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Swimming at low Reynolds number in fluids with odd, or Hall, viscosity
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We apply the geometric theory of swimming at low Reynolds number to the study of nearly circular swimmers
in two-dimensional fluids with nonvanishing “odd,” or Hall, viscosity. The odd viscosity gives an off-diagonal
contribution to the fluid stress tensor, which results in a number of striking effects. In particular, we find that a
swimmer whose area is changing will experience a torque proportional to the rate of change of the area, with the
constant of proportionality given by the coefficient ηo of odd viscosity. After working out the general theory of
swimming in fluids with odd viscosity for a class of simple swimmers, we give a number of example swimming
strokes which clearly demonstrate the differences between swimming in a fluid with conventional viscosity and
a fluid which also has an odd viscosity. We also include a discussion of the extension of the famous Scallop
theorem of low Reynolds number swimming to the case where the fluid has a nonzero odd viscosity. A number
of more technical results, including a proof of the torque-area relation for swimmers of more general shape, are
explained in a set of Appendixes.
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I. INTRODUCTION

The theory of swimming in classical fluids at low Reynolds
number [1,2] is remarkable because of the connections it
makes between seemingly disparate fields [3]. For example,
the motion of swimmers with cyclic swimming strokes is
determined purely from classical fluid dynamics, but it can
be recast into an elegant geometric formulation reminiscent
of Berry’s phase physics and gauge fields [3–5]. In fact, the
motion of tiny organisms in fluids with high viscosity can be
captured by a “gauge theory” of shapes. Since the initial work
on the geometric formulation of swimming, there have been
generalizations to swimmers in quantum fluids [6] and even to
swimmers in fluids on curved spaces [7,8]. The theory has also
been successfully applied in practice to describe the swimming
of robots [9] and microbots [10,11].

In this article we focus on swimmers in two-dimensional
(2D) fluids with broken time-reversal symmetry, for example,
fluids in magnetic fields or rotating fluids. We are not interested
in the specific source of time-reversal breaking, but instead
just consider a classical fluid with a microscopic source
of local angular momentum (on a much smaller scale than
the size of the swimmer) that gives rise to a nonvanishing
“odd” viscosity coefficient [12,13] in addition to the usual
isotropic viscosity coefficients. The odd viscosity is an off-
diagonal viscosity term that is dissipationless and produces
forces perpendicular to the direction of the fluid flow. It can
have a quantum mechanical origin in, for example, systems
exhibiting the quantum Hall effect [12–22], or a classical
origin in plasmas at finite-temperature [23]. In the quantum
Hall setting the odd viscosity is usually known as the Hall
viscosity. It is also sometimes referred to as Lorentz shear
stress.

We will not focus on the microscopic origin of the odd
viscosity coefficient, but only assume it to be nonvanishing
in conjunction with the usual viscosity coefficients. From
this assumption we will determine the motion of swimmers
at low Reynolds number in the presence of odd viscosity.
Specifically, we will consider the problem of swimmers

with circular boundaries that move via deformations of their
boundaries analogous to the nearly circular swimmers in
Refs. [3,4]. We find a general result that connects the torque
on a swimmer to the rate of area change of the swimmer
with a proportionality constant given by the odd viscosity.
We use our results to give examples of swimmer motion
due to cyclic circular deformations and compare cases where
the conventional and odd viscosities each dominate. Our
paper is organized as follows: We first review the geometric
formulation of swimming and the appearance of odd viscosity
in 2D fluids with broken time-reversal symmetry. We then go
on to derive the general consequences of the odd viscosity on
swimmers and then give explicit examples of model swimming
strokes that illustrate some differences between fluids with
vanishing and nonvanishing odd viscosity. In the last section
we consider reciprocal swimming strokes and show how the
famous Scallop theorem of low Reynolds number swimming
carries over to the case of fluids with odd viscosity. Finally, we
have some Appendixes which collect derivations of the more
technical results.

II. REVIEW OF GEOMETRIC FORMULATION OF THE
SWIMMING PROBLEM

We begin by reviewing the geometric formulation of the
problem of swimming at low Reynolds number developed by
Shapere and Wilczek [3,4]. The instantaneous rigid motion
(translation and rotation) of a swimmer is determined by the
condition that the swimmer not be able to exert a net force
or torque on itself, and the condition that the fluid velocity
vanishes at infinity.

We should first explain why the problem of swimming at
low Reynolds number can be formulated in a purely geometric
way, independent of the mass of the swimmer or the speed
of the swimming stroke (assuming the speed of the stroke is
still small enough so that there is no appreciable momentum
transfer to the fluid). Recall that the Reynolds number, which is
associated with a viscous fluid and an object in motion in that
fluid, is a ratio of the inertial and viscous forces on that object
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[we are not yet considering systems with odd viscosity so
in this sentence the word “viscous” refers to the traditional
dissipative (even) viscosity of the fluid]. If ηe is the even
viscosity coefficient, V is a typical speed of the fluid flow,
L is a characteristic dimension of the swimming object, and
ρ is the density of the fluid, then the Reynolds number can be
expressed as

Re = ρV L

ηe
. (2.1)

The low Reynolds number regime can be interpreted as the
regime where the momentum density of the fluid, ρV , is
negligible compared to the scale ηe/L.

At low Reynolds number the drag force on the swimmer
is proportional to its velocity. This means that if the swimmer
stops its stroke and just coasts through the fluid, its speed
will decay exponentially until it comes to a stop. In the low
Reynolds number regime this exponential decay is so fast that
the motion of the swimmer at any given time can be considered
to be completely independent of what the swimmer was doing
at all previous times [2]. The motion of the swimmer at time t

depends only on its shape and the velocity of its surface at
time t . With these remarks in mind we can move on to discuss
the geometric theory of swimming at low Reynolds number.

In two dimensions, for swimmers modeled as the interior of
deformed circles, we can represent the swimming stroke (the
motion of the boundary of the swimmer) by a time-dependent
complex function S0(σ,t), σ = eiθ , whose real and imaginary
parts give the x and y positions of the point on the swimmer
described by the parameter θ ∈ [0,2π ) at the time t . When
we want to emphasize the dependence of S0(σ,t) on the real
parameter θ instead of the complex parameter σ (as we do in
Appendix B) we call it S0(θ,t) instead.

The function S0(σ,t) lives in a space of “unlocated” shapes,
which can be obtained from the space of “located” shapes
by partitioning it into equivalence classes [S0(σ,t)] containing
all shapes differing only by a rigid motion. The location and
orientation of the swimmer in real space is specified by a rigid
motion R(t) acting on a representative of the equivalence class
[S0(σ,t)], the simplest choice being S0(σ,t) itself:

S(σ,t) = R(t)S0(σ,t). (2.2)

To take an example, S0(σ,t) might be the representative of
[S0(σ,t)] with its centroid at the origin and a distinguishing
feature of the shape aligned with the x axis at time t = 0.

