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Precursor of transition to turbulence: Spatiotemporal wave front
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To understand transition to turbulence via 3D disturbance growth, we report here results obtained from the
solution of Navier-Stokes equation (NSE) to reproduce experimental results obtained by minimizing background
disturbances and imposing deterministic excitation inside the shear layer. A similar approach was adopted in
Sengupta and Bhaumik [Phys. Rev. Lett. 107, 154501 (2011)], where a route of transition from receptivity to fully
developed turbulent stage was explained for 2D flow in terms of the spatio-temporal wave-front (STWF). The
STWF was identified as the unit process of 2D turbulence creation for low amplitude wall excitation. Theoretical
prediction of STWF for boundary layer was established earlier in Sengupta, Rao, and Venkatasubbaiah [Phys.
Rev. Lett. 96, 224504 (2006)] from the Orr-Sommerfeld equation as due to spatiotemporal instability. Here, the
same unit process of the STWF during transition is shown to be present for 3D disturbance field from the solution
of governing NSE.
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I. INTRODUCTION

Transition to turbulence in fluid flow is still “the most
important unsolved problem of classical physics” [1]. Whether
turbulence is created deterministically or stochastically in fluid
flow is still not decided categorically. But, in experiments tur-
bulence is often created deterministically [2–5]. Wind tunnels
are designed for transition research with very low background
disturbances and an excitation source inside the boundary layer
at a fixed frequency is often employed to cause transition.
This aspect of causing transition of flows from laminar to
turbulent state experimentally is related to receptivity of the
former to certain classes of input disturbances. In Ref. [2], a
vibrating ribbon placed perpendicular to the flow was excited
monochromatically to create 2D disturbance wave-packet and
the flow eventually became turbulent. Apart from validating
the eigenvalues and egienfunctions of linear stability theories,
such experiments also display features that cannot be explained
by linear stability theories.

Tollmien and Schlichting predicted theoretically Tollmien-
Schlichting (TS) waves, with parallel flow approximation of
the linearized NSE [6] and the experiments in Ref. [2] was
an attempt to validate this instability theory for the first time.
When the similar experimental arrangement was simulated as
an excitation problem, for space-time dependent disturbance
field by Bromwich contour integral method [7], three elements
of disturbance field are noted with the following structures: (i)
a local solution followed by (ii) an asymptotic wave-packet and
which is lead by (iii) the growing spatiotemporal wave front
(STWF) [6]. The instability theory only predicts the asymp-
totic wave-packet in a qualitative manner. To replicate the
experimental observations, one can follow the above linearized
receptivity study [7] or solve the nonlinear NSE by direct nu-
merical simulation (DNS) [6,8]. The results of a DNS is shown
in Fig. 1, where a representative disturbance field obtained for
a zero-pressure-gradient boundary layer perturbed by time-
harmonic excitation is noted at a particular height. The growing
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STWF originating from the solution of OSE and by solving full
2D NSE is seen to be responsible for 2D transition [6,8]. In this
respect, it is pertinent to distinguish the STWF from TS waves,
the latter has been predominantly discussed in the literature.
In Fig. 1, the time-accurate solution of NSE is displayed for
the indicated physical parameters of excitation and nondi-
mensional frequency F = 2πνf/U 2

∞ = 1.5 × 10−4, for the
physical frequency f in Hz and the indicated Reynolds number
in the figure is defined by the local displacement thickness (δ∗)
at the location of the exciter. In drawing this figure at a height
of y = 0.4747δ∗, computed NSE is for a Reynolds number,
ReL = 105, based on an integral length scale (L) used for
nondimensionalizing all lengths and U∞ as the velocity scale.
The result is shown for a time equal to t = 18.

It is to be noted that the STWF is not a mere transient, as
it appears much later after the exciter is switched on and is
related to spatiotemporal instability of the flow, dependent on
the local shear layer property. Also, once the STWF is created
inside a shear layer, it continues to grow, unlike other transient
phenomena. The STWF was shown to originate theoretically
from the solution of the receptivity problem given by the
Orr-Sommerfeld equation, even when the boundary layer is
excited at a location where the boundary layer is spatially
stable [9], indicating its spatiotemporal growth has nothing to
do with the traditional spatial instability analysis. STWF has
never been reported by either temporal or spatial instability
theories. Actual structure of the STWF was also shown to
be similar by solving full 2D NSE [8], which helped track
the nonlinear growth of the STWF to intermittent turbulent
flow stage. However, to follow the nonlinear evolution of the
STWF by NSE, the computational domain has to be long
enough. For the presented results here, the domain length
is five times more than that used in Ref. [10] to study 3D
disturbance field. For the 2D turbulence simulation in Ref. [8],
the computational domain is 12 times longer than that used in
Ref. [10]. It is to be noted that in the context of spatiotemporal
dynamics, 3D field is not a mere transformation of 2D results,
as for spatiotemporal growth, one cannot use the Squire
transformation linking two- and three-dimensional instabilities
(useful for temporal instability only).
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FIG. 1. (Color online) Streamwise disturbance velocity (ud )
plotted for a nondimensional frequency F = 2πνf/U 2

∞ = 1.5 ×
10−4, and a low amplitude of excitation (α1 = 0.002, i.e., a wall-
normal maximum excitation velocity which is 0.2% of the free stream
speed, U∞). The result is shown at t = 18, for the exciter placed on
the wall, where the Reynolds number based on local displacement
thickness is Re = 550.

