduction
situations where convection and transient phenomena are
absent.

C. Background to diffuse-interface or gradient-stress and
gradient-energy contributions

Following Rayleigh [22], van der Waals [23] was the first
thermodynamicist, subsequently followed by many others—
beginning with Korteweg [10], Cahn and Hilliard, and many
others [27]—to focus on the special properties engendered
in the class of fluids (as well as in elastic solids) within
which strong nonuniformities existed in the local distri-
bution of matter, especially in asymptotically near-singular
regions present in otherwise near-homogeneous bulk fluids,
i.e., diffuse interfaces [24]. These early, intuitively argued
investigations were founded upon the hypothesis that in
near-equilibrium single-component fluids, the Helmholtz free
energy per unit volume at a point of the fluid depends
functionally not only upon the density ρ and temperature T at
that point, but also upon the nonlocal mass density gradients
∇ρ existing in proximate portions of the fluid.

Owing to the somewhat ad hoc, non-fluid-mechanical
nature of the preceding Helmholtz thermodynamic hypothesis,
diffuse interface theory appears to us to lack a proper
foundational basis for rigorously studying gradient-stress and
gradient-energy contributions in the context of a conceptually
well-established, near-equilibrium, fluid-mechanical founda-
tion. Nevertheless, despite this lack, research in the Helmholtz-
based, diffuse interface field has continued unabated, with
significant progress based on the Cahn-Hilliard model [27]
having been recorded [25,26,68] in addressing a variety of
closely related applications, primarily in the case of transport
phenomena occurring in crystalline solid phases. We point out
in what follows that bivelocity theory [3] provides a firmer,
simpler, and more applications-friendly theoretical foundation
than that provided by the Helmholtz free-energy approach to
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the subject of transport phenomena occurring proximate to
diffuse interfaces.

D. Gradient-stress and gradient-energy contributions in
relation to bivelocity theory

We argue below (i) that the conduction-only, deviatoric
stress tensor T+, say, arising as a consequence of the existence
of the diffuse volume flux jv [cf. Eqs. (3.3) and (4.1)], namely,

T+ = 2μ∇jv + Iζ∇ · jv, (7.1)

is the bivelocity counterpart of the gradient-stress contribution
to the above-cited theories, as given by Korteweg’s stress
tensor [69,70], and (ii) that the conduction-only contribution
j+e , say, to the fluid’s energy flux je, arising from the existence
of the diffuse volume flux jv , is given by the expression [see
Eq. (4.6)]

j+e = pjv. (7.2)

In Eq. (7.1), the overbar above a dyadic denotes the dyadic’s
symmetric and traceless version [see Eq. (A6)]. The rate-of-
working flux given by Eq. (7.2) will be seen in what follows to
constitute the bivelocity counterpart of the gradient-energy
contribution appearing in the above-cited diffuse interface
theory.

Together with the constitutive equation jv =
(k /ρĉp)∇ ln ρ, as given in Eq. (4.14) for the body-force-free
diffuse volume flux, jointly with the further assumption that k

and ĉp are constants, independent of position throughout the
fluid, Eq. (7.1) becomes

T+ = Iα
(

2

3
μ − ζ

) [
2

(∇ρ)2

ρ2
− ∇2ρ

ρ

]

− 2μα

[
2(∇ρ)(∇ρ)

ρ2
− ∇∇ρ

ρ

]
. (7.3)

1. Gradient stress in inhomogeneous fluids

As earlier noted, our bivelocity analysis appears especially
closely related to the diffuse interface work of Dunn and Serrin
[14,15] as well as to that of others, including, for example,
Kotschote [17,18]. Dunn and Serrin (hereafter frequently cited
as DS for conciseness), in their prescient paper, “On the
thermomechanics of interstitial working,” point out that in
1901, Korteweg [10]—interested in modeling fluid capillarity
as well as elastic contributions to the Cauchy stress tensor—
formulated a nondissipative constitutive equation to be added
to the usual Cauchy dissipative deviatoric stress appearing in
the linear momentum equation [6,7], so as to include nonlocal
effects arising from density gradients ∇ρ.