To be concrete, let us encode the translation and rotation
represented by R(t) into a 3 × 3 matrix and let this matrix
act on S0(σ,t) represented as a three-dimensional vector with
third entry equal to 1,

R(t)S0(θ,t) =

⎛
⎜⎝

cos(�) sin(�) X

−sin(�) cos(�) Y

0 0 1

⎞
⎟⎠

×

⎛
⎜⎝

Re[S0(σ,t)]

Im[S0(σ,t)]

1

⎞
⎟⎠, (2.3)

where (X,Y ) and � are the vector and angle representing the
translation and rotation effected by R(t). The matrix R(t) is

determined by integrating the equation

dR(t)

dt
= R(t)A(t), (2.4)

where the matrix A(t) determines the infinitesimal rigid
motion of the swimmer during a time dt in the sense that
A(t) dt is the rigid motion of the swimmer during the
interval dt . The matrix A(t) is completely determined by the
requirements that the net force and torque on the swimmer
vanish and that the fluid velocity goes to zero at infinity. To
determine the swimming path we need to find A(t) for a given
swimming stroke and then integrate Eq. (2.4).

Integrating this equation gives the solution for the rigid
motion R(t),

R(t) = R(0)P̄ exp

[∫ t

0
A(t ′)dt ′

]
, (2.5)

where P̄ denotes a reverse path-ordering operation. Explicitly,
we have

P̄ exp

[∫ t

0
A(t ′)dt ′

]
= I +

∫ t

0
A(t1)dt1

+
∫ t

0

(∫ t1

0
A(t2)A(t1)dt2

)
dt1 + · · ·

(2.6)

so the matrix A(ti) with the latest time ti appears furthest to
the right in each integral, which is the reverse of the usual path
ordering operation where the latest time goes furthest to the
left in each integral. We show how this integration is carried
out numerically in Appendix A.

To see how the idea of a gauge theory of shapes enters
we first note that the choice of a representative from the
equivalence class [S0(σ,t)] is analogous to a choice of gauge,
and the matrix A(t) plays the role of a gauge potential. If we
choose a different representative S̃0(σ,t), related to S0(σ,t) by
a rigid motion U (t) (we can choose a different representative
at each time t),

S̃0(σ,t) = U (t)S0(σ,t), (2.7)

then the requirement that the rigid motion of the swimmer in
real space remain unchanged leads to the transformation law
for R(t),

R(t) → R′(t) = R(t)U−1(t). (2.8)

The fact that the transformed gauge potential must satisfy the
new differential equation

dR′(t)
dt

= R′(t)A′(t) (2.9)

yields the familiar transformation law

A(t) → A′(t) = U (t)A(t)U−1(t) + U (t)
dU−1(t)

dt
, (2.10)

which shows that A(t) does indeed transform like a gauge
potential.

We can also represent A(t) in the form of a 3 × 3 matrix,

A(t) =
⎛
⎝ 0 ω Vx

−ω 0 Vy

0 0 0

⎞
⎠, (2.11)
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where (Vx,Vy) and ω are the instantaneous linear and angular
velocity of the swimmer [so A(t) is in the Lie algebra of rigid
motions]. Sometimes we will refer to the translational and
rotational parts Atr and Arot of the gauge potential, defined by

Atr = Vx + iVy, (2.12a)

Arot = ω. (2.12b)

The components of A(t) can be completely determined by
solving the equations of motion for Stokes flow of the viscous
fluid surrounding the swimmer, subject to no-slip boundary
conditions at the surface of the swimmer. Now that we have
reviewed the geometric formulation of swimming we will
introduce the concept of the odd viscosity in time-reversal
breaking fluids.

III. ODD VISCOSITY

We now review the basic definition of odd viscosity and
the derivation of the isotropic odd viscosity contribution to the
fluid stress tensor in two dimensions. Throughout this section
we follow the presentation of Ref. [13] where most of these
details were first worked out.

The general linear relation between the fluid stress tensor
Tij and the rate of strain tensor vij = 1

2 (∂jvi + ∂ivj ) (vi are
the components of the fluid velocity vector v) is of the form

Tij = ηijklvkl . (3.1)

The symmetry of the stress and rate of strain tensors imply
the symmetry of the viscosity tensor ηijkl under the exchanges
i ↔ j and k ↔ l, but in general ηijkl can contain terms which
are symmetric or antisymmetric under the exchange of the pair
of indices {ij} with the pair of indices {kl}. We can always split
ηijkl into parts which are even and odd under such an exchange
by writing ηijkl = ηe

ijkl + ηo
ijkl .

To extract the isotropic contribution to ηo
ijkl it is convenient

to use a simple basis for representing a real, fourth-rank tensor
that is symmetric under exchange of its first two and second
two indices. One such basis is provided by the tensor products

σa ⊗ σb, a,b ∈ {0,1,3} (3.2)

of the Pauli matrices σ 1, σ 3 and the 2 × 2 identity matrix
σ 0, where we have been careful to only use the symmetric
matrices. We can expand the viscosity tensor as

ηijkl =
∑

a,b=0,1,3

ηabσ
a
ij σ

b
kl (3.3)

and then identify the odd part as

ηo
ijkl =

∑
a �=b

ηo
ab

(
σa

ijσ
b
kl − σb

ijσ
a
kl

)
. (3.4)

In two dimensions the generator of spatial rotations is
iσ 2, where σ 2 is the second Pauli matrix. In an isotropic
fluid the viscosity tensor must commute with σ 2 ⊗ σ 2 to
be rotationally invariant. Using the familiar commutation and
anticommutation relations for the Pauli matrices, and the fact
that all matrices commute with the identity σ 0, we find that
in an isotropic fluid the odd part of the viscosity tensor must

have the form

ηo
ijkl = ηo

(
σ 1

ij σ
3
kl − σ 3

ij σ
1
kl

)
, (3.5)

where the single constant ηo is the coefficient of odd viscosity.
Finally we can use the explicit expressions

σ 1
ij = δi1δj2 + δi2δj1, (3.6a)

σ 3
ij = δi1δj1 − δi2δj2 (3.6b)

for the elements of the Pauli matrices σ 1 and σ 3 to write down
the form of the odd viscosity contribution to the stress tensor,

T o
ij = ηo

ijklvkl = −2ηo(δi1δj1 − δi2δj2)v12

+ ηo(δi1δj2 + δi2δj1)(v11 − v22), (3.7)

which was first obtained in Ref. [13]. For comparison we also
display the much more familiar even viscosity part of the stress
tensor (for an incompressible fluid)

T e
ij = 2ηevij , (3.8)

where ηe is the coefficient of even viscosity.
We see that diagonal elements of T o

ij are proportional to
off-diagonal elements of vij and off-diagonal elements of T o

ij

are proportional to diagonal elements of vij . This atypical
relation between the elements of T o

ij and vij has a number
of nonintuitive consequences. For example, a circular object
rotating in a fluid with odd viscosity will feel a pressure,
directed either radially inwards or outwards depending on
the sense of the rotation (see [13] and Fig. 1). This is quite
different from what would happen in a fluid with even viscosity
only, where a rotating circle would feel a torque that opposes
the rotation. The fact that the direction of the pressure force
(radially inwards or outwards) on a circle rotating in an odd
viscosity fluid depends on the sense of the rotation means
that time-reversal symmetry is broken in systems with odd
viscosity.