The STWF onset is by linear mechanism [9], which
grows continually till the nonlinearity starts affecting the flow
upstream to create adverse pressure gradient. Such adverse
pressure gradient creates new STWFs in turn, all of which
saturate nonlinearly. Self-regeneration is an essential property
of the STWF, and this sequence of events continues once
the STWF is created for an appropriate parameter combina-
tion. Two-dimensional transition in Refs. [8,11] is noted by
tracking the STWF over a long computational domain. These
references also clearly show that the TS wavepacket does not
grow to create turbulence for moderate- to high-frequency
excitations. Instead, the STWF is the main precursor for
transition to 2D turbulence, with detailed processes dependent
on frequency and amplitude of excitation. It is necessary to
investigate whether 3D disturbance field also evolves into
turbulence following the same unit process of the STWF.
This is performed here by accurate simulations, minimizing all
possible error sources. We review the various formulations of
the Navier-Stokes equation in Appendix A and the numerical
methods used by previous authors and methods, which are
used here and explained in Appendix B.

The present paper is formatted in the following manner. In
Sec. II, we explain how spatiotemporal structures are created
inside boundary layer with respect to 2D boundary layer and a
1D model equation. Different routes of transition, explored via
3D simulations are described in Sec. III. Section IV focuses
upon the receptivity of the zero-pressure-gradient boundary
layer with respect to an excitation field created by a Gaussian
circular patch on the surface of the plate in creating various
vortical structures and turbulent spot formation during the
transition process. In the last subsection, the energy spectrum

of the inhomogeneous turbulent flow created by the wall
excitation is shown and compared with relevant experimental
results. The paper closes with concluding remarks in Sec. V.

II. SPATIOTEMPORAL STRUCTURE
OF DISTURBANCE FIELD

To understand the structure of the STWF, consider the 1D
convection diffusion equation,

∂u

∂t
+ c

∂u

∂x
= ν

∂2u

∂x2
,

in an unbounded domain with the initial condition prescribed
as u(x,0) = f (x). Using bilateral Laplace transform [7], the
spectrum of the initial condition is given as

φ(α) =
∫

f (ξ )e−iαξ dξ.

One gets the solution with α = αr + iαi as

u(x,t) = 1

2π

∫
Brα

∫ +∞

−∞
f (ξ ) eiα(x−ξ−ct) e−να2t dα dξ,

where Brα is the Bromwich contour in the complex α

plane [6]. The wavepacket nature is due to e−ν(α2
r −α2

i )t , and the
phase of the packet changes according to αr (x − ct − 2ναit).
This helps in explaining the role of diffusion in creating a
wavepacket and not waves. Similarly, the amplitude of the
STWF decreases and its width increases due to diffusion.
The dynamics of the convected STWF is determined by the
competition between diffusion and growth determined by the
dispersion relation, ω = αc − iνα2.

In Ref. [6] it has been shown in the linearized parallel
receptivity framework, that the disturbance field corresponds
to the imposed wall excitation vd (x,0,t) = δ(x) eiω0tH (t),
given by

vd (x,y,t) =
(

1

2π

)2 ∫
α,Br

∫
ω,Br

[
i

(ω − ω0)

]

[
φ3(0)φ1(y) − φ1(0)φ3(y)

φ1(0)φ′
3(0) − φ3(0)φ′

1(0)

]
exp [i(αx − ωt)] dα dω, (1)

where H (t) represents the Heaviside function due to finite
start-up of the excitation, vd (x,y,t) represents the disturbance
wall-normal velocity component, ω0 is the excitation fre-
quency, and α and ω are complex wavenumber and circular
frequency, respectively. Here, φ1(y) and φ3(y) are the two
fundamental solutions of OSE, which decay in the free stream
(y → ∞). The integrations in Eq. (1) are carried out along
appropriately chosen Bromwich contours in α and ω planes
as described in Ref. [9]. One notes from Eq. (1) that all
complex frequencies centered around ω0 are excited. The
STWF created due to this time-harmonic excitation is therefore
a linear combination of spatiotemporal eigenmodes of OSE
with a weight proportional to 1/(ω − ω0). The constituent
eigenmodes of the STWF are spatiotemporal in nature, with
both α and ω being complex.

III. DIFFERENT ROUTES OF 3D TRANSITION

Despite an early failed attempt [12] to create flow tran-
sition by 3D wall excitation, subsequent experiments on 3D
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transition showed different vortical structures in the late stages
of transition [3,4,13]. In these experiments, a rectangular
ribbon with spanwise spacers is vibrated monochromatically
near a flat plate, with resulting disturbance evolving into
vortices with an appearance resembling the letter 
, which
are aligned and attributed to K-type transition in honor
of Klebanoff [3], where the frequency of excitation in the
experiments was 1489 Hz and above. In later experiments
in the USSR, it was noted that the vortices in the nonlinear
stage of evolution are staggered for lower frequencies, and
the frequency of excitation was 120 Hz in Ref. [4]. Such a
route of transition is associated to H-type transition, named
after the proponent of another theoretical model. However, the
main difference between the experiments in Refs. [3] and [4]
is the excitation frequency. Corresponding computational
and theoretical approaches did not use this observation on
difference of frequency of excitation and instead H-type
breakdown is attributed to a resonant mechanism, where a 2D
disturbance wave interacts with two oblique waves having half
the frequency of the 2D wave [14]. Here we note that this dis-
tinction between K- and H-type transition is not very relevant,
as a growing boundary layer supports wavepackets and not
waves. Despite this, in some computational efforts [10,15,16],
authors have tried to detect H-type breakdown by an exciter
vibrated at a fundamental and its subharmonic frequencies,
simultaneously by wall-normal perturbation. In Ref. [10],
additional nonphysical random white noise is added with the
wall-excitation, purportedly to “encourage flow randomization
and asymmetry in post-transitional turbulent region.” In the
present work, results from DNS show that different arrange-
ments of vortices are due to frequency of excitation, following
similar deterministic excitation strategy used in Ref. [2].