E. Korteweg stresses

Specifically, Korteweg proposed the following compress-
ible fluid model for such gradient stresses, in which the “equi-
librium” (i.e., velocity-independent) portion of the Cauchy
deviatoric stress tensor T appearing in the linear momentum
equation is given by the constitutive equation

T+ = I[α∇2ρ + β(∇ρ)2] + δ∇∇ρ + γ (∇ρ)(∇ρ), (7.4)

where the phenomenological coefficients α,β,γ,δ are material
functions, dependent only upon ρ and T . They are generally
referred to as capillary coefficients. Various values have
been proposed for these coefficients [14,24] without common
agreement among the many researchers on the subject of their
functional forms.

Korteweg’s stress equation (7.4) is an example of a constitu-
tive equation for a material of “grade N” (wherein N = 2). In
order to be able to model complex spatial interaction effects in
materials, the constitutive quantities of interest in that context
(at this point, the interest is in stress) are permitted to depend
not only on the first gradient of the property of interest,
but also on all gradients thereof less than or equal to the
integer N . As such, Korteweg’s equation gives the stress in
a material of grade 2 (often, also referred to by some authors
as being of grade 3 [71]). However, as pointed out by DS,
all such higher-grade theories are incompatible with the usual
continuum theory of thermodynamics (namely, those existing
at the time of DS’s 1985 writings) used to derive the Korteweg
stress. Indeed, unless all of the phenomenological coefficients
appearing in Eq. (4.9) vanished identically, Korteweg’s model
was shown by DS to be incompatible with conventional
thermodynamics!

It was argued by DS that a new, broader thermodynamic
structure was required in order to achieve compatibility,
one that admits not only nontrivial grade 2 Korteweg-type
materials but, more generally, materials of arbitrary grade.
While noting that several such thermodynamic schemes were
potentially available, DS confined attention in their paper to
one posited by them as representing a particularly simple
and attractive case—further noting that this choice did a
“minimum of damage” to the classic conceptual structure
embodied in the accompanying auxiliary mass, momentum,
and energy conservation equations. By the latter they refer
to preservation, in their respective standard original forms,
of the purely mechanical principles of linear and angular
momentum conservation, together with the purely thermal
Clausius-Duhem inequality.

F. Modifications of the energy equation:
Thermomechanical work flux

In this spirit, DS focus initially upon modifying the standard
energy transport equation. In that context they follow a line
of thought useful for energetic-type calculations. Specifically,
DS posit the existence of a rate of supply of mechanical
energy, namely, their “interstitial work-flux vector” u(x,t)
(which they prove to be a continuum-mechanically objective
field), such that the standard energy conservation equation [7]
is augmented by adding their thermomechanical work flux u
(modulo an algebraic sign) to the Fourier heat flux jq in order
to obtain the energy flux. Upon removing the unsteady-state
and convective contributions from their proposed general
energy transport equation—enabling us thereby to eventually
compare the latter with our own conduction-only energy-
and stress-related contributions—DS propose that the diffuse
energy flux be given by the constitutive formulation

je = jq − u, (7.5)
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in place of its traditional NSF counterpart, je = jq(≡ −k∇T ).
As such, our own energy-based proposal, as embodied in
Eqs. (3.7) and (4.5), leading to Eq. (4.6), is, in that sense,
comparable to their proposition.

Thus, in addition to the flow of heat, D&S propose,
and we quote, “ . . . allowing spatial interactions of longer
range to engender a rate of supply u of mechanical energy
across every material surface.” DS (see also Ref. [12]) go
on to discuss the constitutive implications for the diffuse
entropy flux engendered by such work-flux considerations,
emphasizing that when venturing beyond the traditional
energy-related boundaries of contemporary fluid mechanics
that the identification of what they term “the real heat flux”
is a rather subtle affair [72]. Indeed, Dunn [15], in a separate
publication based upon his Ph.D. research performed under
Serrin’s supervision, referred to their theory as constituting a
new branch of “nonclassical continuum thermodynamics.”

