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Pore network model of electrokinetic transport through charged porous media
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We introduce a method for the numerical determination of the steady-state response of complex charged porous
media to pressure, salt concentration, and electric potential gradients. The macroscopic fluxes of solvent, salt,
and charge are computed within the framework of the Pore Network Model (PNM), which describes the pore
structure of the samples as networks of pores connected to each other by channels. The PNM approach is used
to capture the couplings between solvent and ionic flows which arise from the charge of the solid surfaces. For
the microscopic transport coefficients on the channel scale, we take a simple analytical form obtained previously
by solving the Poisson-Nernst-Planck and Stokes equations in a cylindrical channel. These transport coefficients
are upscaled for a given network by imposing conservation laws for each pores, in the presence of macroscopic
gradients across the sample. The complex pore structure of the material is captured by the distribution of channel
diameters. We investigate the combined effects of this complex geometry, the surface charge, and the salt
concentration on the macroscopic transport coefficients. The upscaled numerical model preserves the Onsager
relations between the latter, as expected. The calculated macroscopic coefficients behave qualitatively as their
microscopic counterparts, except for the permeability and the electro-osmotic coupling coefficient when the
electrokinetic effects are strong. Quantitatively, the electrokinetic couplings increase the difference between the
macroscopic coefficients and the corresponding ones for a single channel of average diameter.
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I. INTRODUCTION

In charged porous media, the coupling between different
transport phenomena arises from the excess electric charge
of the fluid, which compensates that of the solid walls. This
charge may result both in the acceleration of the whole
fluid under an applied electric field (electro-osmosis) and in
the transport of charge if the fluid flows under an applied
pressure gradient (streaming potential). In geophysics, the
electroseismic effect, by which an electro-magnetic wave is
generated from the motion of underground fluids under an
applied acoustic wave, is exploited to determine the properties
of geological formations [1–3]. Streaming potentials and
electro-osmotic flows can be measured in the laboratory to
characterize the properties of porous media [4]. Electrokinetic
phenomena also play an important role in biology [5–7],
membrane technology [8,9], microfluidics [10–12] with elec-
trokinetic pumps [13], and more recently nanofluidics [14].

From the modeling perspective, upscaling the usual elec-
trokinetic transport equations such as Poisson-Nernst-Planck
(PNP) and Navier-Stokes (NS), from the microscopic scale
where the couplings occur to that of a macroscopic sample
on which most experiments are performed, is a challenging
task. Recently, significant progress has been made in this
direction [15–17]. From the mathematical point of view, this
upscaling can be performed rigorously using the homogeniza-
tion approach [18–20]. The resulting set of coupled partial
differential equations must then be solved numerically for a
given cell representing the small scale of the porous medium.
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For practical applications, most studies of electrokinetic cou-
plings rely on an oversimplified idealization of the geometry,
with single slit pores or cylinders with dimensions or surface
charge densities estimated from the macroscopic properties of
the real system [21,22]. However, the heterogeneity of the
material, combined with the electrokinetic couplings, may
influence the overall behavior on the sample scale, so that
such idealizations may not reflect the actual response of the
medium. Direct numerical resolution of the coupled PNP and
NS equations in various complex systems (random packings,
reconstructed and fractured porous media) has also been
proposed by Adler and co-workers [23–25]. Such an approach
is usually difficult to implement for macroscopic samples,
due to the lack of experimental data on the fine structure of
the material over large distances. The systematic study of a
representative number of samples is also prevented by the
computational cost of direct numerical simulation.

In the present paper, we introduce an alternative numer-
ical scheme leading to a description of transport through
macroscopic charged porous materials at low computational
cost, thereby enabling the systematic study of the combined
effects of electrokinetic couplings and sample heterogeneity.
Of course, such a goal can be achieved only at the price
of simplifying the description. The proposed algorithm to
upscale the electrokinetic couplings is based on the Pore
Network Model (PNM). Such a model, originally developed by
Fatt [26] to predict multiphase flow properties in porous media,
describes the porosity as a network of pores connected by
channels. During the last few decades, it has been extensively
used and extended by petrophysicists in various situations:
capillarity and multiphase flow through porous media [27–31],
pore evolution and changes in petrophysical properties due to
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particle capture [32], filtration combustion [33], mineral disso-
lution and precipitation caused by CO2 sequestration [34], and
adsorption and reaction processes [35]. Recently Varloteaux
et al. [36] studied the reactive transport in porous media using
a PNM. Bernabé et al. [37] proposed a PNM approach for the
streaming potential in geophysics based on the description of
the electrokinetic effects in porous media of Ref. [38].