In computational efforts, the role played by the TS
wavepacket is always highlighted [10,15–17]. Here, we show
that the STWF is created by a 3D wall excitation, and
apart from being the main precursor of transition, it follows
different routes of transition depending upon amplitude and
frequency of excitation. Present computations performed over
a streamwise extent, which is five times longer than that in
Ref. [10], display different dynamics for different routes of
transition, all featuring the STWF. This implies that the STWF
is relevant in the disturbance field for both 2D and 3D transition
to take the flow from the excitation to the final turbulent stage.

Other complimentary views on nonmodal transient growth
of optimal initial perturbations [18] may not be important,
as the mechanisms are not generic to explain 2D and 3D
routes of transition [19,20]. Also, the results do not support
experimental observations on flow transition [2–4,13]. The
growth associated with the STWF obtained from the solution
of full NSE, as a response to harmonic wall excitation, helps
in explaining 2D transition [8,11] and the present effort shows
the same for 3D transition.

IV. 3D RECEPTIVITY OF BOUNDARY LAYER
TO WALL EXCITATION

To explore the role played by the STWF for a 3D
disturbance field, NSE is solved using DRP methods reported
in Ref. [21]. Schematic of the computational domain used
here is shown in Fig. 2(a), with the shear layer excited by

a Gaussian circular patch (GCP) vibrated time-harmonically
with the exciter periodic in the spanwise direction, with a
period of zmax. This excitation creates planar and oblique 3D
TS wavepackets. Most 3D experiments are for time-harmonic
spanwise modulated (SM) exciter, which is also computed,
but not presented here, as the unit process appears to be the
same. Imposed wall-normal velocity by the exciter is given by,
vwall(x,z) = α1Am(x,z)H (t)eiω0t , where α1 and ω0 denote the
amplitude and the frequency of excitation. Here, H (t) is the
Heaviside function needed for the impulsive start of excitation
and Maximum(|Am(x,z)|) = 1. The amplitude of the GCP
exciter varies as Am = [1 + cos(πr/rmax)]/2, where rmax is
the radius of the circular patch. Spanwise periodic conditions
imply existence of exciters at a periodic interval of zmax. The
computational domain taken here is similar to Refs. [10,15,17],
but significantly longer to allow full nonlinear evolution of
the STWF in the computational domain. Also, the present
computations do not use any random wide-band excitation
and use strictly two-level time integration method, which does
not have spurious numerical mode(s) [21].

The perspective view of the streamwise disturbance ve-
locity (ud ) is shown in the (x,z) plane, in Fig. 2(b) at
t = 15 for GCP exciter, with α1 = 0.01 and zmax = 1. The
nondimensional frequency is F = 0.5 × 10−4, where F =
2πνf/U 2

∞; ν is the kinematic viscosity and f is the frequency
of excitation in Hertz. Figure 2(b) identifies the three elements
of response, as was shown in Refs. [8,9,11] for the creation
of 2D turbulence. Following the local solution, planar and a
pair of oblique TS wavepackets are seen in Fig. 2(b). For this
case, leading the disturbance structure is the STWF, which
grows rapidly, as was noted in 2D disturbance field [8,11].
Spatiotemporal growth of the disturbance field is shown in a
plan view in Figs. 2(c)– 2(f), for the streamwise disturbance
velocity, ud , in a plane located at a nondimensional height
of y = 0.00215. One notes higher wavenumber fluctuations
(turbulent spots) at selected locations near the spanwise
boundaries, due to interactions between neighboring STWFs,
with disturbance levels of the order of U∞. Two such zones
(S1 and S2) identifying turbulent spots [Figs. 2(d) and 2(e)]
are shown at t = 26 and 29. Here, these spots spread in
both the streamwise and spanwise directions, while spawning
newer spots upstream (S3 and S4), as shown in Fig. 2(e).
This regeneration and self-induction mechanism establishes
a fully turbulent zone extending from x � 13 to 25 at t = 36
in Fig. 2(f).

A. Vortical structure formation during transition

During the secondary and tertiary stages of transition,
various arrangements of vortical structures are noted and based
on which transition processes are classified as belonging to
K- and H-type transition routes. As mentioned earlier, with
accurate computations all these arrangements are noted to
depend upon the frequency of excitation alone, with the K-type
breakdown noted for higher-frequency excitation. In Fig. 3, we
have plotted the plan view of λ2 = −0.005 isosurface (colored
by streamwise velocity) for the GCP exciter case of Fig. 2(b).
Here λ2 is the second eigenvalue of the symmetric matrix
formed by the symmetric and the antisymmetric part of the rate
of strain or velocity gradient tensor [22]. Negative values of λ2
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FIG. 2. (Color online) (a) Schematic diagram of a computational domain shown for Gaussian circular patch (GCP) exciter with center
located at xex. (b) Perspective plot of ud for a height y = 0.00215 at t = 15 after the onset of excitation for GCP exciter. For this case, xex = 1.5
and amplitude α1 = 0.01 (1% of U∞). For the GCP exciter, the frequency is F = 0.5 × 10−4. (c)–(f) Plan view of ud for y = 0.00215 and
indicated times shown for GCP exciter case described in the legend of Fig. 2(b).

are explained in Ref. [22], as to identify vortical structures in
3D flow-fields. In Fig. 3, trailing part of the STWF is focused
to show the later stages of transition and to note the formation
of staggered 
-type vortices. The darker spots on the right
side of the frame denote the ringlike elements at the top of the

 vortices, which have been reported in the literature. This
case of computation reported here is due to monochromatic
excitation only.