1. Constitutive equation for the thermomechanical work flux

Although DS discuss broad classes of constitutive relations
that are, in their view, continuum-mechanically compatible
with their interstitial work flux u, the mathematically formal
nature of their arguments, in conjunction with the breadth of its
scope, make it difficult to assess the utility of any one of their
specific constitutive formulations. At a minimum, they argue
that u consists of respective dynamic and static contributions,

u = −K(Dρ/Dt)∇ρ + w̄, (7.6)

wherein the phenomenological capillary coefficient K is
regarded as a parameter deriving from Helmholtz’s free energy.

As their dynamic contribution vanishes for the case of
steady-state, conduction-only situations, for which Dρ/Dt =
0, we focus on the static contribution to u, represented by the
symbol w̄, for purposes of relating DS’s work to our own in
the present conduction-only context. Even here, for this purely
static contribution, DS do not offer an explicit constitutive
proposal—specifically one complete with knowledge not only
of its general functional form, but also of the dependence
upon density and temperature of the phenomenological coef-
ficient(s) appearing therein for different fluids.

They do, however, make the important observation that w̄
will vanish in situations where ∇ρ = 0 and, moreover, that w̄
must, and we quote, “ . . . always depend on the local strain
distortion ∇ρ in a rather simple and explicit way, in fact
vanishing at any point where the local measure of distortion,
∇ρ, vanishes.” That statement is consistent with the possibility
that their static interstitial work flux is closely related to our
own rate-of-working flux, jw = pjv ≡ pα∇ ln ρ.

Anderson et al. [24] and Kotschote [18], as well as others,
have sought to clarify, simplify, and otherwise extend the
pioneering Dunn-Serrin analysis to other situations. Indeed,
Kotschote [18] refers to his resulting set of postconstitutive
transport equations as the “Navier-Stokes-Korteweg” (NSK)
equations rather than the “Navier-Stokes-Fourier” (NSF)
equation set.

2. Constitutive equations proposed for the Korteweg stress

Both Anderson et al. and Kotschote, among others, arrive
at results similar to those of DS, except that, in contrast, each

proposes an explicit constitutive form for the so-called “static”
contribution w̄ to u. Thus, by way of comparison with results
set forth above for the Korteweg stress derived from their
respective versions of the work term u, Anderson et al. [24]
arrive at the expression

T+ = I[Kρ∇2ρ + (1/2)K(∇ρ)2] − K(∇ρ)(∇ρ), (7.7)

whereas Kotschote [17,18] concludes that

T+ = Iρ∇ · (κ∇ρ) − κ(∇ρ)(∇ρ), (7.8)

in which the coefficient κ is functionally dependent upon
the (∇ρ)2 contributions to Helmholtz’s free energy [27].
Comparable constitutive expressions appropriate to single-
component, two-phase, vapor-liquid equilibrium (in proximity
to the fluid’s critical point) are proposed by Fixman [28] and
Felderhoff [29].

In comparing the above expressions with our Eq. (7.3)
for the Korteweg stress, it needs to be borne in mind that
those expressions are not limited to the conduction-only case.
Rather, they apply in completely general circumstances, where
both convection and transient behaviors are allowed. However,
neither is our Eq. (7.3) limited to the conduction-only case,
despite our having presented it in that possibly misleading
context.

