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Steady flows above a quartz crystal resonator driven at elevated amplitude
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A steady flow of liquid was observed above the surface of a quartz crystal microbalance under conditions where
the oscillation amplitude exceeded 10 nm. The streaming flow occurs parallel to the displacement vector and is
directed towards the center of the plate. It is expected to have applications in acoustic sensing, in microfluidics,
and in micromechanics in a wider sense. The flow is caused by the nonlinear term in the Navier-Stokes equation,
which can produce a nonzero time-averaged force from a periodic velocity field. Central to the explanation
are the flexural admixtures to the resonator’s mode of vibration. Unlike pressure-driven flows, the acoustically
driven steady flow attains its maximum velocity at a distance of a few hundred nanometers from the surface. It is
therefore efficient in breaking bonds between adsorbed particles and the resonator surface. As a side aspect, the
flow pattern amounts to a diagnostic tool, which gives access to the pattern of vibration. In particular, it leads to
an estimate of the magnitude of the flexural admixtures to the thickness-shear vibration.
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I. INTRODUCTION

The quartz crystal microbalance (QCM) in recent years
has seen an impressive evolution from a film thickness
monitor [1] to a surface-analytical instrument with capabilities
much beyond gravimetry [2]. The added information mostly
originates from the analysis of the resonance bandwidth
in addition to the resonance frequency and, also, from the
comparison of the shifts of frequency and bandwidth between
overtones. The increased depth of information has given access
to samples which are much more complex than films [3].
Examples include vesicles [4], particles [5], droplets [6],
(nano)bubbles [7], and biological cells [8]. While this progress
certainly is impressive, it has also become clear that a further
increase in the depth of information is highly desirable in
those cases where the sample has a complicated structure. The
added information might be obtained by combining the QCM
with other surface-analytical techniques like ellipsometry [9]
or electrochemical impedance spectroscopy [10], but it might
also be obtained by exploiting a sensing dimension of the
QCM, which has not been given much attention so far, namely,
the variation of oscillation amplitude.

In exploiting high-amplitude effects, there are two different
routes. The easier approach is to base the analysis on changes
of frequency and bandwidth with amplitude [11]. Because of
its inherent simplicity this method should be promising for
the construction of sensors. Alternatively, one can study the
consequences of high amplitudes using some other technique
such as optical microscopy [12] or third-harmonic generation
[13,14]. The work reported here relies on optical microscopy,
which evidences a steady tangential flow. The effect is
quantified and explained. The steady flow is relevant to the
physics of the QCM in a number of different ways, elaborated
on in the Discussion.

A dependence of resonance frequency on amplitude is well
known from time and frequency control. Even bare resonators
in vacuum display a so-called “drive level dependence,” which
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goes back to a slight nonlinearity in the stress-chain relations
of crystalline quartz [15,16]. For applications in time and
frequency control, the drive level dependence mostly is a
problem; there is little to be gained from it. In the context
of sensing, an early experiment exploiting high amplitudes
was reported by Cooper et al. [14]. These authors detached
virus particles from a resonator surface by ramping up
the amplitude. The critical amplitude for shake-off was the
principal target of observation. The authors term this technique
“rupture event scanning” (REVS). Along similar (but not
identical) lines, Edvardsson et al. [12] and Heitmann et al. [17]
performed experiments where the adsorption of particles and
of biological cells was prevented by running the resonator
at high amplitudes. Heitmann et al. report that some cells
are more efficiently repelled from the resonator surface than
others. This effect allows one to distinguish between different
types of cells. It parallels a related effect occurring with
conventional ultrasound (compressional waves) in the bulk.
In Ref. [18], Petersson et al. show that lipid particles can be
separated from erythrocytes by standing acoustic waves in
a microfluidic environment, based on differences in density
and compressibility. Whereas the underlying theory has been
formulated for the bulk effects reported in Ref. [18], no such
theory exists for cells being repelled from a QCM surface
running at high amplitude. Edvardsson et al. emphasize that
adsorption was irreversible in their experiments, once it had
occurred. These authors attribute their observations to effects
of fluid dynamics, as opposed to effects of contact mechanics.
In making that claim, they reason that an insufficient bond
strength cannot be at the core of the phenomenon because the
oscillation should in this case also be able to break bonds which
exist already. This was not observed in Ref. [12] (contrasting
with Ref. [14]). If the repulsion is based on fluid dynamics,
particles may escape from the repulsive forces by adsorbing
onto the surface. In the work reported below, we corroborate
this interpretation. We show experimentally and theoretically
that there is a steady tangential flow above a resonator operated
at high amplitudes. Figure 1 sketches the situation. The flow
opposes particle adsorption because it stabilizes a liquid layer
in the gap between the particle and the surface. A similar
effect occurs in ball bearings. Detachment of particles can be

1539-3755/2014/89(4)/043016(9) 043016-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.043016
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FIG. 1. The steady flow (dashed arrows) occurs parallel to the
displacement direction. It is directed towards the center of the plate.
Double arrows indicate oscillatory motion. Its normal component
is independent of z because of incompressibility. Its tangential
component decays within less than 1 μm. The combination of
a normal oscillatory motion with a strong gradient in oscillatory
tangential motion gives rise to steady forces.

expected to be less prominent than the prevention of particle
adsorption.