B. Formation of spots during transition

Next, we investigate the formation of turbulent spots and
the consequent creation of fully developed turbulent flow, for

the case of GCP exciter with F = 0.5 × 10−4. In Fig. 4, we
show the contours of ωz (spanwise component of vorticity) at
the indicated time instants, along the midspan location, z = 0.
At t = 30, an intermittent turbulent zone spans from x � 13
to 19. With passage of time, one notes the front of this highly
perturbed zone to move in the downstream direction, at a speed
which is lower but which is of the order of the free-stream
velocity. The trailing edge of the STWF shows very minor
movement in the downstream direction up to t = 35. Beyond
that time, this location of the trailing edge of the STWF remains
almost frozen at x � 13. The transitional flow, which spans
from x � 12 to 15 in Fig. 4(b), keeps elongating, while causing
vortical eruptions from the wall. This transitional flow region
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FIG. 3. (Color online) Perspective view of vortical structures
created by a Gaussian circular patch excitation case with λ2 = −0.005
isosurface shown in (x,z) plane corresponding to F = 0.5 × 10−4.

grows and merges with the turbulent part ahead of it. One such
set of vortical eruptions is marked as A in Figs. 4(b) and 4(c).
One also notes thickening of the boundary layer, gradually
from the laminar value at x = 12 to 15 (which can be construed
as the point of transition) and beyond for later times. The

FIG. 4. (Color online) Spanwise vorticity (ωz) contours shown in
midspan location (z = 0) in (x,y) plane for the indicated times for
the case described in the legend of Fig. 3.

intermittent zone is characterized by highly unsteady vortical
eruptions. Presence of unsteady vortical eruptions and constant
regeneration mechanism was also noted for deterministically
created 2D turbulent flow in Ref. [8]. In Fig. 4(d), the flow is
seen to be turbulent beyond x = 15; however, the intermittency
is lower beyond x � 25.

In Figs. 5(a)–5(c), the skin friction coefficient (Cf )
variation for the section along z = 0 are shown with the
streamwise coordinate x, for the indicated times. For
zero-pressure-gradient laminar flows, skin friction coefficient
varies as Cf = 0.664 × Re−1/2

x , where Rex is Reynolds
number based on streamwise coordinate x and is shown
in the frames as dashed line. For fully developed turbulent
boundary layer, time-averaged skin friction coefficient for
zero-pressure-gradient flow varies as 〈Cf 〉 = 0.74 × Re−1/5

x ,
as given in Refs. [23,24]. This line is shown in all the frames
by dash-dotted line. The passage of the STWF is clearly
evident in all the frames, indicating highly intermittent flow
with the value of Cf fluctuating significantly. When we plot
〈Cf 〉 in Fig. 5(d) (data averaged between t = 40 and 50) as a
function of x, we note that in the central part of the turbulent
spot, the time-averaged Cf displays good match with the
turbulent boundary layer value. It is interesting to note that
near the location of x � 14, 〈Cf 〉 shows a dip and this is due
to the onset of unsteady separation associated with transition.
This is shown in the stream trace plot shown in Fig. 5(e).

In Fig. 6, corresponding influence on other integrated
boundary layer properties are shown in terms of the displace-
ment and momentum thickness (δ∗ and θ ) at the indicated
times, in the left column. In the right column of this figure,
the variation of the shape factor (H = δ∗/θ ) as a function of
Reynolds number, based on current length is shown. In these
frames, the dashed lines indicate the typical values of laminar
(top) and turbulent flows (bottom). Once again, one notices an
excellent match with the known experimental and theoretical
trends for these quantities.

C. Spectrum of inhomogeneous turbulent flow over flat plate

In Fig. 7, compensated energy spectra as defined in Ref. [25]
by E11, E22, and E33, are shown along three spanwise
locations given by, z = 0.0, 0.38, and 0.48, in the different
frames. These are obtained by squaring the Fourier-Laplace
transform of ud , vd , and wd , respectively. The compensation
applied to individual components is due to variation noted
for homogeneous turbulence. Thus, the plotted values show
deviation from the homogeneous isotropic turbulence value
given by the theory due to Kolmogorov [24]. From this figure
one notes the existence of an intermediate wavenumber region
where spectral densities vary as k

−5/3
x —a variation in the

inertial subrange predicted for 3D isotropic homogeneous
turbulence. More importantly, displayed computed spectra
show similarity with the experimental data for inhomogeneous
flows in Ref. [25]. In this latter reference, local isotropy of
the boundary layer about the streamwise wavenumber (kx)
is explored experimentally. Thus, the STWF is noted to take
the flow all the way from receptivity stage to fully developed
turbulent flow stage, similar to 2D cases reported earlier in
Ref. [8]. The fact that the present computations also match the
experimental results for inhomogeneous flows [25] establishes
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FIG. 5. (a)–(c) Instantaneous and (d) time-averaged skin friction coefficient Cf along midspan, z = 0, plotted as function of x. Time
averaging of data in (d) is performed during t = 40 and 50. Corresponding data for laminar and turbulent flows are indicated by dashed and
dash-dotted lines, respectively. In frame (e), stream traces are shown at t = 40 to include recirculation region at the onset of transition.

that the STWF is the precursor of turbulence, which takes the
2D equilibrium flow, all the way from the receptivity stage to
the final 3D turbulent flow stage. The STWF as an unit process
in causing transition from laminar to turbulent flow stage is
now fully established for both 2D and 3D turbulence.