G. Energy flux

In addition to dealing with ∇ρ-generated gradient stresses,
the above-cited respective authors of Eqs. (7.7) and (7.8) also
dealt with comparable gradient-energy issues related to DS’s
thermomechanical work-flux term u appearing in the energy
transport equation. In this context, Anderson et al. [24] arrive
at the conclusion that the “internal energy flux” qE appearing
in their energy transport equation is, in their notation,

qE = −k∇T − KE(Dρ/Dt)∇ρ (7.9)*

(with their qE apparently identical with our je). If so, it would
mean in DS’s notation that Anderson et al.’s interstitial work
flux u = KE(Dρ/Dt)∇ρ. But this purely dynamic term lacks
DS’s static contribution w̄ to u. However, the issue of the
explicit form they propose for u is further beclouded by the fact
that their energy equation (which includes both convective and
transient effects) includes, in addition to our specific energy
density formula ê = û + (1/2)v2, the term (1/2)KE(∇ρ)2/ρ,
the latter presumably representing a Helmholtz free-energy
contribution to the energy density.

The same constitutive formula (7.9) is also proposed
by Kotschote [17,18] for inclusion in his energy transport
equation. Specifically, a term essentially identical with the
last term of (7.9) also appears in Kotschote’s energy transport
equation. In contrast, no such term appears in our analysis.
However, it needs to be recalled that our bivelocity analysis
is based upon linear irreversible thermodynamic principles
[34]. It is possible that terms currently missing from that
linear analysis, thereby constituting nonlinear irreversible
thermodynamic phenomena, might appear at higher order, and
thus possibly resolve the disparity. Unfortunately, no such
nonlinear theory currently exists, certainly none possessing
wide acceptance.
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Apart from disparities in the values of the Korteweg
phenomenological coefficients, evidenced by the differences
between our Eq. (7.3) and those of others, as in Eqs. (7.7) and
(7.8), the real source of the disparity between our respective
theories lies in the fact that these other authors add a square-
gradient term to the constitutive relation for the generic specific
density ψ̂ appearing in the equation governing transport of
the extensive generic property �. For example, the universal
preconstitutive equation governing energy transport is

ρ
Dê

Dt
= −∇ · je. (7.10)*

In the absence of body forces, one would normally suppose
that the constitutive equation for the specific energy is ê =
û + (1/2)|v|2, wherein, for differentially small changes in the
state of the body, dû = ĉvdT + [(β/κ)T − p]dv̂. However,
the latter constitutive relation holds only for the reversible
or equilibrium case where, in single-component fluids, ρ

is uniform through the fluid body. On the other hand, in
nonuniform (and hence nonequilibrium) circumstances, where
density gradients ∇ρ exist within the body, one might, at
lowest order, be tempted to add a square-density gradient term
proportional to |∇ρ|2 to the constitutive expression for the
specific energy ê, such that

ê = û + (1/2)|v|2 + (1/2)KEρ−1(∇ρ)2. (7.11)*

Energy-related contributions comparable to the last term in
Eq. (7.11) type appear in the diffuse interface works of
many others, including Fixman [28] and Felderhoff [29],
concerned with single-component, two-phase, vapor-liquid
equilibrium. Their presence presumably accounts for the
absence of equilibrium, as evidenced by the nonuniformity
of ρ. Thus, when one forms the material derivative D/Dt of
the last term in Eq. (7.11) for use in Eq. (7.10), the latter term
can be manipulated using the continuity equation such as to
decompose the contribution

ρ(D/Dt)(1/2)KEρ−1(∇ρ)2

≡ (1/2)KE(D/Dt)(∇ρ)2 = KE[D(∇ρ)/Dt]∇ρ

into two portions, such that—certainly in the conduction-only
case—one has that D/Dt = 0, irrespective of the operand
upon which the material derivative operates. It is this nonclas-
sical, nonlinear issue that possibly contributes to the difference
between our bivelocity results and those of other diffuse
interface researchers.