Clearly, such flows have relevance beyond the immediate
context of sensing. The QCM can act as a pump, similar
to surface acoustic wave devices [19]. A small QCM might
even be attached to objects floating on the water surface and
propel these. The mechanism is similar to what is applied by
“inertial squirmers” [20]. Quartz resonators (more generally,
piezoelectric plates undergoing thickness shear and flexural
motion at the same time) can take a role in microsystems
technology.

II. MODELING

Nonlinear interactions between a quartz resonator and a
sample come in two separate forms, which are either nonlinear
mechanical effects or nonlinear fluid-dynamics effects. In
contact mechanics, nonlinear force-displacement relations are
ubiquitous because of the stress concentrations at the points
of contact [11,21]. Most of them are in one way or another
linked to the breaking or weakening of contacts under large
loads. The nonlinear fluid-dynamics effects are of a different
nature. They go back to the nonlinear term in the Navier-Stokes
equation, also called the advected momentum term [22]. This
latter nonlinearity is unrelated to materials properties. It is a
consequence of the fact that momentum can be transported
by convection. (There is a second source of nonlinearities in
fluid dynamics, which is the fluid’s finite compressibility [23].
Finite compressibility is of importance in gases. We disregard
this set of nonlinearities here by approximating the medium as
incompressible.)

The analytical model rests on a perturbation approach [22].
The velocity field is decomposed into a large unsteady part
(a periodic motion at a few megahertz) and a small steady
part. The Navier-Stokes equation applied to the unsteady
component produces a nonzero time-averaged force, scaling
as the square of the oscillation amplitude. The steady force
density is much smaller than all oscillatory force densities
because the Reynolds number is small. As we show, the force
still suffices to set off a steady flow observable by the naked
eye, if the amplitude of oscillation is a few tens of nanometers.

The Navier-Stokes equation is

ρ

(
∂v
∂t

+ (v · ∇) v
)

= η∇2v − ∇p + fbody. (1)

Bold letters denote vectors, v is the velocity, t is the time, ρ

is the density, η is the viscosity, p is the hydrostatic pressure,
and fbody is a density of body forces (for instance produced
by gravity). We ignore body forces in the following. Applying
perturbation theory, we decompose velocity and pressure into
an unsteady part (index us) and a smaller steady part (index s)
as

v(r,t) ≈ vus(r) cos[ωt + ϕ(r)] + vs(r),
(2)

p(r,t) ≈ pus(r) cos[ωt + ϕp(r)] + ps(r).

ϕ(r) and ϕp(r) are phases; r is position. In a first step, we
consider the leading order only, that is, we apply the Navier-
Stokes equation to the unsteady component. Replacing v and
p in Eq. (1) by their unsteady parts, neglecting body forces,
and slightly rearranging, we find

−ρωvus(r) sin[ωt + ϕ(r)]

≈ −ρ[vus(r) · ∇]vus(r) cos2[ωt + ϕ(r)]

+ η∇2vus(r) cos[ωt + ϕ(r)]−∇pus(r) cos[ωt + ϕp(r)]

= −ρ

2
[vus(r) · ∇]vus(r) − ρ

2
[vus(r) · ∇]vus(r)

× cos[2ωt + 2ϕp(r)] + η∇2vus(r) cos[ωt + ϕ(r)]

−∇pus(r) cos[ωt + ϕp(r)]. (3)

Clearly, the left-hand side and the right-hand side in Eq. (3)
cannot be strictly equal because the right-hand side contains
terms at ω = 0 and 2ω. This follows from the fact that the
advected momentum term is quadratic in velocity and, further,
from the relation cos2(x) = 1/2[1 + cos(2x)]. The time average
of the first term on the right-hand side in Eq. (3) does not
vanish. (The second-harmonic component at 2ω might have
been included into the unsteady part of the flow field in Eq. (2).
It is of a magnitude comparable to the steady component.
Second-harmonic generation was disregarded for brevity.)

The first term on the right-hand side in Eq. (3) is small,
which justifies the use of perturbation theory. The ratio of the
terms |ρ(vus ·∇)vus | and |η�2vus | is assessed by the Reynolds
number Re. To estimate Re, replace the gradients in Eq. (3)
by the inverse penetration depth of the shear wave, δ−1. δ

is given as δ = (2η/[(ρω)]1/2, which is 250 nm at 5 MHz
in water. Further, approximate |vus | by ωuus with uus the
amplitude of oscillation. Using the estimates uus � 10 nm,
ω � 2π×5 MHz, δ � 250 nm, and η � 10−3 Pa s, one arrives
at Re � ρωuusδ/η � 0.05.