In a nutshell, the PNM approach amounts to solving a set
of conservation equations on the nodes of the network (in
analogy with Kirchhoff’s law for a network of resistors), on
the basis of local fluxes through the channels connecting the
nodes, under the effect of an external, macroscopic gradient.
In most of the cases treated to date (see Refs. [36,39–41] for
exceptions), the solution to this problem is a linear one. On the
channel scale, the description of the electrokinetic transport
used here follows the approach of Rice and Whitehead [42]
and allowed us to derive the longitudinal ionic and solvent
flows through an infinite charged cylinder driven by a gradient
of pressure, salt concentration, or electric potential [43]. We
take advantage here, for the determination of the fluxes through
each channel, of the observation of Gupta et al. [44] that the
electrokinetic effects in nontrivial geometries can be captured
by a simpler one: To that end the problem on the pore
scale is renormalized by an appropriate length scale, initially
introduced by Johnson et al. [45]. The transport coefficients
through each channel depend here on the properties of the
pores at both ends, leading to a nonlinear structure of the
macroscopic problem. The objective is then twofold: on the
one hand, to introduce a numerical scheme for the upscaling of
the electrokinetic transport equations with the PNM approach;
on the other hand, to investigate how the upscaled properties
depend on the distribution of channel diameters inside the
material, in addition to the surface charge density and the salt
concentration.

The paper is organized as follows. In Sec. II we first recall
the description of coupled transport phenomena in porous
media on the macroscopic (sample) and microscopic (pore)
scales. The homogenization procedure used to upscale these
quantities is presented in Sec. III, as is the construction of
the network realizations from channel diameter distributions.
Finally, all macroscopic transport coefficients, determined nu-
merically as a function of the salt concentration and the surface
charge density, are presented in Sec. IV for heterogeneous
samples. We discuss the influence of the distribution of channel
diameters on the macroscopic properties.

II. ELECTROKINETIC TRANSPORT THROUGH
CHARGED POROUS MEDIA

A. Pore Network Model of charged porous media

We consider here the linear response of a macroscopic
sample, initially in equilibrium with two solution reservoirs, to
macroscopic pressure, salt concentration, and electric potential
gradients. Such gradients result in solvent and monovalent
cations and anions (or equivalently, salt concentration and
electric charge) flows. On the macroscopic scale, the steady-
state total flows of solvent, Q0, salt, Q1, and charge, Q2,
through the network are proportional to the macroscopic
gradients of pressure, P , salt chemical potential, C (see below),

and electric potential, V . The aim of the present work is thus
to determine the macroscopic transfer matrix K , defined by⎛
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with Ln the total width of the sample (hence the distance
between the two solution reservoirs) and η the fluid viscosity.
This matrix should be symmetric, as a result of Onsager’s
reciprocity principle [20,46].

As previously mentioned, the PNM consists of a lattice
of pores connected to each other by channels. The pores are
characterized only by their fluid pressure, salt concentration,
and electric potential, while the channels are characterized by
their diameter and their surface charge density. The transfer
properties of each channel depend on the amount of salt inside
it, which in turn is controlled by the Donnan equilibrium
existing between the channel and the pores (or, equivalently
at equilibrium, between the channel and external reservoirs).
In the linear response regime, the solvent and ionic flows are
proportional to the local gradients and thus determined by the
transfer (or conductance) matrix of each channel, which may
be determined by solving the underlying transport equations
on the channel scale. Figure 1 illustrates the main features of
this PNM.

The central ingredient of a PNM is the conductance (here
conductance matrix) of the channels, not the actual geometry
of the medium. Note that no geometrical features of the pores
appear in the present model: Their effect on the flow is entirely
encompassed in their indirect effect on the channels, via the
Donnan equlibrium influencing the conductance matrix of the