(a) (b)

FIG. 1. (Color online) (a) In a fluid with even viscosity only,
a rotating circle will feel a torque that opposes its rotation and is
proportional to the coefficient of even viscosity ηe. (b) In a fluid with
odd viscosity a rotating circle will also feel a pressure directed radially
inwards or outwards (depending on the direction of the rotation) and
proportional to the coefficient of odd viscosity ηo. The dependence
of this pressure force on the direction of the rotation indicates that
time-reversal symmetry is broken in systems with nonvanishing odd
viscosity.
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IV. EQUATIONS OF MOTION, FORCE, AND TORQUE

In classical fluids with both even and odd viscosity Avron
has shown (see [13]) that the equations of motion for
incompressible Stokes flow (viscous force-dominated flow)
are

∇(p − ηoξ ) = ηe∇2v, (4.1a)

∇ · v = 0, (4.1b)

where p is the pressure, ξ = (∇ × v) · ẑ is the vorticity, and
ηe and ηo are the coefficients of even and odd viscosity,
respectively. We will refer to these equations as the “slow
flow” equations, as that is what they are called in the usual
case where only even viscosity is present. If ηe �= 0, taking the
curl of the first equation shows that the vorticity is a harmonic
function, i.e., ∇2ξ = 0. This means that the stream function ψ

(which can be used here because the flow is incompressible),
defined by v = ∇ × (ψ ẑ), is a biharmonic function,

∇2(∇2ψ) = 0. (4.2)

In two dimensions we can package the velocity vector v =
(v1,v2) into a complex variable v = v1 + iv2. The solution for
v can then be expressed in the complex form (see [4])

v = φ1(z) − z∂zφ1(z) + φ2(z), (4.3)

where z = x + iy = Reiϕ , the bar denotes complex conju-
gation and ∂z = 1

2 (∂1 − i∂2). The functions φ1(z) and φ2(z)
are analytic functions (away from the point z = 0, which lies
inside the swimmer) with the Laurent series expansions

φ1(z) =
∑
k<0

akz
k+1, (4.4a)

φ2(z) =
∑
k<−1

bkz
k+1. (4.4b)

To solve for the coefficients ak and bk we impose no-slip
boundary conditions at the surface of the swimmer. Solving for
these coefficients can be very difficult for general swimming
strokes, so we will focus our attention on a class of simple
swimmers introduced in Ref. [4] whose shapes are conformal
maps of the circle of degree D = 2. In Appendix C we extend
our results to swimmers that are conformal maps of the circle
of degree D = 3.

To calculate the force and torque on the swimmer we
will need the stress tensor. We have seen in Sec. III that in
the presence of odd viscosity the stress tensor gets an extra
contribution. The full stress tensor is now

Tij = −pδij + 2ηevij − 2ηo(δi1δj1 − δi2δj2)v12

+ ηo(δi1δj2 + δi2δj1)(v11 − v22). (4.5)

The components of the odd-viscosity part of the stress tensor
are

T o
11 = −ηo(∂2v1 + ∂1v2), (4.6a)

T o
12 = ηo(∂1v1 − ∂2v2), (4.6b)

T o
21 = ηo(∂1v1 − ∂2v2), (4.6c)

T o
22 = ηo(∂2v1 + ∂1v2). (4.6d)

Since the fluid is incompressible, an application of the
divergence theorem shows that the force and torque on the
surface of the swimmer are the same as the force and torque
on the fluid at infinity. Using this equivalence, the components
of the force on the swimmer are

Fi = lim
R→∞

∫ 2π

0
(Tij rj )Rdϕ (4.7)

and the torque on the swimmer is

N = lim
R→∞

∫ 2π

0
(εij riTjkrk)R2dϕ. (4.8)

In these formulas ri are the components of the radial unit vector
r̂ = cos ϕx̂ + sin ϕŷ and the integral is taken over the circle at
infinity.

Using these equations, and the components of the odd-
viscosity part of the stress tensor, we can derive expressions
for the odd-viscosity contribution to the force and torque on
the swimmer. In complex form they are

Fo = lim
R→∞

−2ηo

∮
C
(∂z̄v) dz̄ (4.9)

and

No = lim
R→∞

−2ηo Re

{
i

∮
C
z(∂zv̄) dz

}
, (4.10)

where C is a circular contour of radius R (to be taken to
infinity), and we have switched to a complex notation for
the force, F = F1 + iF2 (the torque, being a scalar in two
dimensions, is real).

Plugging in the velocity expansion (4.3) into these formulas
gives

Fo = 0, (4.11a)

No = −4πηoRe[b−2]. (4.11b)

In the next subsection we will show that the physical inter-
pretation of this result is that the odd-viscosity contribution to
the torque is proportional to the flux of the fluid at infinity
(see Sec. IV). Previously it has been shown [4] that the
even-viscosity contribution to the force and torque on the
swimmer is given by

Fe = 0, (4.12a)

Ne = 4πηeIm[b−2]. (4.12b)

The swimmer feels no net force (a generic result for Stokes
flows in two dimensions [24]) and the total torque is

N = 4π (ηeIm[b−2] − ηoRe[b−2]). (4.13)

We can cancel the torque on the swimmer by having the
swimmer rotate at a certain angular velocity ω. This uniquely
determines the rotational part of the gauge potential. In
dimensions D > 2 the translational part of the gauge potential
can be determined by the condition that the net force on the
swimmer vanish. In two dimensions, however, the net force
vanishes identically [24] and so one must instead determine
the translational part of the gauge potential by requiring that
the fluid velocity vanish at infinity [25]. We discuss this
condition in more detail in Sec. VI.
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Physical interpretation of the torque formula

The physical content of the formula (4.13) for the net
torque on the swimmer can be better understood by looking
at the relation of the coefficient b−2 to the circulation and
flux of the fluid at infinity, denoted by �(∞) and �(∞),
respectively. We can express the circulation and flux of the
fluid at infinity in the form of line integrals of the velocity
around a large circle of radius R, to be taken to infinity. We
have

�(∞) = lim
R→∞

∫ 2π

0
v · ϕ̂Rdϕ (4.14)

and

�(∞) = lim
R→∞

∫ 2π

0
v · r̂Rdϕ. (4.15)

Using the velocity expansion (4.3), we find

�(∞) = −2π Im[b−2], (4.16a)

�(∞) = 2πRe[b−2]. (4.16b)

Using these expressions, the net torque on the swimmer can
be rewritten in the form

N = −2ηe�(∞) − 2ηo�(∞). (4.17)

The condition of vanishing torque in the different cases can
then be interpreted in terms of zero circulation at infinity for
even viscosity only, zero flux at infinity for odd viscosity only,
or a proportionality between the flux and circulation at infinity
when both types of viscosity are present.

V. MODEL SWIMMING STROKES AND AREA FORMULA

Following Ref. [4], we will begin by considering nearly
circular swimmers with swimming strokes of the form

S0(σ,t) = α0(t)σ + α−2(t)σ−1 + α−3(t)σ−2, (5.1)

where the αi(t)’s are coefficients which determine the time
evolution of the swimming stroke. This kind of stroke is just
a conformal map of degree D = 2 from the unit circle to the
complex z plane. The absence of a term α−1(t) “fixes the
gauge” with respect to translations [4]. An important formula
is the area of the swimmer at time t , which is given by

A(t) = 1

2
Im

{∮
S0(θ,t) dS0(θ,t)

}

= 1

2
Im

{∫ 2π

0
S0(θ,t)

dS0(θ,t)

dθ
dθ

}
, (5.2)

which gives

A(t) = π (|α0|2 − |α−2|2 − 2|α−3|2) (5.3)

for the simple stroke (5.1). General swimmers represented by
conformal maps of degree D have the form

S0(σ,t) = α0(t)σ +
D∑

n=1

α−n(t)σ−n (5.4)

and in Appendix C we extend the swimming motion formulas
to swimmers with D = 3.