In the following, we focus on the steady component. The
Navier-Stokes equation applied to the steady flow is

0 ≈ −ρ〈[vus(r) · ∇]vus(r)〉time + η∇2vs(r) − ∇ps(r)

= fs(r) + η∇2vs(r) − ∇ps(r). (4)

The angular brackets denote a time average. The term
−ρ〈(vus ·∇)vus〉time was renamed as fs (a steady force density)
in line 2. The left-hand side is zero because the time derivative
of a steady quantity vanishes by definition. All terms which are
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quadratic in small parameters [including the term ρ(vs ·∇)vs]
were neglected. Clearly, the nonlinear term from Eq. (3) now
acts as a source term, driving a steady second-order flow.

Importantly, there are symmetry constraints inherent to
the structure of the source term. The source term contains
a dot product. If the direction of the periodic flow and the
gradient direction are perpendicular to each other, the dot
product returns a zero and all steady flows become symmetry
forbidden. If the periodic flow is a pure shear flow, the flow
direction and the gradient direction are perpendicular to each
other and steady flows consequently are not expected.

There are two separate reasons why the flow above a QCM
surface deviates from a pure shear flow. First, the presence
of particles distorts the shear flow. Particles were employed in
Refs. [12,17] (and also in the work reported here). The particles
experience a periodic rotation and a periodic translation at the
same time. Synchronous rotation and translation give rise to a
steady force directed towards the resonator surface [24]. The
force can be thought of as being a high-frequency analog of
the Magnus force [25]. There are characteristic differences
between this force and the Magnus force, though [24]. A
second difference between the flow above a QCM surface and
a pure shear wave goes back to the flexural contributions to
the vibration pattern of the plate [26]. Practical quartz crystal
resonators all employ what is called “energy trapping.” The
amplitude of oscillation is large in the center of the plate and
decays towards the edge. For reasons of volume conservation,
an in-plane gradient in the amplitude of tangential motion
causes an expansion or contraction of the material in the
perpendicular direction, thereby inducing a motion normal to
the surface. As discussed in more detail below Eq. (17), the
size and direction of the normal component can be debated.
For now, we write

vus,z (z = 0) = αvus,x (z = 0) . (5)

vus,z and vus,x are the amplitudes of the normal and the
tangential components of the velocity. z = 0 denotes the
resonator surface, and α is a numerical factor. Note that vus,z,
vus,x , and α depend on x and y; they are not constant over the
resonator surface.

Steady tangential flows at a solid-liquid interface, which
undergoes oscillation into both the tangential and the normal
direction, were first described by Wang and Drachman [27].
For a more recent discussion, see Ref. [28]. The treatment by
Wang and Drachman differs from the analysis presented here in
that Wang and Drachman completely specify the geometry and
rigorously solve the equations of fluid dynamics for the given
geometry. More specifically, Wang and Drachman calculate
the flow in a channel of finite width. Below, we rather rely
on a separation of scales and make no assumption about the
geometry of the liquid cell. Because we focus on a narrow
spatial range (of width δ) close to the resonator surface,
we can approximate the wavelength of compressional waves
(which is much larger than δ) as infinite. By doing so, we
neglect all effects of finite compressibility. Also, we assume
∇vs � 0 at z � δ. (By doing so, we implicitly assume a
cell thickness much larger than δ. This is the one assumption
about the geometry of the cell.) ∇vs � 0 at z � δ can be only
approximately true because constant velocity in the bulk of a
closed liquid cell violates volume conservation. In reality, the

flow generated by the resonator surface consists of convection
rolls, but the size of the convection rolls much exceeds δ. The
liquid is expected to flow towards the center of the plate close
to the resonator surface and to flow in the reverse direction
in the upper half of the cell. This pattern of motion is clearly
evidenced in experiment. The height of the cell does have some
influence on the velocity of the steady flow at the resonator
surface. It has some influence because of the convection rolls
and, also, because the upper window reflects compressional
waves back to the crystal and thereby affects the normal
component of the resonator’s motion [29]. These influences
acknowledged, the essential elements of the mechanism giving
rise to the steady flow are captured by a model relying on a
separation of scales and we proceed with modeling in this
frame. There is a close connection between the flow field from
Eq. (13) and what Sadhal calls the “inner solution” in Ref. [28].
Sadhal makes use of the stream function, which we avoid here.