V. CONCLUSION

In conclusion, the present study of the process of transition
for a zero-pressure-gradient boundary layer by deterministic
wall excitation helps us understand the cause by which
turbulence in wall-bounded flows is created. Presented results
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FIG. 6. (Color online) (a)–(e) Displacement thickness (δ∗) and momentum thickness (θ ) plotted along midspan (z = 0) for the indicated
time instants. In frames (f)–(j), the shape factor (H ) is plotted along midspan for the corresponding time instants. Here, HL = 2.59 and
HT ≈ 1.4 are the values of shape factor H for laminar and turbulent zero pressure gradient flows over a flat surface, respectively [23].

here and in Refs. [8,11] identify the unit process of transition
to turbulence to be the spatiotemporal wavefront (STWF) for
both 2D and 3D routes of transition [26], for small excitation
levels. The STWF follows from a complete spatiotemporal
description of the perturbation field and is therefore more
generic than the conventional spatial or temporal description
of the problem. Once a STWF is created by linear mechanism,
subsequent linear growth is followed by nonlinear effects,
which cause the STWF to display regeneration mechanism.
Following nonlinear actions lead to turbulent spots, which

merge together to develop into fully developed turbulent
flow. Thus, the STWF needs to be created only once and
this will create other STWFs via the nonlinear process as
the regeneration mechanism. In the presented study here,
this was created by the finite start-up of the time-harmonic
wall excitation. This can also be augmented by any other
discontinuous changes in the excitation pattern.

In terms of specific routes, both K- and H -type transitions
in 3D field are triggered by monochromatic excitation via the
growth of STWF, with the latter occurring for lower frequency
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FIG. 7. Time-averaged compensated streamwise spectral density
for (a) streamwise, (b) wall-normal, and (c) spanwise velocity
components plotted as a function of streamwise wavenumber, kx , for
the indicated spanwise stations, z = 0, 0.38, and 0.48 for the GCP
excitation cases.

of excitation. These results would be presented elsewhere.
This is in contrast to the viewpoint for H -type transition
to occur via triad resonant interaction of TS waves. Present
work unambiguously establishes that the STWF is the unit
process of transition for both 2D and 3D transition created by
small excitation associated with moderate to high frequency
of excitation, and not by the growth of TS wavepackets.
Present results, along with that in Ref. [8], obtained by
solving Navier-Stokes equation without any modifications to
the governing equation, or using any models, explain how
turbulence is created in fluid flows via the growth of the STWF,
for both 2D and 3D routes of transition to turbulence.
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APPENDIX A: DIFFERENT FORMULATIONS USED FOR
DIRECT NUMERICAL SIMULATION (DNS)

With the advent of computing power, various DNS reported
in the literature have used different formulations. DNS of
flows reported in the literature [27,28] have earlier used
modifications of the governing NSE, some of which are
described here. There are various numerical techniques like
introducing hyper- and hypoviscosity terms; using distributed
deterministic and random body forces are some of the means
employed to solve NSE via DNS. While there are also other
references [10,15,16], including the present effort, which
have reported using unaltered NSE to simulate the classical
transition experiment of Ref. [2].

In one of the derived variable formulations given in
Ref. [27], the following equation is solved

∂ω

∂t
− J [ψ,ω] = ∇ × �f + ν(−1)p+1(∇2)pω − αω. (A1)

Here, ψ is the stream function and ω is the vorticity as the
dependent variable. In Eq. (A1), J is the Arakawa-Jacobian
operator given by J = (∂ψ/∂x)(∂ω/∂y) − (∂ψ/∂y)(∂ω/∂x).
For NSE, the right-hand side of the above equation should
only have the second term with p = 1. Instead, the right-hand
side has the applied Gaussian and white-noise-distributed force
given by �f , and the last term is an added damping term with
α as the damping frequency. In this reference, p = 8 is taken,
which implies that the viscous diffusion is overemphasized at
higher wavenumbers and is hence known as the hyperviscosity
term.

Similarly in Ref. [28] in reporting results for homogeneous,
stationary 2D turbulence, the following equation has been
solved:

Dω

Dt
= ∂ω

∂t
+ J [ψ,ω] = D + F, (A2)

where F is the forcing term acting at large scale. The term D

represents generalized damping term given by

D = μ∇−2ω + ν∇2ω.

While the second term on the right-hand side is due to
viscous diffusion, the first term has been termed by the authors
as “physically artificial hypoviscosity.”

In solving inhomogeneous problems, some researchers
have used the spectral formulation, which requires periodicity
in the streamwise direction. For example, in Ref. [29] the
following primitive variable formulation is used:

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂x2
j

+ Fi. (A3)

To circumvent the nonphysical requirement of periodicity
in the streamwise direction, a fringe zone is added—as shown
in Fig. 8–where the term Fi is needed inside the fringe zone to
enforce periodicity. Thus, in Eqs. (A1) and (A3), one notes
the formulations for NSE as used for different numerical
approaches.