VI. SOLUTION FOR TRANSLATIONAL AND
ROTATIONAL MOTION OF SWIMMER

To determine the coefficients ak and bk in the velocity
expansion (4.3) we need to conformally map the flow field
back to the ζ = reiθ plane [4]. Recall that the shape of the
swimmer S0(σ,t) is a conformal map in the other direction,
from the unit circle σ = eiθ in the ζ plane to the z plane. For
general swimmers of the form (5.4) the conformal mappings
between the ζ and z planes take the form [4]

z = S0(ζ ) = α0(t)ζ +
D∑

n=1

α−n(t)ζ−n, (6.1a)

ζ = S−1
0 (z) = z

α0
− α−2

z
+ · · · . (6.1b)

We now introduce a star ∗ symbol to denote the pull-back of a
function in the z plane to the ζ plane obtained by substituting
(6.1a) for z in that function. The pull-backs of φ1(z) and φ2(z)
are denoted by

φ∗
1 (ζ ) =

∑
k<0

a∗
k ζ

k+1, (6.2a)

φ∗
2 (ζ ) =

∑
k<−1

b∗
kζ

k+1, (6.2b)

where the a∗
k and b∗

k are a new set of coefficients related to the
original ak and bk through the conformal mapping.

Next we pull back the velocity field onto the unit circle
σ in the ζ plane so that we can apply the no-slip boundary
conditions there and determine the pull-back coefficients a∗

k

and b∗
k in terms of the αi(t). On the unit circle σ the velocity

expansion takes the form (suppressing the t dependence)

v∗(σ ) = φ∗
1 (σ ) − S(σ )

∂σS(σ )
∂σφ∗

1 (σ ) + φ∗
2 (σ ). (6.3)

The only coefficients we need to determine the translational
and rotational motion of the swimmer are a−1 and b−2. This
is because a−1 gives the fluid flow at infinity, so it determines
the translational motion of the swimmer, and b−2 is related
to the torque on the swimmer, so it determines the rotational
motion of the swimmer. Using the conformal mapping (6.1),
the coefficients a−1 and b−2 can be expressed in terms of the
pulled-back coefficients a∗

k and b∗
k as

a−1 = a∗
−1, (6.4a)

b−2 = α0b
∗
−2. (6.4b)

We can solve for the pulled-back coefficients a∗
k and b∗

k in terms
of the parameters αi using (6.3), and then use the pulled-back
coefficients to solve for a−1 and b−2. As in [4] we find

a−1 = −ᾱ−1
0 α−3 ˙̄α−2, (6.5a)

b−2 = ᾱ0α̇0 − α−2 ˙̄α−2 − 2α−3 ˙̄α−3. (6.5b)

To determine the translational part of the gauge potential
we note that the coefficient a−1 is a constant contribution to
the velocity expansion, which means that the fluid velocity
at infinity is uniform and nonzero. Following Sec. 7.5 of
Ref. [25], we argue that a finite-size swimmer located near
the origin should not be able to induce a nonzero fluid velocity

043019-5



MATTHEW F. LAPA AND TAYLOR L. HUGHES PHYSICAL REVIEW E 89, 043019 (2014)

at infinity, and so we make a Galilean transformation to a frame
in which the fluid is at rest at infinity and the swimmer moves
with a velocity

Atr ≡ Vx + iVy = −a−1, (6.6)

where Atr denotes the translational part of the gauge poten-
tial (2.11).

To determine the rotational part of the gauge potential we
attempt to cancel the torque (4.13) on the swimmer by having
the swimmer rotate at an appropriately chosen angular velocity
ω. In the parametrization (5.1) of the swimming stroke, having
the swimmer rotate at an angular velocity ω amounts to the
replacement

αi → αi,rot = αie
iωt . (6.7)

Under this replacement we find

b−2 → b−2,rot = b−2 + iω(|α0|2 + |α−2|2 + 2|α−3|2), (6.8)

so that the condition that the net torque on the swimmer vanish
becomes

ηeIm[b−2,rot] − ηoRe[b−2,rot] = 0. (6.9)

Solving this equation for ω yields the rotational part of the
gauge potential,

Arot ≡ ω =
−Im[b−2] + ηo

ηe Re[b−2]

|α0|2 + |α−2|2 + 2|α−3|2 . (6.10)

This expression shows that in the presence of odd viscosity
the rotational part of the gauge potential picks up a term
proportional to Re[b−2]. For the simple swimming stroke (5.1),
one can verify by explicit computation that

Re[b−2] = 1

2π

dA(t)

dt
, (6.11)

which shows that the odd viscosity contribution to the angular
velocity of the swimmer is proportional to the rate of change
of the area of the swimmer. This conclusion is not limited to
swimming strokes which are conformal maps of degreeD = 2,
but holds for generic swimmers bounded by a closed curve
without any self-intersections, as we prove in Appendix B.

We can use this area relation and the relation �(∞) =
−2π Im[b−2] for the circulation of the fluid at infinity to rewrite
the angular velocity formula in a way which clearly shows the
physical meaning of each term. We find

ω =
�(∞) + ηo

ηe

dA(t)
dt

2π (|α0|2 + |α−2|2 + 2|α−3|2)
. (6.12)

As the ratio of ηo/ηe increases, the angular velocity (6.10)
grows without bound. Therefore we conclude that in a fluid in
which the odd viscosity terms completely dominate the stress
tensor (i.e., ηo/ηe → ∞), the condition that the swimmer
experience zero net torque must be satisfied by taking dA(t)

dt
=

0, otherwise the angular velocity of the swimmer would have
to be infinite. So a swimmer in a fluid where odd viscosity
effects are dominant must have constant area.

When discussing the limit ηo/ηe → ∞ in this context, we
must always assume that ηe is finite and large enough so that
we can still neglect any inertial forces in the problem (and so
we can still take advantage of the geometric formulation of

the problem of swimming at low Reynolds number). This is
why we have been careful to say “when the odd viscosity is
dominant” and not “when ηe = 0.”

VII. EXAMPLE SWIMMING STROKES

Here we present some simple examples of swimming
strokes that clearly demonstrate the difference between swim-
ming in a fluid with just even viscosity and swimming in a
fluid with both even and odd viscosity.

1. Dipolar distortion

The first example is a swimmer which starts out as a circle
but grows into an ellipse by elongating one of its axes through
a dipolarlike distortion. We use the parametrization

α0 = 1 + t
2 , (7.1a)

α−2 = t
2 , (7.1b)

α−3 = 0 (7.1c)

for this swimmer. The boundary of the swimmer is an ellipse
with the lengths of the major and minor axes given by a =
1 + t , b = 1. With only the conventional even viscosity this
stroke will not cause any motion other than an increase in
the area. We can also see this from the reflection symmetry
about the x axis, which is equivalent to the fact that all the
coefficients are real. However, when there is also odd viscosity
this swimmer will start to rotate because its area is growing
and the torque has a term proportional to the odd viscosity and
the rate of area change. The motion for different values of the
odd viscosity can be seen in Fig. 2.