H. Diffuse entropy flux js

As also regards possible additions to the present monov-
elocity. NSF-based entropy flux js = jq/T [see Eq. (5.2)],
Cimmelli et al., [11–13]—in their papers on gradient-energy
and gradient-stress contributions in the context of Korteweg’s
model—postulate, as DS, the existence of an interstitial
work flux u to be added to the heat flux jq as in our
Eq. (4.6) [jointly with Eq. (4.5)]. They then show that its
presence contributes, nonlocally, not only to the Korteweg
stress and energy fluxes but, equally importantly, to the entropy
flux js as well, yielding, inter alia, the same entropy flux
formula as in our Eq. (4.8). On the other hand, Anderson
et al. [24] argue that js = −(k∇T )/T , as in the classical NSF

case, although here again the issue is beclouded by the fact
that their expression for the specific entropy ŝ appearing in
their ρT Dŝ/Dt general entropy transport equation includes
a square-gradient contribution (see also Ref. [17]) analogous
to that appearing in the comparable general ρDê/Dt energy
term.

I. Summary

In summary, the results of the present section encourage
pursuit of a foundational diffuse interface theory based not
upon Helmholtz’s free-energy thermodynamic model thereof,
but rather upon the principles underlying bivelocity theory.
This appears warranted in future research goals by virtue of
Dunn and Serrin’s [14,15] identification of (i) the need for
the addition of a thermomechanical work-flux contribution to
the traditional heat flux jq appearing in the energy transport
equation, including independent verification of that need by
other researchers, and (ii) the role of this work-flux contribu-
tion in continuum-mechanically-based efforts aimed, among
other things, at formulating a physically satisfactory theory of
Korteweg stresses. Accordingly, it seems likely that general
continuum-mechanical and continuum-thermodynamic analy-
ses will need to be modified to account for volume transport,
especially for the presence therein of the diffuse volume
flux jv .

VIII. DISCUSSION

A. Pressure distribution in static heat conduction problems

Density gradients invariably coexist along with temperature
gradients during conduction-only heat transfer processes.
As a consequence thereof, the solution of even the most
elementary, one-dimensional, steady-state, heat conduction
problem cannot, in principle, be affected without concurrently
addressing the solution of the conduction-only Cauchy linear
momentum equation, owing to the presence therein of the
nondissipative Korteweg stresses. This, in turn, points out, for
example, contrary to current wisdom, that the pressure in the
fluid undergoing heat conduction cannot generally be spatially
uniform during steady-state heat conduction processes owing
to the fact that the pressure distribution must be concurrently
obtained from the respective joint solutions of the momentum
and energy equations. Given the vast amount of experimental
data reassuring the viability of the current interpretation of
heat conduction data (sans our Korteweg stress momentum
considerations), it is obvious that momental effects upon
the temperature field must be extremely small, as indeed
they are in conventional engineering circumstances. But not
all circumstances are “conventional.” Consider, for example,
the much larger magnitude of the density gradients arising
in ultracentrifuges [60], cosmological hydrodynamics [73],
pollution spreading and avalanches [74], geomechanics [75],
and shock waves [66,76]

B. Bivelocity theory for multicomponent fluids

In an attempt to achieve intuitive transparency of our
arguments in favor of bivelocity theory over NSF theory for
compressible fluids, at least to the extent possible, our paper
deliberately restricts attention to the case of single-component
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fluid continua. However, the general unrestricted bivelocity
model (including convection and transient phenomena) al-
ready exists for multicomponent fluid mixtures [3,77]. Volume
transport in multicomponent fluids is vastly more complex than
in single-component fluids, as witness, for example, attempts
to determine volume production rates in mixtures [78,79],
especially where the partial molar or partial specific volumes
of the individual chemical species are generally unequal,
and hence where unsteady-state convection necessarily arises
as a consequence of the diffusion process itself. This is
especially true when the species are chemically dissimilar, and
therefore gives rise to thermodynamically nonideal solutions
upon mixing (in the sense of the Lewis and Randall rule [80]
for ideal solutions not being obeyed).