In Refs. [8,11], NSE is solved also in (ψ,ω) formulation in
transformed (ξ,η) plane given by

h1h2
∂ω

∂t
+ h2u

∂ω

∂ξ
+ h1v

∂ω

∂η
= 1

ReL

∇2ω, (A4)
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FIG. 8. The domain and fringe zone used in Ref. [29]. The figure
is taken from Ref. [29].

where h1 and h2 are the scale factors of transformation,
and all details are given in Ref. [11] regarding notations. In
this formulation, governing equations are solved without any
modifications. The disadvantage with this formulation is that
this is restricted to 2D flows.

For 3D flows, one can instead solve NSE in ( �V , ��),
velocity-vorticity formulation, as reported in Refs. [15,16,30].
The same formulation is used here to study 3D transition
routes. All computations reported here are performed using
velocity-vorticity formulation due to its properties explained in
Refs. [31–33]. Governing equations are nondimensionalized
using U∞, L, and L/U∞ as the velocity, length, and time
scales, respectively. Here, U∞ is the free stream speed, so that
the Reynolds number (ReL = U∞L/ν) based on these scales
is chosen as 105 for the reported calculations.

Note that in Refs. [10,15,16] a computational domain is
used which did not include the leading edge. The computa-
tional domain is given as xin � x � xout along the streamwise
direction with x = 0 denoting the leading edge; 0 � y � ymax

along the wall-normal direction and −zmax/2 � z � zmax/2
along the spanwise direction. The origin of the coordinate
system is placed at the center of the leading edge of the plate.
In Refs. [8,11], the length of computational domain is given by
xout = 120 for the 2D problem. In the present computations,
this is taken as xout = 50, as compared to the domain length
taken in Ref. [10] as 10, which is inadequate to capture the
nonlinear evolution of the STWF.

Here, the vorticity transport equation is obtained from
incompressible NSE given as

∂ ��
∂t

+ ∇ × ( �� × �V ) = 1

ReL

∇2�, (A5)

where �� = (ωx,ωy,ωz) is the vorticity vector and �V =
(u,v,w) is the velocity vector. As by definition � = ∇ × �V ,
the vorticity vector is solenoidal, i.e., ∇ · � = 0. To preserve
the solenoidality of the computed vorticity field, in the
reported simulations we use the rotational variant of the ( �V , ��)
formulation of NSE as described in Refs. [30,34]. Following
the vector notation, the vorticity transport equation in this
formulation is given as

∂ ��
∂t

+ ∇ × �H = 0, (A6)

where �H = ( �� × �V + 1
ReL

∇ × ��). The simulations are per-
formed in the transformed (ξ,η,ζ ) plane, where x = x(ξ ),
y = y(η), and z = z(ζ ) to have finer resolution near the wall
and the leading edge of the plate. In the transformed plane,

the individual equations for the vorticity components from
Eq. (A6) are

∂ωx

∂t
+

(
1

h2

∂fζ

∂η
− 1

h3

∂fη

∂ζ

)
= 0, (A7)

∂ωy

∂t
+

(
1

h3

∂fξ

∂ζ
− 1

h1

∂fζ

∂ξ

)
= 0, (A8)

∂ωz

∂t
+

(
1

h1

∂fη

∂ξ
− 1

h2

∂fξ

∂η

)
= 0, (A9)

where h1, h2, and h3 are the scale factors of the transformation
given by h1 = ∂x/∂ξ , h2 = ∂y/∂η, and h3 = ∂z/∂ζ . In
Eqs. (A7) to (A9), the terms fξ , fη, and fζ are given by

fξ = (wωy − vωz) + 1

ReL

(
1

h2

∂ωz

∂η
− 1

h3

∂ωy

∂ζ

)
, (A10)

fη = (uωz − wωx) + 1

ReL

(
1

h3

∂ωx

∂ζ
− 1

h1

∂ωz

∂ξ

)
, (A11)

fζ = (vωx − uωy) + 1

ReL

(
1

h1

∂ωy

∂ξ
− 1

h2

∂ωx

∂η

)
. (A12)

In this formulation, the corresponding velocity field is
obtained by solving the velocity Poisson equations ∇2 �V =
−∇ × ��, which are given in transformed plane as

∇2
ξηζ u =

(
h1h2

∂ωy

∂ζ
− h3h1

∂ωz

∂η

)
, (A13)

∇2
ξηζ v =

(
h2h3

∂ωz

∂ξ
− h1h2

∂ωx

∂ζ

)
, (A14)

∇2
ξηζ w =

(
h3h1

∂ωx

∂η
− h2h3

∂ωy

∂ξ

)
, (A15)

with the diffusion operator ∇2
ξηζ given as

∇2
ξηζ = ∂

∂ξ

(
h2h3

h1

∂

∂ξ

)
+ ∂

∂η

(
h3h1

h2

∂

∂η

)
+ ∂

∂ζ

(
h1h2

h3

∂

∂ζ

)
.

The receptivity problem is studied by solving the Pois-
son equations for u and w components of velocity given
by Eqs. (A13) and (A15). The v component (wall-normal
component) of the velocity is calculated by integrating the
continuity equation from the wall as

v(ξ,η,ζ ) = v(ξ,0,ζ ) −
∫ η

0

[
h2

h1

∂u

∂ξ
+ h2

h3

∂w

∂ζ

]
dη. (A16)

Application of this methodology numerically satisfies the
velocity solenoidality condition at the discrete nodes of the
domain. Additionally, it also imposes the boundary condition
on v component of the velocity at the far-field boundary in
Fig. 2(a). This procedure saves time for solving the Poisson
equation for the v component.