Pi Pj
P0

C0

V0

PN+1

CN+1

VN+1

(g)ij

L

Ln = nL

x

y

z

FIG. 1. (Color online) Two-dimensional representation of a cu-
bic network consisting of N = n × n × n pores, between two
reservoirs, labeled 0 and N + 1. Each pore is characterized by a
pressure Pi , a salt concentration ci leading to an ideal part of the
chemical potential Ci = kBT ln(ci/cN+1), and an electric potential
Vi . Two connected pores i and j (denoted i � j ) are separated
by a length L (hence a total width of Ln = nL). The flows of
solvent, salt, and charge between these pores under the effect of
pressure, salt concentration, and potential gradients are, in the linear
response regime, determined by the transfer (or conductance) matrix
(g)ij , which depends on the surface charge density and on the salt
concentration inside the corresponding channel. The latter is governed
by the Donnan equilibrium between the channel and the pores.
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channel and the gradient across the channel. In addition, the
conductance matrix of each channel (see below) is computed
for an infinite cylindrical channel. In particular, the pores do
not have a definite size, and the converging-diverging nature
of real pores [47,48] is not taken into account explicitly. This
can be interpreted as assuming a separation of length scales
between the channel and pore characteristic lengths. Note that
it is possible to introduce pore sizes in a PNM, at the price
of introducing short-range correlations between the pore and
channel diameters [49,50].

In the following, we address the combined role on the trans-
fer matrix of the channel size distribution inside the sample,
which may be very heterogeneous, as well as that of the surface
charge density of the solid and of the salt concentration in the
reservoirs. Before turning to the upscaling from the channel to
the sample scale, we first recall the influence of the channel
diameter, the surface charge density, and the salt concentration
on the transfer properties of a single channel.

B. Transfer matrix on the channel scale

The linear response of a channel ij between two pores i and
j follows the same structure as the macroscopic response (1).
The local flows of solvent, q0, salt, q1, and charge (electric
current), q2, are written as⎛
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where d is the pore diameter and where the gradient of pore
variables is defined as

∇ijX = Xj − Xi

L
(3)

with L the distance between pore centers. L is also the length
of the channels. Pi is the pressure, Ci = kBT ln(ci/cN+1) is
the salt chemical potential, and Vi = ψi − ψN+1 the electric
potential. The salt concentration ci in pore i enters in the ideal
chemical potential together with a reference concentration,
taken as the one in the reservoir in the absence of perturbing
gradient. In the following, we will assume without loss
of generality that gradients are imposed by changing the
properties of the left reservoir (labeled 0; see Fig. 1). The
right reservoir (labeled N + 1) is then used as the reference
for the salt concentration and electric potential. Hence CN+1 =
VN+1 = 0. The absolute value of the pressure does not play a
role, and we also set by convenience PN+1 = 0.

The coefficients of the channel transfer matrix defined
by (2) can be determined by examining the mechanisms
underlying the coupling between the solvent and ionic flows.
In principle the coefficients could be determined as a function
of the relevant parameters with any method, including numer-
ically from molecular simulations. The standard description
of these coupled solvent and ionic flows relies on the solution
of a set of coupled differential equations, namely: (a) Navier-
Stokes, which accounts for momentum conservation inside the
fluid and captures the effect of all local forces, including the
electric force arising from the local electric charge and electric
field; (b) Nernst-Planck, which accounts for the conservation
of ions and includes the effect of advection by the fluid

flow; and (c) Poisson, which determines the electric potential
distribution arising from the charge distribution. The fluxes
of solvent and ions under pressure, salt concentration, and
electric potential gradients can then be solved for a given
channel geometry and boundary conditions at its surface.

Here we consider for simplicity the case of infinite
cylindrical channels of diameter d with a fixed, homogeneous
surface charge density σ (in e nm−2), with a solvent of
viscosity η and permittivity ε, and monovalent cations and
anions with diffusion coefficients D±, at a temperature T .
While the cylindrical geometry seems far from a realistic
representation of a complex porous medium, one should
keep in mind that within a PNM approach it is the channel
conductance (matrix) which is relevant, not its geometry. It
has been shown previously by Gupta et al. that the transfer
properties through more complex channels can be captured by
a simple expression for the cylindrical geometry, provided that
a correct renormalizing length scale (�) is used [44]. Under
the assumption of small potential differences between the walls
and the solution, the Poisson equation can be linearized, and
the set of equations solved analytically for this geometry. We
have previously validated these approximate results against
numerical simulation in the range of parameters used here [43].
Outside the range of validity of this assumption, e.g., for large
surface charge densities, the coefficients can be computed
numerically and introduced in the present PNM.