To start out, we make simplifying assumptions. First,
we assume incompressibility, with the consequence that the
wavelength of conventional ultrasound, λcomp, is much larger
than the penetration depth of the shear wave. Second, we
assume all in-plane gradients to occur on a length scale
comparable to at least the thickness of the resonator plate, dq .
One might think that the in-plane gradients should occur on the
scale of the width of plate, L, rather than the plate’s thickness.
However, we argue in the Discussion section that gradients
also occur on the scale of the plate’s thickness, which is less
than L but still larger than δ. Since λcomp � δ we can neglect
terms of the form ∂vus,z/∂z. Further, since dq � δ, all terms
containing ∂/∂x can be neglected. Finally, we approximate
the flow pattern as two dimensional (occurring in the xz plane,
vus,y � 0, vs,y � 0). Making these approximations and spelling
out the advected momentum term, the steady force density
from Eq. (4), fs , is found to be

fs,x = −ρ〈(vus · ∇)vus,x〉time

= −ρ

〈
vus,x

∂vus,x

∂x
+ vus,z

∂vus,x

∂z

〉
time

≈ −ρ

〈
vus,z

∂vus,x

∂z

〉
time

,

fs,z = −ρ〈(vus · ∇)vus,z〉time

= −ρ

〈
vus,x

∂vus,z

∂x
+ vus,z

∂vus,z

∂z

〉
time

≈ 0. (6)

Clearly, the steady force is dominated by its x component.
The steady flow mostly occurs parallel to the displacement
direction.

The tangential component of the high-frequency velocity
field (that is, of the decaying shear wave) is of the form

vus,x(z,t) = vSRe{exp[i(ωt − kz)]}

= vSRe

{
exp

[
i

(
ωt − (1 − i)z

δ

)]}
.

= vS exp
(
−z

δ

)
cos

(
ωt − z

δ

)
(7)

vS is given as ωuS with uS the amplitude of oscillation at the
resonator surface. (Capital S as an index denotes the sensor
surface, not steady flow.) k = k′ − ik′′ is the complex wave
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FIG. 2. (Color online) The z dependence of the oscillatory tan-
gential velocity [vus,x(z, t = 0), dot-dashed, green, Eq. (7)], of the
steady tangential force [fs,x(z), dashed, red, Eq. (10)], and of the
steady velocity [(vs,x(z), solid, black, Eq. (13)].

number. k′ and k′′ are both equal to δ−1 [30]. The real part of
vus,x(z,t = 0) is shown as a dash-dotted line in Fig. 2. A remark
on terminology: Researchers from fluid dynamics do not
consider decaying shear waves to be acoustic waves because
shear waves do not propagate in liquids. They call those waves
“boundary layers,” which certainly makes sense. In calling
them “acoustic shear waves,” we follow the terminology used
in the sensing community.

Since the wavelength of compressible waves was approxi-
mated as infinite, the normal component of the velocity field
is independent of z:

vus,z (z,t) ≈ αvS cos (ωt) . (8)

Again, α is a numerical coefficient discussed in more depth
at the end of the Discussion section. The density of the steady
force becomes

fs,x ≈ −ρ

〈
vus,z

∂vus,x

∂z

〉
time

= −ραv2
S

〈
cos(ωt)

∂

∂z

[
exp

(
−z

δ

)
cos

(
ωt − z

δ

)]〉
time

= ραv2
s

δ
exp

(
−z

δ

) 〈
cos(ωt)

(
cos

(
ωt − z

δ

)

− sin

(
ωt − z

δ

))〉
time

. (9)

Performing the time average yields

fs,x ≈ ραv2
S

2δ
exp

(
−z

δ

) [
cos

(z

δ

)
+ sin

(z

δ

)]

= ραω2u2
S

2δ
exp

(
−z

δ

) [
cos

(z

δ

)
+ sin

(z

δ

)]
. (10)

fs,x is shown as a dashed line in Fig. 2. The force acts parallel
to the displacement direction. Whether it acts towards positive
or negative x depends on the sign of α.

In order to find the steady velocity field vs(z), we insert
Eq. (10) into Eq. (4). We expect a shear flow and therefore set

ps to zero. The equation to be solved is

η
∂2vs,x(z)

∂z2
= −fs,x(z)

= −ραω2u2
S

2δ
exp

(
−z

δ

) [
cos

(z

δ

)
+ sin

(z

δ

)]
.

(11)

Formal integration yields

vs,x(z) = C1 + C2z

− δαρω2u2
S

4η
exp

(
−z

δ

) [
cos

(z

δ

)
− sin

(z

δ

)]
.

(12)

C1 and C2 are integration constants, to be determined from the
boundary conditions. The requirement of ∂vs,x (z) /∂z = 0 in
the limit of z → ∞ yields C2 = 0. The no-slip condition at the
resonator survace [vs,x(0) = 0] yields C1 = δαρω2u2

S/ (4η).
Inserting the integration constants into Eq. (12) leads to

vs,x(z) = δαρω2u2
S

4η

×
{

1 − exp
(
−z

δ

) [
cos

(z

δ

)
− sin

(z

δ

)]}
. (13)

The flow profile is shown as a solid line in Fig. 2. The flow
is a shear flow within about a range of twice the penetration
depth and levels off towards to a constant velocity above that
distance.