-4 -3 -2 -1 0 1 2 3 4
-4
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-2
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3
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ηo/ηe= 5

ηo/ηe= 1
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x (r0)

y 
(r

0)

FIG. 2. (Color online) The elliptical distortion given by Eq. (7.1),
shown in three different fluids with different ratios of odd to even
viscosity. The time between each consecutive shape is 0.5 units of
time. The dots (red) are a guide for the eye that indicates the same
point on the boundary of the shape, so one can clearly see when the
shape is rotating and when it is stationary. Distances are measured
in units of r0, which is the original radius of the swimmer before it
starts expanding into an ellipse, i.e., α0(t = 0) = r0.
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FIG. 3. (Color online) The quadrupolar distortion given by
Eq. (7.2), shown in three different fluids with different ratios of odd
to even viscosity. The time between each consecutive shape is 0.5
units of time. The dots (red) are a guide for the eye that indicates the
same point on the boundary of the shape, so one can clearly see when
the shape is rotating and when it is not. Distances are measured in
units of r0, defined by the relation α0(t = 0) = r0.

2. Quadrupolar distortion

To further test our results we chose a swimmer with a more
complicated quadrupolar distortion which also has a uniform
area growth. We used the parametrization

α0 = 1 + t, (7.2a)

α−2 = 0, (7.2b)

α−3 = 0, (7.2c)

α−4 = 1
4 . (7.2d)

This swimming parametrization represents a conformal map
of degree D = 3. To see how to extend the analysis of the
previous section to swimmers which are conformal maps of
the circle of degree D = 3 (i.e., how to include α−4 terms),
see Appendix C. In Fig. 3 we see very similar results to the
dipolar case, e.g., the motion of the swimmer is just a rotation
proportional to the growth of the area. This indicates, as we
expected from the general result of Appendix B, that the odd
viscosity does not distinguish between different types of shape
distortions, and only couples to changes in the total area of the
interior of the swimmer.

3. Wandering stroke

The third example is a swimmer parametrized with the
cyclic stroke,

α0 = r0, (7.3a)

α−2 = −iξ1 sin(2πt), (7.3b)

α−3 = −iξ2 cos(2πt), (7.3c)

where r0, ξ1, and ξ2 are all real parameters. We chose this
particular stroke because in the case when only the even
viscosity is present, the swimmer’s centroid moves in a straight
line through the fluid. Additionally, this stroke has a periodic

0 10 20 30 40 50 60 70 80
x (r0)
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0)
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FIG. 4. (Color online) The swimming stroke of Eq. (7.3) with
the parameter values r0 = 1, ξ1 = 0.5, and ξ2 = 0.4, shown first with
just even viscosity (horizontal trajectory in black) and then with both
even and odd viscosity (oscillating trajectory in red) with ηo/ηe = 10.
The time between each consecutive shape in the figure is 6.1 cycles.
When odd viscosity is also present, the swimmer wanders off of its
straight trajectory because of rotations caused by changes in the area
of the swimmer. The inset shows the y displacement of the swimmer
after 100 cycles of this swimming stroke vs the ratio of the odd and
even viscosity coefficients. Distances are measured in units of r0, the
parameter that appears in Eq. (7.3a).

time-dependent area,

A(t) = π
[
r2

0 − ξ 2
1 + (

ξ 2
1 − 2ξ 2

2

)
cos2(2πt)

]
, (7.4)

which implies that it will feel a cyclic stress from the odd
viscosity term when present. In Fig. 4 one can clearly see
the outcome as we show two trajectories, one with ηo/ηe = 0
and one with ηo/ηe = 10. In the case when ηo vanishes, the
swimmer travels in a straight line, however in the second case
the swimmer oscillates transverse to the straight-line path.
In the inset we show that the amplitude of the transverse
oscillation at a fixed time increases linearly with the slope
ηo/ηe. As the swimmer continues it will wander further and
further off of the straight-line course although on average it
seems like it will still progress linearly at a similar rate to that
of the swimmer in the fluid with vanishing odd viscosity.

4. Null-rotation stroke

The fourth example is a stroke which will nominally rotate
when just even viscosity is present, but for which the variation
of the area of the shape has been chosen carefully so that when
odd viscosity is also present the shape will not rotate at all.
In other words, the odd viscosity contribution to the angular
velocity exactly cancels the even viscosity contribution for a
given particular ratio ηo/ηe which, for the sake of this example,
we pick to be unity.

A glance at Eq. (6.10) shows that in order to produce this
cancellation, we need the stroke to satisfy

Im[b−2] = Re[b−2]. (7.5)

For swimmers which are conformal maps of the circle of
degree D = 2, the coefficient b−2 is given by Eq. (6.5b). We
see from that equation that we can design such a stroke by
taking α0 = r0 = const and

αj (t) = rj (t)eiθj (t) (7.6)
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for j = −2,−3, where the functions rj (t) and θj (t) are
functions which are determined in the following way. We
would like to have

αj (t) ˙̄αj (t) = (1 + i)ḟj (t), (7.7)

where the fj (t) are some real periodic functions of time (to give
a periodic swimming stroke), which we are essentially free to
choose. This choice will guarantee the cancellation of the even
and odd viscosity contributions to the torque on the swimmer,
since the real and imaginary parts of Eq. (7.7) are equal at
all times. The reason for using the derivative of the functions
fj (t) in the above formula is purely for convenience in the
formulas that follow. Plugging the form (7.6) for the αj (t)
into this last equation and solving the two coupled ordinary
differential equations for rj (t) and θj (t) gives the form of the
stroke in terms of the functions fj (t),

rj (t) = √
2(fj (t) + Cj,1), (7.8a)

θj (t) = − 1
2 ln(fj (t) + Cj,1) + Cj,2, (7.8b)

where Cj,1 and Cj,2 are arbitrary constants (although they
must be chosen carefully along with the functions fj to keep
the argument of the logarithm from ever equaling zero). Now
any choice of the periodic functions fj (t) will give a cyclic
swimming stroke that will not rotate in a fluid with our chosen
ratio ηo/ηe = 1.

This shows in principle that it is possible to construct a
stroke for which the even and odd viscosity contributions
to the angular velocity exactly cancel each other. Swimmers
using this type of stroke might be able to more efficiently
navigate odd-viscosity fluids since the particular choice of
stroke cancels the rotation effects due to the odd viscosity.

VIII. RECIPROCAL MOTIONS AND SCALLOP THEOREM
WITH ODD VISCOSITY

An interesting aspect of swimming at low Reynolds number
in an ordinary viscous fluid is the fact that a reciprocal
swimming stroke leads to no net motion of the swimmer
through the fluid. By a reciprocal swimming stroke we mean
a swimming stroke which looks exactly the same whether
time is run forwards or backwards. This fact has become
known as the scallop theorem [2]. The opening and closing
of a scallop’s shell is the prototypical example of a reciprocal
stroke. Examples of nonreciprocal strokes include corkscrew
and undulatory motions. Reversing time in those situations
will reverse the direction of rotation of the corkscrew motion,
and it will reverse the direction of travel of the waves in the
undulatory motion.

One can understand this result using the uniqueness
theorem for the solutions of the slow flow equations, as proved
in Ref. [25]. Running time backwards corresponds to negating
the velocity of the fluid at the surface of the swimmer. In other
words, the boundary condition for the time-reversed flow is
obtained by changing the sign of v in the no-slip boundary
conditions at the surface of the swimmer.

With only even viscosity, the unique solution to the slow
flow equations with time-reversed boundary conditions is
the time-reverse of the solution with the original boundary
conditions (i.e., the velocity is negated everywhere). This

Ωt

L

C
(a) (b)

FIG. 5. (a) The simple model for the scallop swimmer. The legs
have a length L and the scallop opens symmetrically about the x axis
with angular velocity �. (b) The contour C we use to evaluate the
flux of the scallop swimming stroke. This contour hugs the scallop
tightly but circles around the wedge-shaped region in the center and
also around the ends of the two arms.

means that whatever motion the scallop does as it opens its
shell is immediately undone when it closes its shell. Therefore
the scallop can make no net progress.