More precisely, the PNM requires the knowledge of the
flows of solvent, q0, salt, q1, and charge (electric current), q2,
which in the case of cylindrical channel read

qγ
α =

∫ d/2

0
j

γ

k 2πr dr, (4)

where j0 = u is the local solvent velocity, j1 = j+ + j−, and
j2 = e(j+ − j−), with j+ (resp. j−) the local cation (resp.
anion) flux. The superscript γ = (P,C,V ) refers to the type
of applied forcing, namely, a pressure, concentration (in fact,
salt chemical potential), and potential gradient, respectively.

Under the above assumptions, the coefficients of the transfer
matrix defined by (2) are as follows (the channel label ij is
omitted for clarity). For the solvent under a pressure gradient
one finds the usual permeability [note the πd2/4η prefactor in
Eq. (2)]:

gP
0 = d2

32
. (5)

Under a concentration gradient, the osmotic term which by
symmetry corresponds to the salt flux under a pressure gradient
is

gC
0 = gP

1 = κ2d2

128πlB
, (6)

where κ2 = 4πlB(c+ + c−) is the square of the inverse Debye
screening length, with lB = βe2/4πε the Bjerrum length (β =
1/kBT ) and c+ (resp. c−) the average cation (resp. anion)
concentrations in the channel, to be discussed below. Under
an applied electric field the electro-osmosic solvent flux (by
symmetry, it also governs the streaming current) is given by

gV
0 = gP

2 = −4σ

κ

I2

I1
, (7)
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where Im = Im(κd/2) are modified Bessel functions of the first
kind. The salt flux under a concentration gradient follows from

gC
1 = βη(D+c+ + D−c−) + κ4d2

512π2l2
B

(8)

with a diffusive part (Fick) and an advective part due to
osmosis. Under an applied electric field, the motion of
ions contains a direct (Nernst-Einstein) contribution and an
advective part due to electro-osmosis, resulting in

gV
1 = gC

2 = eβη(D+c+ − D−c−) − σκ

4lB

I2

I1
(9)

for the flux of salt and in

gV
2 = e2βη(D+c+ + D−c−) − σ 2

[
1 − I0I2

I2
1

]
, (10)

for the electric current. The symmetry of the transfer matrix is
explicit in Eqs. (6) and (7) for the solute and electric current
arising from a pressure gradient, and in Eq. (9) for the electric
current under a concentration gradient.

C. Donnan equilibrium

It appears from the previous section that the coefficients
of the channel ij transfer matrix (g)ij depend on the average
ionic concentrations c+

ij and c−
ij inside the channel. As we

consider the linear response around an equilibrium situation,
these concentrations can be determined by considering the
(Donnan) equilibrium of the ions between the charged channel
and the adjacent pores seen as an equivalent reservoir. Writing
the equality of ionic chemical potentials in the channel and in
the reservoir, one obtains

β(μ±
ij − μ±

res) = ln
c±
ij

cres
± βe(Vij − Vres) = 0 (11)

with Vij the so-called Donnan potential, and cres = √
cicj

(resp. Vres = (Vi + Vj )/2) the salt concentration (resp. poten-
tial) in the electrically neutral reservoir. Noting that the excess
of counterions with respect to co-ions balances that of the sur-
face, i.e., c+

ij − c−
ij = cσ

ij = −4σ/edij in a cylindrical channel
with diameter dij , the two equalities (11) straightforwardly
lead to

c±
ij =

√
(cres)2 +

(
cσ
ij

2

)2

± cσ
ij

2
. (12)

The ionic concentrations in the channel can thus be computed
from the channel diameter dij , the surface charge density
σ , and the salt concentration in the reservoir with which
the channel is in equilibrium. Once the salt concentration in
the channel is known, all the transport coefficients can be
computed as described in the previous section.

III. TRANSPORT ON THE MACROSCOPIC SCALE

A. Determination of the transport coefficients

The macroscopic transfer matrix (K) defined by Eq. (1) can
now be determined for a given network, characterized by the
diameter dij of each channel and the corresponding transfer
matrix (g)ij , keeping in mind that the latter also depends on

the surface charge density and on the salt concentration in
the reservoir. To that end, macroscopic gradients are imposed
across the network by changing the pressure, salt concen-
tration, or electric potential of the left reservoir (the right
one being maintained at the initial values). The steady-state
local fluxes are then computed by ensuring the conservation
of solvent, salt and charge in each pore i, i.e.:

∑
i�j

⎛
⎜⎝

q0

q1

q2

⎞
⎟⎠

ij

= 0. (13)