The velocity at large distances from the resonator surface
(z � δ) is

v∞ = δαρω2u2
S

4η
(14)

For an estimate of v∞, use the same values as before
(δ � 250 nm, ρ � 103 kg/m3, ω � 2π×5 MHz, and
η � 10−3 Pa s), leading to

v∞ ≈ 60
μm

s
α (uS [nm])2 . (15)

This leaves the question of what value should be used
for α and this question actually is relevant beyond the
immediate context of steady streaming. Flexural contributions
to the vibration pattern of the so-called “thickness-shear
resonators” have been known since the early days of acoustic
sensing. At the time, thickness-shear resonators were not used
for sensing in liquids because researchers believed that the
flexural contributions would make meaningful measurements
impossible. In their 1949 paper, Mason and co-workers desribe
a rather intricate apparatus designed to measure the viscosity
of complex fluids in the megahertz range. In the Introduction,
they justify the effort and comment on why they did not directly
immerse thickness-shear resonators into the fluid [31]. They
write: “Consideration was given to the use of a thickness
vibrating shear crystal of the AT or BT type, but it was found
that the shear motion was too closely coupled to other modes of
motion, such as flexure modes, to give reliable results. Hence
another method had to be used.”

Mason and co-workers certainly have a point, but the
problem is not as severe as they thought. Given the relevance,
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FIG. 3. Most practical “thickness-shear resonators” are designed
such that the amplitude of oscillation is large in the center and decays
towards the edge. The amplitude distribution is sketched at the top of
(a). This distribution is achieved by making the plate slightly thicker
in the center than at the edge, for instance with electrodes applied to
the center only (thick black lines). For reasons of volume conservation
(more precisely, because of the nonzero Poisson ratio), an in-plane
gradient in the amplitude of tangential oscillation produces a periodic
bending of the plate. In air, the plate bends convexly in regions where
the gradient in tangential displacement would produce a compression
[dashed line in (a)]. However, when the resonator is immersed in
a liquid, a similar volume-conservation argument applies to the
liquid phase. The liquid pushes the plate downwards because it
resists compression, as well. The plate bends downwards for that
reason (b).

we briefly remind the reader of energy trapping. In order to
mount a thickness-shear resonator in a holder, the resonator
must be configured such that the amplitude of oscillation
is small at the point of contact with the holder. Otherwise,
the holder overdamps the resonance. The solution widely
employed is to make the plates slightly thicker in the center
than at the rim. One can either employ convexly shaped
crystals [32] or use planar crystals with sufficiently thick
electrodes applied to the center of the plate only [33]. The
resonator can be viewed as an acoustic cavity with curved
surfaces. The curved surfaces focus the acoustic energy to the
center. Figure 3(a) sketches a resonator in air. The thin line
above panel (a) is the amplitude distribution of the tangential
displacement. (This sketch ignores the rings of low amplitude
discussed around Fig. 6.) If the motion were indeed of the
thickness-shear type, the material would be compressed in
the region encircled with a dashed line in panel (a); it would
expand in the region encircled with a dotted line. Since the
Poisson number is nonzero, the plate bends in order to lower
the volume change. Finite element simulations show that the
amplitude of the normal motion in the regions encircled in
Fig. 3(a) can easily be a few times larger than the amplitude of
motion in the tangential direction. In air, the parameter α from
Eq. (5) is larger than 1 in the dashed region in Fig. 3(a) and
smaller than −1 in the dotted region. If the resonator behaved
in the same way in liquids, Mason and co-workers would have
been correct in pointing out that the QCM does not operate as
a thickness-shear device. It would mostly probe the liquid’s
compressional wave impedance rather than its shear wave

impedance. Effects of compressional waves would be strong
and the QCM would basically be useless (in liquids).

There are two complications, which Mason and co-workers
did not sufficiently appreciate at the time. Both complications
work to the advantage of gravimetric sensing in liquids. First,
the liquid itself is subjected to the same contraction and
expansion as the crystal. Second, the resonator is a rather soft
device with regard to bending. While the resonator wants to
bend upwards in the dashed region in Fig. 3, the liquid wants to
expand downwards, and the liquid wins. The fact that the plate
exposed to a liquid on one side (slightly) bends downwards in
the dashed region is proven by the experiments reported below.
In the following, we make the argument more quantitative.