APPENDIX B: NUMERICAL METHODS

In Appendix A, we noted that there are efforts [10,15,16]
including the present one, where unaltered NSE has been used
to simulate the classical transition experiment of Ref. [2]. In
Refs. [8,11], the same approach of using NSE without any
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modifications is adopted for simulating 2D turbulence from the
first principle. The only difference between Refs. [10,15,16]
and Refs. [8,11] to simulate transition experiments [3–5],
is the use of a very small domain in the former and the
use of high-accuracy dispersion relation preserving (DRP)
scheme in the latter, along with usage of multidimensional
filter. Two-dimensional flow can be extremely well resolved
using high-accuracy computing methods. In a recent 3D flow
transition simulation, the authors in Ref. [10] have used
implicit and explicit time integration methods with an overlap
region in the wall-normal direction, while a small domain
is used in the streamwise direction. In the high-performance
computing framework used here, overlap region is also needed
for the implicit spatial discretization used. While in Ref. [10]
explicit spatial discretization has been used, using different
time integration schemes very close to the wall also brings in
the issue of internal reflection of signals while passing through
the overlap region. These numerical issues are discussed
briefly here.

The numerical methods employed to solve the 3D re-
ceptivity problem require the use of staggered arrangement
of variables for higher accuracy [35]. In the staggered
arrangement, velocity components (u, v, w) are defined at the
center of the elementary cell-surface perpendicular to it, while
the vorticity components (ωx , ωy , ωz) are defined at the center
of the sides of the elementary cell, which are parallel to it.
In this arrangement, optimized version of staggered compact
schemes from Ref. [34] are used for midpoint interpolation and
evaluation of first derivatives at midpoint locations. These are
variants of the original sixth order schemes given in Ref. [36].
The general stencil of the staggered midpoint interpolation
scheme is given as

αIf̂j−1 + f̂j + αIf̂j+1 = a1

2

(
fj− 1

2
+ fj+ 1

2

)

+ b1

2

(
fj− 3

2
+ fj+ 3

2

)
. (B1)

Similarly, the general stencil of the staggered compact
scheme for the evaluation of the first derivative at the midpoint
is given as

αIIf
′
j−1 + f ′

j + αIIf
′
j+1 = a2

h

(
fj+ 1

2
− fj− 1

2

)

+ b2

3h

(
fj+ 3

2
− fj− 3

2

)
. (B2)

Here, f̂j ’s and f
′
j ’s are the values of the midpoint inter-

polated function and its first derivative at the j th location,
respectively, which are calculated from the known fj±n/2’s at
the (j ± n/2)th-locations. In Eq. (B2), h is the uniform grid
spacing. To achieve fourth-order accuracy, the interpolation
scheme is given by Eq. (B1), with a1 = 1

8 (9 + 10αI) and
b1 = 1

8 (6αI − 1) obtained in terms of the parameter αI. For
the sixth-order accurate scheme, the additional equation fixes
αI = 3

10 .
Similarly, fourth-order accurate scheme for first derivatives

is given in Eq. (B2), with a2 = (9 − 6 αII)/8 and b2 =
(22 αII − 1)/8 in terms of αII. Using the next-order condition
of Taylor series expansion, one obtains the sixth-order scheme
by αII = 9/62.

In the present computations, we use optimized version
of the fourth-order scheme determined by investigating in
the spectral plane for better dispersion relation preservation
(DRP) properties. Such optimization yields αI = 0.41 and
αII = 0.216 for Eqs. (B1) and (B2), respectively [30,34].
This is here called the OSCS scheme. The resultant scheme,
despite being fourth-order accurate, exhibits superior spectral
resolution and DRP properties, as shown in Ref. [30]. Second
and mixed derivatives appearing in Eqs. (A7) to (A9) are eval-
uated using repeated applications of Eq. (B2). Second-order
central difference is used to discretize the velocity Poisson
Eqs. (A13) and (A15), while midpoint method is used to
numerically integrate Eq. (A16) in calculating v-component of
velocity. The time integration of vorticity transport equations
are performed by optimized Runge-Kutta scheme, ORK3,
developed in Ref. [37]. Grid clustering near the leading edge
in streamwise direction and near the wall, in the wall-normal
direction, are achieved by tangent hyperbolic functions [38].
It has been shown in Ref. [21] that such transformation causes
least aliasing error. Uniform grid is chosen along spanwise
direction for easy implementation of the periodic boundary
conditions.

One notes that sixth-order compact spatial discretiza-
tion schemes have been used for receptivity problems in
Refs. [15,33]. These authors used RK4 scheme for time
integration.

In Ref. [10], the authors have used fourth-order explicit
(CD4) scheme for spatial discretization, as given by Eqs. (2.13)
and (2.14) in Sayadi [39], along with the three-stage Runge-
Kutta (RK3) scheme.

In the present work, an explicit four-stage optimized Runge-
Kutta method developed with better DRP properties has been
used, which also has third-order accuracy, termed as the ORK3

scheme. The combined space-time discretization method used
here is referred to as OSCS-ORK3 scheme.

In Fig. 9, the numerical properties of the present OSCS-
ORK3 and CD4-RK3 schemes are presented, using the model
convection equation

∂u

∂t
+ c

∂u

∂x
= 0.