In the geometric theory of swimming at low Reynolds
number, one can make sense of this result by noting that a
reciprocal swimming motion encloses no area in the space of
unlocated shapes, therefore the reverse path-ordered integral
of Eq. (2.5) is just the identity matrix.

Now we ask whether this result changes when we include
odd viscosity. When the effects of odd viscosity are included
there is the additional possibility that the swimmer can rotate
itself with the reciprocal motion, and that the interplay between
rotations and translations could lead to a net displacement after
a full cycle of the swimming stroke, even though the stroke is
reciprocal.

In fact, this is not the case, and the scallop theorem still holds
in fluids with both even and odd viscosity. The uniqueness
theorem argument is still valid in this case. One just needs to
prove that the slow flow equations with odd viscosity terms
still have unique solutions. In Appendix D we extend the usual
uniqueness proof for the slow flow equations with just even
viscosity (see Ref. [25]) to the case where odd viscosity terms
are present. There we also give a separate uniqueness argument
which applies even to swimmers whose boundary is not a
smooth closed curve [for example the simple model of the
scallop in Fig. 5(a) that we consider later in this section].
Therefore we can conclude that the scallop theorem is also
true in viscous fluids with both even and odd viscosity.

No flux for the scallop swimming stroke

In the remainder of this section we give an argument
showing that for a simple model of the scallop swimming
stroke the flux of the fluid at infinity vanishes. This means that
the scallop cannot rotate at all in a fluid with odd viscosity.
Note that this is a stronger statement than the scallop theorem,
which only states that a reciprocal swimming stroke cannot
give any net motion (translation or rotation) through the fluid
after one cycle.

We model the scallop as two infinitely thin arms of length
L connected at the origin. Let �t be the angle between each
arm and the positive x axis, so � is the angular velocity of the
stroke at time t [see Fig. 5(a)]. The no-slip boundary conditions
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for the fluid on the scallop are then

v(r,±�t) = r�[∓ sin(�t)x̂ + cos(�t)ŷ], r < L. (8.1)

Now we want to evaluate �(∞), the flux of the fluid
at infinity, due to the scallop swimming stroke. Since the
fluid is incompressible, we can calculate this flux with any
contour we want, instead of using the circular contour at
infinity. We choose a contour C shown in Fig. 5(b). This
contour hugs the scallop tightly but circles around the wedge-
shaped region near the origin and around the ends of the
arms.

The contribution to the flux from the straight parts of the
contour vanishes, since on one side of each arm the velocity
points towards the inwards normal and on the other side it
points towards the outwards normal. So we just have to worry
about the contribution to the flux from the small circular parts
of the contour which surround the hinge of the scallop and the
two ends. Therefore we need solutions to the viscous equations
of motion which are valid in these small regions. We argue that
we can use solutions to the equations for infinite geometries,
since those should be approximately correct when we are very
close to these small regions. Writing v = ∇ × (ψ ẑ), where ψ

is the stream function, the basic equation we need to solve is
the biharmonic equation for ψ ,

∇2(∇2ψ) = 0. (8.2)

Let us suppose that �t < π/2 and look at the flux from
each small circular contour on either side of the wedge. We
take the contour to have radius ε and the angle θ for integration
over the contour ranges from −�t + δ � θ � �t − δ for the
inner part of the wedge and from �t + δ � θ � 2π − �t − δ

for the outer part of the wedge, where δ is a very small angle.
For this infinite wedge geometry (i.e., L → ∞), Eq. (8.2) has
the solution (see Ref. [25])

ψ(r,θ ) = −1

2
�r2

(
sin(2θ ) − 2θ cos(2�t)

sin(2�t) − 2�t cos(2�t)

)
. (8.3)

This solution is valid for 2�t � 257.45◦, which is the angle
where the denominator equals zero. Near that angle ψ(r,θ )
shows more complicated scaling behavior and exhibits several
different scaling regimes. Below, but very near, the critical
angle ψ(r,θ ) will instead scale with r as rp2+2 and then deform
to scale as r2 ln(r). For 2�t greater than the critical angle
ψ(r,θ ) has three different regimes and will scale as rp1+2, r2

and then rp3+2, where p1, p2, and p3 are complex numbers
with Re[pi] > −1, i = 1,2,3, though p1 is actually real. The
detailed solution to the infinite geometry wedge problem for
all angles �t is discussed in Ref. [26], though we do not need
much of the detail for what we are studying.

Now the radial and angular components of the fluid velocity
are given in terms of the stream function by

vr = 1

r

∂ψ

∂θ
, vθ = −∂ψ

∂r
. (8.4)

The radial component is relevant for the computation of the
fluxes

�wedge,1 =
∫ �t−δ

−�t+δ

vr (ε,θ )εdθ, (8.5)

�wedge,2 =
∫ 2π−�t−δ

�t+δ

vr (ε,θ )εdθ, (8.6)

where ε is again the radius of the circular contour. We see that
for all angles �t , the product εvr (ε,θ ) scales as εα, Re[α] >

1, possibly multiplied by ln(ε), which means that when we
take the limit ε → 0 (the circle shrinks to zero radius), these
contributions to the flux will vanish.

Next we have to look at the flow near the very ends of
the arms. We argue that the flow here can be approximated
by the flow near the end of a semi-infinite line or plate being
dragged through the fluid with a velocity perpendicular to its
length. For simplicity, we look at the solution of the slow flow
equations where the semi-infinite plate occupies the negative
x axis and is moving in the negative y direction with speed
v0. We again want to solve Eq. (8.2), but now subject to the
boundary conditions

v(r,π ) = v0θ̂ . (8.7)

This time we find that the solution is

ψ(r,θ ) = r[A cos(θ ) + B sin(θ ) + Cθ cos(θ ) + Dθ sin(θ )],

(8.8)

where A,B,C,D are constants that must be determined from
the boundary conditions. Imposing the no-slip boundary
conditions at θ = π gives

C = v0 − A

π
, (8.9)

D = −B

π
+ A − v0

π2
. (8.10)

The important feature of this solution is that the fluid velocity
actually scales as r0. Now the semi-infinite plate problem is
unrealistic, and this is reflected in the fact that in the solution
the velocity has no r dependence at all. However, we expect
this solution to still be valid very close to the tip of the plate,
and that is where we will make use of it. We evaluate the flux
of the fluid around a circular contour of radius ε with center
at the origin (end of the plate) and −π + δ � θ � π − δ.
Since the fluid velocity scales there as r0, the factor of ε we
get from the line element ds = εdθ in the integration is the
only factor of ε present, and so this contribution to the flux
vanishes as we take ε → 0. Therefore we conclude that the
contribution to the total flux from the two ends of the scallop is
also zero, and so the total flux φ(∞) of the scallop swimming
stroke is zero. This means that in an odd viscosity fluid the
scallop cannot rotate at all as it opens and closes its shell.

IX. CONCLUSION

We have applied the geometric theory of swimming at low
Reynolds number developed by Wilczek and Shapere [4] to
the case where the fluid has a nonvanishing odd, or Hall,
viscosity. The main effect of the odd viscosity is to introduce
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an additional torque on the swimmer, proportional to the rate
of change of the area of the swimmer, independent of the other
shape changes occurring in the stroke pattern. This torque
is the companion effect to the fact that a swimmer rotating
in a fluid with odd viscosity feels an inwards or outwards
pressure proportional to its angular velocity [13]. As we show
in Appendix B this conclusion applies to generic swimming
shapes and is not limited to swimmers whose boundaries are
simple conformal maps of the unit circle.