The vertical displacement of the solid-liquid interface
uz(x,y) results from a stress balance. By the principle of
reaction, the stress exerted by the liquid onto the plate and
the stress exerted in the reverse direction have to be equal
and opposite. Both media respond with a normal stress to
uz(x,y) being different from the equilibrium displacements
of the respective free surfaces. We need to estimate these
stresses. For the liquid, the normal stress σ zz and the vertical
displacement uz are related to each other by the compressional
wave impedance. One has

σzz = Zcomp,liq(vz − vz,free,liq)

= Zcomp,liqiω(uz − uz,free,liq). (16)

σ zz, vz, and uz all are unsteady parameters. The index us

was omitted for brevity. The compressional wave impedance
Zcomp,liq is the ratio of normal stress and velocity. It is given
as Zcomp,liq = ρc with ρ the density and c the speed of
sound. Using ρ = 103 kg/m3 and c = 1500 m/s, one finds
Zcomp,liq � 1.5 × 106 kg/(m2 s). With ω = 2π × 5 MHz, the
ratio of stress and displacement comes out as 4.5 × 1014 Pa/m.

For an elastic plate, normal stress and bending deformation
are related to each other by the Euler-Bernoulli equation [34]

σzz ≈ EI
d4(uz − uz,free,plate)

dx4
. (17)

E is the Young’s modulus and I is the second moment of the
area. For the parallel plate, the second moment of the area is
given as I = d3

q /12 with dq the thickness of the plate. dq is
equal to 330 μm for 5 MHz quartz resonators. Equation (17)
applies to isotropic media. For the sake of an estimate, we
approximate the effective Young’s modulus of the quartz plate
(which is anisotropic in reality) by the Young’s modulus of
silica, which is around 70 GPa. Also, we replace d4/dx4 by
1/L4 with L the width of the plate. For an estimate, use L � 5
mm. With these values, the ratio between normal stress and
normal displacement comes out as 2.6 × 109 Pa/m, which is to
be compared to 4.5 × 1014 Pa/m found for the liquid. Clearly,
the plate is much softer with regard to normal displacements
than the liquid. This is the essential step in the argument.
The bending stiffness of the plate is too small to compete
with the pressure exerted by the liquid. As a consequence, the
vertical displacement eventually adopted is close to uz,free,liq.
The plate bends downwards. Figure 3(b) (with the degree of
bending much exaggerated) comes closer to the real situation
than Fig. 3(a). The parameter α in Eq. (5) is negative and
positive in the dashed (x > 0) and the dotted (x < 0) regions,
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respectively. For that reason, the flow is directed towards the
center. If the plate were to bend upwards in the dashed region
in Fig. 3(a), the steady flow would be directed towards the
edge, contradicting the experimental results.

III. EXPERIMENT

Experiments were performed with crystals having a funda-
mental frequency of 5 MHz and a diameter of 1 in., supplied
by Maxtek Inc. (Santa Fe Springs, CA). The resonators were
mounted in a home-built holder. The resonance was driven
with an impedance analyzer, namely, the unit SA250B from
Saunders (Phoenix, AZ). An amplifier (nominal amplification
of 30 dB, ZHL–1–2W, Minicircuits, Brooklyn, NY) was
inserted between the impedance analyzer OUT and the
resonator to achieve amplitudes above 10 nm. An attenuator
was inserted between the resonator and the analyzer IN in
order not to overload the detector. In order to excite the steady
flow, the resonator was either driven at the resonance frequency
or frequency sweeps were undertaken, where the span of the
sweeps was less than the bandwidth of the resonance, so that
the resonator was on resonance all the time.

The amplitude of oscillation u0 was estimated from the
voltage at the electrodes Uel , using the relation [35]

u0 ≈ 4

(nπ )2 Qd26Uel. (18)

Q is the quality factor and d26 = 3.1×10−12 m/V is the
piezoelectric strain coefficient of AT—cut quartz. The quality
factor was around Q = 3500. n is the overtone order. Most
experiments were undertaken on the fundamental (n = 1).
Inserting values, we find u0 � 4.5 (nm) × Uel (V). Again:
Eq. (18) is an estimate because it is based on the theory of the
parallel plate. Equation (18) ignores energy trapping.

All experiments occurred in water. The flow was visualized
with polystyrene spheres with diameter of 10 μm (product
code 01-00-104, supplied by Micromod Partikeltechnologie
GmbH, Rostock, Germany) dispersed in the liquid. The flow
can be observed by eye, albeit with some difficulty. For
a refined analysis, a microscope and a video camera were
employed. A video is supplied in the Supplemental Material
[36]. The velocity was extracted from the video frames by
determining particle positions and the shifts thereof over time.
IMAGEJ (an image analysis software supplied by the NIH [37])
was used to calculate particle positions.

IV. RESULTS AND DISCUSSION

The flow pattern is shown in Fig. 1. At the resonator surface
the flow occurs parallel to the crystallographic x axis (the
displacement direction) and is directed towards the center of
the plate. The x direction was determined with conoscopy
as explained in the Appendix. The flow pattern consists
of convection rolls. When adjusting the focal plane of the
microscope to a level close to the resonator surface, one sees
the particles moving inwards. The reverse flow is found in the
upper part of the cell. Of course, the velocity is not everywhere
the same, it depends on position (x and y). The quantitative
analysis was based on the fast particles.
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FIG. 4. (Color online) Velocity of the steady flow versus os-
cillation amplitude as determined from a video of the flow (see
Supplemental Material [36]). The cell height was 5 mm. The data
are compatible with a quadratic scaling of velocity with amplitude
(dashed line).