C. Bivelocity theory for crystalline solids

In the multiple species domain we draw the reader’s atten-
tion to the large body of literature pioneered by Danielewski,
Wierzba, and their collaborators [80–84], wherein the biveloc-
ity scheme, focused on the diffusion of volume in crystalline
solids, has been successfully applied to interpret atomic and
vacancy diffusion phenomena occurring in multicomponent
crystal lattices—with “success” recognized by the agreement
of the bivelocity theory’s predictions with experiment.

It is commonly accepted in materials science that two
velocities are always necessary to quantify the so-called
Kirkendall shift [85] in solid crystalline solutions. The method
is based on the postulate that each component’s velocity must
be divided into two parts: (i) the unique diffusion velocity,
which depends on the diffusion potential gradient (the latter
being independent of the choice of reference frame), and
(ii) the drift velocity, which is common to all species, and
depends on the choice of the external reference frame. These
concepts arise, for example, in the context of the diffusion
of vacancies and atoms within a crystalline lattice. The drift
velocity requires specifying an additional relation (beyond the
mass conservation law). In reference to the latter, Spalding
[86], in 1974, was apparently the first to introduce what
Danielewski and Wierzba [87] later referred to as a “volume
continuity equation” (or “law of conservation of the molar
volume density”) for multicomponent crystalline solids.

Among other things, Danielewski and Wierzba [81] used
the general philosophy underlying the bivelocity model to
rationalize the Kirkendall effect [85] in solids. In the course
of doing so, they point out that their work substantiates
Darken’s [88] well-known explanation of that effect based
upon Helmoltz’s free-energy principles.

D. Cahn-Hilliard equations: Order parameters

Gurtin [89] proposes yet another, and more general, scheme
focused on the preceding gradient-energy and gradient-stress
issues in solids, based upon the hypothesized existence of
what he terms “microforces.” In this context, Gurtin, dealing
with what is generally termed an “order parameter” in the
literature [90,91] and represented by him as the generic symbol
ρ (which includes identifying our own mass density symbol
ρ as an order parameter), notes that “If the sole macroscopic
manifestation of atomistic kinematics is the order parameter

ρ, then it seems reasonable that interatomic forces may be
characterized macroscopically by fields that perform work
when ρ undergoes changes,” arguing that the need for a
separate microforce balance seems a necessary consequence
of the disparate length scales involved. Gurtin further observes
in this context that whereas standard forces in continua
are associated with macroscopic length scales, microforces
describe forces associated with microscopic configurations of
atoms [corresponding to our length scale L given in Eq. (6.1)
of Sec. VI].

Note added. Recently, I became aware of the pertinent work
by Falk [92]. His paper, jointly with our present paper, when
generalized to address a broader class of problems than diffuse
interfaces, appears to lay the foundation for a comprehensive
theory of nonlocal linear irreversible thermodynamics (NLIT),
of which what we have termed bivelocity theory constitutes
but a special case.

Moreover, while experimental support for bivelocity theory
for single-component fluids undergoing heat conduction has
been cited only for the case of gases, support also exists for its
applicability to compressible liquids as well [93].

APPENDIX A: PERTINENT MOMENTUM TRANSPORT
RELATIONS (� ≡ M)

In circumstances where, in addition to conductive transport,
both convective and transient transport are now temporarily
retained, the linear momentum balance equation takes the
traditional form [7–9] originally set forth by Cauchy,

ρ
Dv
Dt

= −∇ · P + ρ f̂, (A1)*

in which

P = Ip̄ − T̄ (A2)*

is the pressure tensor (assumed to be symmetric), I is the
idemfactor, p̄ is the mean stress

p̄ = 1
3 I : P, (A3)*

and T̄ is the symmetric and traceless viscous stress. Appearing
in the above is the specific body force f̂, assumed conservative,
and thus derived from a time-independent, position-dependent,
specific potential-energy function,

f̂ = −∇φ̂(x), (A4)*

with x the position vector.
Double-dot multiplication of (A2) by the idemfactor,

followed by use of (A3), yields

I : T̄ = 0, (A5)*

showing the deviatoric stress to be traceless. Furthermore, as
a result of the symmetry of P and of the idemfactor, it follows
that T̄ too is symmetric. Consequently, T̄ is both symmetric
and traceless. The presence of the overbar serves to signify
the fact that the dyadic it surmounts is both symmetric and
traceless, such that for any dyadic D, say, one has that the
relation