As a consequence of this extra torque, a swimming stroke
which would not cause the swimmer to rotate in a fluid with
conventional viscosity can cause the swimmer to rotate in a
fluid with odd viscosity if the area of the swimmer is changing.
It is even possible to design a stroke which will rotate the
swimmer in an even viscosity fluid but not in a fluid with
both even and odd viscosity, for a certain value of the ratio
ηo/ηe. It is possible that swimmers placed in fluids with an
odd viscosity would have to adapt their strokes to efficiently
move in a straight line. Additionally, it would be interesting to
see if swimmers could use the interplay between the even and
odd viscosity to perform more interesting or efficient motion
patterns.
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APPENDIX A: COMPUTATION OF THE
PATH-ORDERED INTEGRAL

To calculate the matrix R(t), which gives the rigid motion
of the swimmer after a finite time t , we need to evaluate the
reverse path-ordered integral (2.6). In practice we do this by
slicing time into many small steps (say N steps) of size �t .
We can write

P̄ e
∫ t

0 A(t ′)dt ′ = P̄ e
∑N

i=1

∫ i�t

(i−1)�t
A(t ′)dt ′ . (A1)

If the time steps are small enough then we can approximate
this as

P̄ e
∑N

i=1

∫ i�t

(i−1)�t
A(t ′)dt ′ ≈

N∏
i=1

P̄ e
∫ i�t

(i−1)�t
A(t ′)dt ′ , (A2)

where on the right side we now have a product of reverse
path-ordered integrals over many small time intervals of size
�t and we should put the earliest times on the right so that
we are applying the rigid motions in these small intervals
in chronological order. Since these time intervals are very
small we can make a further approximation by expanding the
path-ordered integral over the time interval �t to first order
and neglecting the higher order terms to find

P̄ e
∫ i�t

(i−1)�t
A(t ′)dt ′ ≈ I +

∫ i�t

(i−1)�t

A(t ′)dt ′. (A3)

Finally we can make one further approximation for the integral
of the matrix A(t) over the small time interval �t ,∫ ti

ti−1

A(t ′)dt ′ ≈ A(ti−1)�t, (A4)

where ti = i�t (and t0 = 0). Our final expression for the
approximation of the full path-ordered integral is then

P̄ e
∫ t

0 A(t ′)dt ′ ≈
N∏

i=1

(I + A(ti−1)�t) , (A5)

where again the matrices for the earliest times must be to the
right so that the rigid motions are applied in the proper order.

We have also tried expanding the reverse path-ordered
integrals over the time interval �t to second order, but it seems
that this makes almost no visible correction to the swimming
trajectory when the swimming deformations are not too large
and the step size �t is small.

APPENDIX B: PROOF THAT Re[b−2] = 1
2π

d A(t)
dt FOR

GENERAL SWIMMING STROKES

Our analysis of the simple swimmer (5.1) suggests a deeper
connection between the area of the swimmer and the odd
viscosity contribution to the torque on the swimmer. To explore
this connection further we now show that Eq. (6.11) holds
for any swimmer whose boundary is a smooth curve without
self-intersections.

The boundary of the swimmer is just a smooth curve
parametrized by θ which also depends on the time t . If we
write the shape in terms of real components,

S0(θ,t) = x(θ,t) + iy(θ,t), (B1)

and plug into the area formula (5.2) we find

A(t) = 1

2

∫ 2π

0
[x(θ,t)y ′(θ,t) − y(θ,t)x ′(θ,t)]dθ, (B2)

where the prime denotes a derivative with respect to θ . Next
take a time derivative to get

dA(t)

dt
= 1

2

∫ 2π

0
[ẋ(θ,t)y ′(θ,t) + x(θ,t)ẏ ′(θ,t)

− ẏ(θ,t)x ′(θ,t) − y(θ,t)ẋ ′(θ,t)]dθ. (B3)

We can integrate by parts on the terms with mixed partial
derivatives and use the fact that the boundary terms vanish
since x(θ,t), y(θ,t), ẋ(θ,t), and ẏ(θ,t) are 2π -periodic in θ to
get

dA(t)

dt
=

∫ 2π

0
[ẋ(θ,t)y ′(θ,t) − ẏ(θ,t)x ′(θ,t)]dθ. (B4)

Because of the no-slip boundary conditions the vector
(ẋ(θ,t),ẏ(θ,t)) is just the fluid velocity v(r) evaluated on the
surface of the swimmer,

v(r)|swimmer = ẋ(θ,t)x̂ + ẏ(θ,t)ŷ. (B5)

Then we can write

dA(t)

dt
=

∮
swimmer

v · n̂ ds = �(swimmer), (B6)
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where n̂ ds = dr × ẑ is a vector normal to the surface of
the swimmer with magnitude ds = |dr|. This integral is just
the flux of the fluid at the surface of the swimmer. By the
divergence theorem we have

�(∞) − �(swimmer) =
∫

fluid
∇ · v dxdy (B7)

and since the fluid is incompressible, ∇ · v = 0, we get

dA(t)

dt
= �(∞). (B8)

A comparison with Eq. (4.15) for the flux of the fluid at infinity
yields the final result

Re[b−2] = 1

2π

dA(t)

dt
, (B9)

proving that this relation is valid for general swimming shapes
in incompressible fluids.

It is known that an object which rotates in a fluid with
odd viscosity will feel a pressure directed radially inwards or
outwards depending on the direction of the rotation [13]. The
relation (6.11) is the companion to this statement. It says that
an object which tries to expand or contract in a fluid with odd
viscosity will feel a torque whose direction (±ẑ) depends on
whether the area of the object is growing or shrinking.

APPENDIX C: EXTENSION AND SOLUTION OF
CONFORMAL MAPS OF DEGREE D = 3

A swimmer whose boundary is a degree 3 (D = 3)
conformal map of the circle has the form

S0(σ,t) = α0(t)σ + α−2(t)σ−1 + α−3(t)σ−2 + α−4σ
−3,

(C1)
with area

A(t) = π (|α0|2 − |α−2|2 − 2|α−3|2 − 3|α−4|2). (C2)

To solve for a∗
−1 and b∗

−2 we need the coefficients a∗
−2,a

∗
−3

and a∗
−4. Equations for these coefficients can be obtained by

plugging into the pulled-back velocity expansion (6.3). We
find that

α−4ā
∗
−2 + ᾱ0a

∗
−2 = ᾱ0α̇−2, (C3a)

a∗
−3 = α̇−3, (C3b)

a∗
−4 = α̇−4. (C3c)

The equation for a∗
−2 is really just a matrix equation for a

two-component vector consisting of the real and imaginary
parts of a∗

−2. The solution is

a∗
−2 = |α0|2α̇−2 − α0α−4 ˙̄α−2

|α0|2 − |α−4|2 . (C4)

In terms of this coefficient we find that

a−1 = −(ᾱ0)−1(ā∗
−2α−3 + 2α̇−3α−4) (C5)

and

b−2 = ᾱ0α̇0 − ᾱ−2α̇−2 − 2α−3 ˙̄α−3

− 3α−4 ˙̄α−4 + ᾱ−2a
∗
−2 − α−2ā

∗
−2. (C6)

Note that the last two terms in b−2 are complex conjugates of
each other and appear with the opposite sign so that they will
cancel when we take the real part of b−2. This means that the
relation Re[b−2] = 1

2π

dA(t)
dt

still holds in this case, as we expect
based on the general arguments presented in Appendix B.