Figure 4 shows a selected data set of velocity versus ampli-
tude in double-logarithmic form. The amplitude of oscillation
was calculated from Eq. (18). The velocity increases with am-
plitude, and the increase is compatible with quadratic scaling
as indicated by the solid line. The velocity of the steady flow
was found to depend on the thickness of the cell; the spread
in velocities measured for the different heights amounted to
about a factor of 2 (data not shown). Such a dependence is
not covered by the theoretical analysis above, but it is not
surprising, given the assumptions entering the derivation.

Figure 5 shows the comparison between overtone orders.
Clearly, there is a dependence on overtone order n. A
theoretical explanation of this dependence is difficult, because
it is not clear how the parameter α (the amplitude of the
flexural components, normalized to the amplitude of tangential
motion) depends on overtone order. For all parameters entering
Eq. (14) other than α, the dependence on overtone order is
known. The product of these other factors leads to a scaling
of n−3/2 as shown by the dashed line. The fact that v∞/α

scales as n−3/2 follows from the combination of Eq. (14) and
Eq. (18). According to Eq. (14), we have v∞/α ∼ n2δu2

S . With
δ = [2η/(ρω)]1/2 � n−1/2, this amounts to v∞/α ∼ n3/2u2

S .
Following Eq. (18), we have uS � n−2QUel . The quality factor
Q is given as fr/(2�) with fr the resonance frequency (scaling
as n) and � the half width at half maximum, scaling as n1/2

[38]. Q therefore scales as n1/2. We arrive at uS � n−3/2Uel ,

1
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v ∞
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FIG. 5. (Color online) Comparison of the steady velocities be-
tween overtone orders. The dashed line denotes a power law of n−3/2.
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FIG. 6. (Color online) In some case, particles were found to
deposit in ring-shaped areas, where the distance between the rings was
about twice the thickness of the crystal. The particles used to produce
the above image were glass spheres with a diameter of 5 μm. The light
source was a helium-neon laser, hence the red color. The amplitude
of oscillation was 32 nm. The rings developed after the resonator had
been driven at this amplitude for about an hour. Tentatively, they are
explained as areas of lower-than-average amplitude. The width of the
image corresponds to 10 mm.

which after insertion into Eq. (14) leads to v∞/α ∼ n−3/2.
From the fact that the data in Fig. 5 do not follow the dashed
line, one concludes that α itself depends on overtone order.

Steady streaming can also serve as a diagnostic tool. It
carries information on the vibration pattern of the resonator.
There are three different aspects to this approach.

While symmetry predicts that the line of stagnant flow
should be in the center of the resonator, this was not usually the
case. The flow pattern was asymmetric. Clearly, the crystals
employed were significantly nonideal. The origins of this
behavior are unclear. Reasons for the asymmetry might be the
anchors of the electrodes, but also crystal defects, which are
not optically visible. Such irregularities are also seen in Fig. 5
of Ref. [39]. Steady streaming can be employed to check for
crystal imperfections. A good crystal will show a symmetric
flow pattern.

We sometimes find rings of deposited particles. An example
is shown in Fig. 6. Similar rings are visible in Fig. 5 of
Ref. [39] and also in Fig. 4 of Ref. [40]. We interpret these as
areas of lower-than-average oscillation amplitude. The spacing
between the rings is about twice the crystal thickness. Such
rings are not captured by the widely employed theory of
energy trapping based on the work by Tiersten [32]. They
are captured, at least implicitly, in Ref. [33]. One can think of
the ring-shaped pattern in Fig. 6 as a diffraction pattern. It is
caused by diffraction of the plane shear wave at the edge of
the electrode. The characteristic features size of such patterns
is the wavelength, which is of the order of 2dq with dq the
thickness of the plate.

Flexural contributions to the mode of vibration are typically
associated with energy trapping. However, we also found
steady streaming for crystals which did not employ energy
trapping. These resonators had electrodes covering the entire
surface on both sides. Such resonators can be mounted with
soft pads of silicone [41]. The electrical contact occurred with
thin wires, glued to the edge of the electrodes. While one
might think that this scheme avoids flexural contributions and
compressional waves, the experiment evidences the opposite

(data not shown). These resonators induced steady streaming
as well, which proves the presence of compressional waves.
For a numerical analysis of this problem see Ref. [42].

Figure 4 allows for an estimate of the magnitude of α.
Comparing the values of v∞ from Fig. 4 to the prediction
from Eq. (15), one finds values of α of around 0.1. Friedt and
co-workers came to a similar conclusion, combining the QCM
with an atomic force microscope [43].