D = 1
2 (D + Dtr) − 1

3 I∇ · D (A6)*

constitutes the dyadic’s symmetric-traceless formulation.
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An alternative, but physically identical, formulation of
Cauchy’s linear momentum equation (A1), having the form
of the generic transport equation (2.11) in which ψ̂ ≡ M̂ = v,
is given by the expression

ρ
Dv
Dt

= −∇ · jM + πM, (A7)*

wherein πM is defined in Eq. (3.4b), and

jM = P − Ip. (A8)*

Here, p is the thermodynamic pressure, governed by an
equilibrium equation of state of the functional form p =
p(T ,ρ) appropriate to the fluid under discussion, with T being
the temperature. Equations (A1) and (A7) are, functionally,
fully equivalent, in the sense that they embody exactly
the same physics. Equation (3.4a) then follows from these
considerations.

1. Conductive transport of momentum

In circumstances where the fluid is quiescent, such that
the specific momentum density M̂ (which, constitutively, is
identical to the fluid’s mass velocity v) is null, so that v = 0,
one has from Eq. (A7) that, in the static, conduction-only
momentum equation we find that Eq. (3.3) holds true. This
is, of course, consistent with the generic form (3.1). From
Eqs. (3.4a) and (3.4b) we find that

∇ · T̄ + ∇(p − p̄) = ∇p − ρ f̂. (A9)

This same expression derives for the conduction-only case
from Cauchy’s form of the momentum equation, (A1) and
(A2). Equations (A8) and (A9) are applicable to all conduction-
only fluids, irrespective of whether the fluid is monovelocity
or bivelocity in nature.

APPENDIX B: PERTINENT ENERGY TRANSPORT
RELATIONS (� ≡ E)

Prior to devoting attention exclusively to the conduction-
only case, the general energy equation takes the form [see also
Eq. (7.10)]

ρ
Dê

Dt
= ∇ · je, (B1)*

in which

ê = û + 1
2v2 + ∇φ̂ (B2)*

is the specific energy, consisting respectively of internal,
kinetic, and potential energies.

In the present conduction-only case, the above becomes

∇ · je = 0, (B3)

with je the diffuse energy flux. It thus follows from the general
relation (3.1) that energy is conserved, such that

πe = 0. (B4)*

APPENDIX C: TRANSPORT OF WORK

In the general case, where convection and transient phenom-
ena, in addition to conduction, are simultaneously present, the
mechanical work flux is [3]

jw = P · nv, (C1)

in which, from the second equality in the generic equation
(2.12), nv is the total volume flux, as given by the expression

nv = v + jv. (C2)

The nonequilibrium equation (C1) may be regarded as the
natural generalization of the equilibrium thermodynamic
work relation dW = pdV . The vector field nv has the units
of (volume)/(area)(time). But since (volume)/(area) has the
units of (length)/(time), namely, the units of a velocity, nv

effectively has the units of a velocity. This fact is often
explicitly represented in previous bivelocity publications by
defining the fluid’s “volume velocity” vv , wherein nv ≡ vv ,
so that

vv = v + jv. (C3)

It follows from the above that in the conduction-only case, for
which v = 0, that the work term in Eq. (C1) is given by the
expression

jw = P · jv. (C4)

Accordingly, upon use of the universally valid expression (A2),
we find that

jw = −T̄ · jv − (p − p̄)jv + pjv. (C5)
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