The utility of this model equation has been exploited not
only for pedagogic reason, but also for the realistic reason of
developing methods for convection-dominated flow problems
in Refs. [21,40] in parallel computation framework. For
this nondissipative, nondispersive model equation, the per-
formance parameters are the numerical amplification rate (G),
normalized numerical phase speed (cN/c), and normalized
group velocity (VgN/c), as shown in Fig. 9. The convection
equation is neutrally stable, hence any numerical method
solving it must also be the same. The spatial resolution
is measured in terms of nondimensional wavenumber (kh),
where h is the uniform spacing and time resolution is
measured by the CFL number given by Nc = c�t/h. For the
nondispersive dynamics of the model equation, one expects
that the normalized phase speed and group velocity must take
unit value for minimizing dispersion error. When one looks
at extreme dispersion error given by the q waves for which
VgN/c < 0 [21,41], one notices a significantly better state of
affairs for OSCS-ORK3 scheme.
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FIG. 9. (Color online) Numerical properties of CD4-RK4 method are compared with the present OSCS-ORK3 method. These are shown
for (a, d) numerical amplification factor (G); (b, e) normalized phase speed (cN/c), and (c, f) normalized group velocity (VgN/c) in (Nc,kh)
plane.

Another interesting development is the methods used in
Ref. [10], which relates to using explicit and implicit time
integration methods together. In this work, a very thin layer
close to the wall is considered where second-order accurate
implicit Crank-Nicolson scheme is applied to overcome the
restriction on numerical time-step posed by the fine wall-
normal resolution at the wall for explicit methods. Above this
layer, the time integration is switched to classical RK3 method.
It is well known that explicit methods commit less error as
compared to implicit methods and this is the motivation for
the switch over from one to the other. An overlapping region

of six points have been taken in Ref. [10] for the switch over
from implicit to explicit method of time integration. In actual
practice, one only requires two points overlap between the two
zones for explicit schemes for spatial discretization.

In parallel computing, one is also forced to use overlap
region for compact schemes as employed here. The reason and
deciding upon number of overlap points for the developed par-
allel compact scheme using Schwartz domain decomposition
is discussed in detail in Ref. [42] and is not reported here. It was
noted that for the passage of wave-packets, at least six overlap
points are needed for the model 1D convection equation. Usage
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FIG. 10. (Color online) Numerical solution of 1D convection
equation by (a)–(c) combination of Crank-Nicolson and CD4 schemes
used on the left of the overlap region and CD4-RK3 method on the
right [10] is compared with the results of present OSCS-ORK3 method
shown in frames (d)–(f). In Ref. [10], six-point overlap is used, while
ten-point overlap is used for the compact scheme.

of compact scheme for spatial discretization of NSE requires
larger overlap region and in the present exercise, ten points
overlap is used. Thus, the need to use overlap region for parallel
compact scheme and for IMEX methods are different. Yet, it is
important to investigate resultant effects, as shown in Fig. 10.

To understand effects of the overlap regions employed due
to spatial discretization by parallel compact scheme [42] here
and for the IMEX time integration method used in Ref. [10], we
have computed the 2D convection equation with a wavepacket
as the initial condition moving at an angle of 45o to the x axis.

The initial condition is given by

u(x,y,t = 0) = exp[−500s] cos s,

where s2 = (x − x0)2 + (y − y0)2, and s is along the oblique
direction of signal propagation. In a domain 0 � x � 5,
0 � y � 5, the packet is initially placed at x0 = y0 = 1.6,
with the phase speed components cx = 0.2 and cy = 0.2 in
x and y directions, respectively. For the computations, a grid
with 500 × 500 points is used and time step is fixed using the
CFL number of 0.1. Thus, one can obtain the error and plot
it as a function of time, as shown in Fig. 10 for the indicated
methods. In this figure, the magnitude is shown in terms of the
exponent of error. It is readily noted that any method displays
dispersion, which causes large error in the neighborhood of
the wavepacket, which shows the maximum exponent in all
the frames that keeps growing with time. However, when
the wavepacket goes through the overlap region, it causes
another error packet moving upstream due to the switch-over
from one subdomain to another. The error committed by the
compact scheme is at least one order lower as compared to the
IMEX scheme. Moreover, the region over which the error gets
smeared behind the advancing wavepacket becomes larger in
area and magnitude for the IMEX method.

Hence, if a computation is performed in a small domain,
then once the STWF convects out of the computational domain
there is no possibility of regeneration of the STWFs, as seen in
Refs. [8,11]. This is confirmed by calculations (not reported)
that even CD4-RK4 method produces the STWF and follows
the same train of events reported in Refs. [8,11]. Thus, the
transition occurring in zero-pressure-gradient boundary layer
by time-harmonic excitation depicted in these references is the
unit process for the experiment performed in Ref. [2]. Present
computations (for 3D route) and those in Refs. [8,11] showcase
this unit process, to provide an understanding of the physical
mechanism behind transition.

The authors of Ref. [10] added random excitation along
with the time-harmonic wall excitation. Such random excita-
tion created repeated numerical packets that contaminate the
flow, preventing the formation of the distinct STWF. Such
random excitation from the wall alone is an artifact and one
expects such disturbances in an experimental facility due to
free-stream turbulence. Such random wall excitations can
trigger turbulence in a very small domain and the results
may appear similar to the reported bypass transition in
Ref. [43]. The ensuing events may mimic the bypass transition
reported by vortex convecting downstream, similar to the
vortex-induced instability described in Refs. [44,45].
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