To solve for the new form of the angular velocity necessary
to cancel the torque on the swimmer, we again send αi →
αi,rot = αie

iωt and solve the equation

ηeIm[b−2,rot] − ηoRe[b−2,rot] = 0, (C7)

where now

b−2,rot = b−2 + iωJ (C8)

with

J = 2

|α0|2 − |α−4|2 (|α0|2|α−2|2 + Re[α0α−4(ᾱ−2)2])

+ |α0|2 − |α−2|2 + 2|α−3|2 + 3|α−4|2. (C9)

The new angular velocity needed to cancel the torque on the
swimmer is then

ω = 1

J
(−Im[b−2] + ηo

ηe
Re[b−2]), (C10)

so that the translational and rotational parts of the gauge
potential are now given by

Atr = (ᾱ0)−1(ā∗
−2α−3 + 2α̇−3α−4), (C11)

Arot = 1

J
(−Im[b−2] + ηo

ηe
Re[b−2]). (C12)

APPENDIX D: UNIQUENESS THEOREM FOR SLOW
FLOW EQUATIONS WITH ODD VISCOSITY

The slow flow equations for fluids with odd viscosity are

∇(p − ηoξ ) = ηe∇2v (D1)

∇ · v = 0, (D2)

where ξ = (∇ × v) · ẑ is the vorticity. We first prove unique-
ness of the solution in the case where the swimmer occupies
a region S, bounded by a smooth closed curve ∂S. The fluid
occupies the space in the plane outside of the swimmer, which
we denote by R2\S. The proof here is very similar to the proof
one uses in the even viscosity case when no-slip boundary
conditions are imposed on a smooth closed curve (for that
proof see Ref. [25]).

Suppose we have two solutions, v1 and v2, to the above
equations that both satisfy the no-slip boundary conditions

v|∂S = v0 (D3)

on the surface of the swimmer. Construct the difference of
the two velocity fields, V = v1 − v2, and the differences
of the pressures and vorticities P = p1 − p2, � = ξ1 −
ξ2. Since the slow-flow equations are linear, these quantities
satisfy the equations

∇(P − ηo�) = ηe∇2V (D4)

∇ · V = 0, (D5)
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but with the boundary condition

V|∂S = 0. (D6)

We want to show that this boundary condition forces V = 0
everywhere inside the fluid. Take the dot product of Eq. (D4)
with V and integrate both sides over the region containing the
fluid,∫∫

R2\S
V · ∇(P − ηo�)dA = ηe

∫∫
R2\S

V · ∇2VdA. (D7)

Since ∇ · V = 0, the integrand on the left-hand side can be
written as

V · ∇(P − ηo�) = ∇ · [(P − ηo�)V]. (D8)

We can then use the divergence theorem on the left side, so
that our relation becomes∮

∂S

(P − ηo�)V · n̂ds = ηe

∫∫
R2\S

V · ∇2VdA, (D9)

where n̂ is the unit normal vector to the curve ∂S. But V = 0
on ∂S, so the integral on the left-hand side is zero, and we just
get ∫∫

R2\S
V · ∇2VdA = 0. (D10)

From now on it will be more useful to write everything out
in coordinates (but not using the summation convention). Let
V = (V1,V2). The velocity is a function of position x = (x1,x2)
inside the fluid. We have

V · ∇2V =
∑

i

Vi

⎛
⎝∑

j

∂2Vi

∂x2
j

⎞
⎠ . (D11)

We can use the chain rule to rewrite this as

V · ∇2V =
∑
i,j

[
∂

∂xj

(
Vi

∂Vi

∂xj

)]
−

∑
i,j

(
∂Vi

∂xj

)2

. (D12)

If we define the vector W with components

Wj =
∑

i

Vi

∂Vi

∂xj

(D13)

then we can write this compactly as

V · ∇2V = ∇ · W −
∑
i,j

(
∂Vi

∂xj

)2

. (D14)

Now ∫∫
R2\S

∇ · WdA =
∮

∂S

W · n̂ds = 0, (D15)

where we have again used the fact that V vanishes on ∂S. So
we are left with ∫∫

R2\S

∑
i,j

(
∂Vi

∂xj

)2

dA = 0. (D16)

But the integrand in this expression is greater than or equal to
zero, so we conclude that

∂Vi

∂xj

= 0 ∀ i,j (D17)

so V is a constant independent of position. But V = 0 on the
surface of the swimmer, therefore V = 0 everywhere, and so
v1 = v2. The solution is unique.

1. Possible Proof for Swimmers of More General Shapes

Now we consider swimmers of a more general shape. We
can imagine two situations here. In the first situation the
swimmer is bounded by a closed curve which might not be
smooth, for example a swimmer with a “blocky” shape. In the
second situation we have a very thin swimmer whose entire
body consists of a one-dimensional curve, open on both ends,
and not necessarily smooth. An example of this situation is our
simple model of the scallop in Fig. 5(a) of Sec. VIII. In both
cases we call the curve �, and we impose no-slip boundary
conditions for the fluid on this curve,

v|� = v0. (D18)

Define

vmax = max {|v(x)| : x ∈ �} . (D19)

It is the speed of the fastest moving point on the swimmer.
Next, we recall the physical meaning of the slow flow equa-

tions. The full Navier-Stokes equations (for an incompressible
fluid with odd viscosity) are

ρ

(
∂v
∂t

+ (v · ∇)v
)

= ηe∇2v − ∇(p − ηoξ ), (D20)

∇ · v = 0. (D21)

The slow flow equations are obtained from these by setting the
convective derivative term to zero,

∂v
∂t

+ (v · ∇)v = 0. (D22)

The physical meaning of this statement is that the net force
on each fluid element, represented by the right-hand side
of Eq. (D20), is equal to zero. The fact that the convective
derivative is equal to zero means that the fluid velocity v is a
constant along streamlines in the fluid. With an object moving
in the fluid (with no-slip boundary conditions), the streamlines
must begin on that object, and they either end on that object
as well (if the flux of the fluid at infinity vanishes), or the
streamlines go out to infinity (if the flux of the fluid at infinity
does not vanish). Furthermore, every point in the fluid lies on
exactly one streamline (there are no shocks in this situation).

These considerations imply that vmax is actually an upper
bound for the speed of the fluid anywhere in the entire plane
R2. So we can say that

|v(x)| � vmax ∀ x. (D23)

We can now use this fact to prove the uniqueness of solutions
to the slow flow equations for more general shapes, including
our nonsmooth, possibly open-ended, curve �. Again, suppose
we have two solutions v1 and v2, both satisfying the boundary
condition v|� = v0. Then the difference V = v1 − v2 again
satisfies the slow flow equations, but with the boundary
condition V|� = 0. For this boundary condition we have
vmax = 0. Then our bound Eq. (D23) implies that |V| � 0
everywhere, so we can conclude that V = 0 everywhere. This
implies that v1 = v2, so the solution is unique.
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Since we used the vanishing of the convective derivative
in the derivation, the bound Eq. (D23) applies only to time-

independent viscous flows, and almost certainly does not apply
at all to any other kinds of fluid flows.
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