Without going into the details, we briefly discuss what
might be viewed as an inconsistency at first glance. We argued
in the modeling section that the QCM in a liquid deserves
this name because the effects of the flexural contributions are
small. Because the compressional wave impedance of liquids
is large (larger than the shear wave impedance by at least a
factor of 102), one might think that α � 0.1 is not small in
this sense. According to the small-load approximation [3] the
frequency shift and the acoustic wave impedance are linearly
related. Since the compressional wave impedance is much
larger than the shear wave impedance, one can expect a 10%
contribution of normal motion to the displacement pattern
to induce very significant shifts of the resonance frequency.
The effects of compressional waves should be larger than the
effects of shear waves. However, this contradicts experimental
experience. The viscosities of simple liquids like water as
determined by the QCM are not grossly wrong [38,44]. The
seemingly contradictory situation arises because the small-
load approximation does not apply to the flexural modes. The
latter statement is a consequence of the very argument outlined
above. The large bulk modulus of the liquid constrains the
flexural modes to be small and—at the same time—invalidates
the small-load approximation. Compressional waves are not
a small load and therefore—somewhat surprisingly—have
a smaller effect on the frequency shift than simple-minded
estimates would predict.

We conclude by pointing out a peculiarity of the acousti-
cally driven flow, which is that the maximum velocity occurs
close to the surface. vs,x(z) reaches its limiting value of v∞ at
a distance from the surface of less than 1 μm (see Fig. 2). The
same is true for flows driven by surface acoustic waves [45]
and for electro-osmotic flows [46] but not for pressure-driven
flows, which have a parabolic profile. Large velocities at the
sensor surface are a benefit for sensing because they speed
up the convective transport of analytes to the sensor surface.
Typically, the time resolution achievable in kinetic adsorption
experiments is limited by the diffusion of the analyte through
the Nernst layer [47]. The time resolution can be improved by
suitable design of the sensor and the hydrodynamic boundary
conditions. Another option is to choose a type of flow which
is fast right at the surface. Such a flow can be produced above
a QCM with a quick pulse of high amplitude. It should also
be efficient in removing virus particles adsorbed to a sensor
surface. This mechanism needs attention when analyzing
REVS experiments [14].

V. CONCLUSIONS

Quartz crystal resonators employing energy trapping and
oscillating at an amplitude above 10 nm produce a steady
tangential flow towards the center of the plate, parallel to the
displacement direction. The flow is the consequence of the
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flexural contribution to the plate’s mode of vibration. The
flow can be used to pump liquids, to detach particles, and
to prevent particle adsorption. It should also be of use for
particle sorting. The effect is strongest on the fundamental.
Its magnitude allows for an estimate of the magnitude of the
flexural admixtures to the vibration pattern.
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APPENDIX: DETERMINATION OF THE
CRYSTALLOGRAPHIC x AXIS WITH A

POLARIZING MICROSCOPE

For most sensing applications of a QCM, the displacement
direction is irrelevant. All that matters are shifts of frequency
and bandwidth. Steady streaming is one of the few exceptions.
The x axis of the crystal must be known in order to predict the
direction of flow.

There are crystals on the market which are truncated at one
side, where the flat part denotes the x axis [Fig. 7(a)]. However,
the crystals used here do not have this kind of truncation
and the crystallographic axes therefore are unknown. For such
crystals, a polarizing microscope equipped with a conoscopy
module (a “Bertrand lens”) can help [48]. In conoscopy, the
pixels on the screen correspond to beams passing through the
sample under different angles. One usually employs crossed
polarizers and studies birefringent samples. Since quartz is
uniaxially birefringent, its conoscopic image displays colored
rings [Fig. 7(b)]. The center of these rings is the optical axis,
which is the crystallographic z axis. For the AT cut, the z

axis is inclined away from the surface normal by 55°. With
the numerical apertures typically employed, the center of the
colored rings is outside the field of view, but one can still

x

x

 colored
 rings

(c)

(a) (b)

FIG. 7. (Color online) Determination of the crystallographic x

axis by conoscopy. (a) Some crystals have a flat part at the edge,
indicating the direction of the x axis. (b),(c) For round crystals, the
crystallographic x axis can be found with a polarizing microscope,
using the conoscopic mode. One observes colored rings. The z axis
corresponds to the center of these rings. (c) shows the direction of
the x axis. The radius of the field of view in (b) corresponds to about
30°.

infer the orientation of the x axis from the rings as indicated in
Fig. 7(c). Depending on the orientation of the crystal relative to
the polarizers, the conoscopic image may display black lines.
These are the arms of a Maltese cross, which is centered on
the optical axis. Again, the center of the cross is not usually
inside the field of view, but one can infer its location (more
precisely, its orientation) by rotating the sample and watching
the movement of the arms of the cross.
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