This provides a set of nonlinear equations for the pore variables
{Pi}, {Ci}, and {Vi} at steady state. The nonlinearity arises
from the fact that the coefficients of the matrix in (2) depend
on the pore variables via the local Donnan equilibrium. In
practice, we solve this system of equations numerically using
a nonlinear Newton solver described in Ref. [51]. Periodic
boundary conditions are used in the directions perpendicular
to the macroscopic gradient. The macroscopic fluxes through
the sample are finally computed at the interface with either
reservoir:⎛

⎜⎝
Q0

Q1

Q2

⎞
⎟⎠ =

∑
j0

⎛
⎜⎝

q0

q1

q2

⎞
⎟⎠

0, j0

=
∑
jN+1

⎛
⎜⎝

q0

q1

q2

⎞
⎟⎠

iN+1, N+1

, (14)

where j0 (resp. iN+1) labels all the pores connected to the
left (resp. right) reservoir. Evaluating the coefficients of the
matrix K requires solving three times the system of nonlinear
equations (13) for the pore variables, corresponding to the
three macroscopic gradients (pressure, concentration, and po-
tential). Each macroscopic gradient induces three macroscopic
flows (solvent, salt, and charge), thereby providing the nine
coefficients. As an example, the first column of the matrix K

is computed by imposing only a macroscopic pressure gradient
(i.e., ∇C = 0 and ∇V = 0) as

KP
α = − η Qα

L2
n∇P

, α = 0,1,2. (15)

For α = 0 this is simply Darcy’s law. The macroscopic matrix
K is expected to be symmetric [20,46] regardless of the
diameter distribution inside the network, a property which
is verified in our numerical simulations. Finally, it is worth
noting that the overall balance of local fluxes may be achieved
by the compensation of fluxes induced by local gradients of
different nature than the macroscopic one (e.g., a local electric
field in the absence of macroscopic potential difference).

B. Statistical properties of pore networks

The previous sections allow us to determine the transfer ma-
trix K for a given network. When studying porous materials,
an important question is that of the representativity of a given
model. If detailed geometric information is available from
appropriate imaging techniques, an equivalent network can be
built for a given experimental sample. Most often, however,
only indirect information such as a pore size distribution
is available experimentally. In that case, the transfer matrix
of a single network is not sufficient to describe the macro-
scopic properties. Rather, one should consider the statistical
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FIG. 2. (Color online) Weibull distribution functions used in this
study to generate networks, labeled according to their mean diameter
and standard deviation (d̄,δ). Solid lines correspond to the same mean
diameter d̄ = 18 nm; dashed and dotted lines correspond to the same
standard deviation δ = 6 nm. The minimum diameter [see Eq. (16)]
is dmin = 4 nm.

properties of the transfer matrix over networks drawn from
the available (or model) size distribution. In particular, we
investigate here how the macroscopic coefficients depend on
the mean and standard deviation of the channel diameter
distribution.

We thus consider here the properties of ensemble of
networks characterized by a uniform temperature, fluid vis-
cosity and permittivity, surface charge density, ion diffusion
coefficients, and channel length but with varying channel
diameters. More precisely, the channel diameters dij are drawn
randomly from a Weibull distribution function,

f (d; dmin,k,λ) = k

λ
g

(
d − dmin

λ

)
, (16)

with g(x) = xk−1e−xk

, dmin the minimum diameter, and k

and λ two positive parameters defining the shape of the
distribution. They control in particular the mean diameter
d̄ = λ�(1 + 1/k) and the variance δ2 = λ2�(1 + 2/k) − d̄2,
where � is the gamma function. The distributions investigated
numerically in the following are illustrated in Fig. 2. For
a given distribution function, we generate M networks and
compute the macroscopic transfer matrix. We finally determine
the average coefficients over the M samples (i.e., realizations
of the distribution function) and the corresponding variances.

C. Validation of the method

We now turn to the numerical validation of the proposed
algorithm. To that end, we consider values of the various
physical parameters having in mind the case of clay minerals,
which are typical examples of natural charged porous media.
More specifically, we consider a system at T = 298 K
with water as a solvent (η = 10−3 Pa s and ε = 78.5) with
NaCl as monovalent salt (D+ = 1.3 10−9 m2 s−1 and D− =

2.0 10−9 m2 s−1). The surface charge density is taken in the
range σ ∈ [−0.1,0] e nm−2, with Na+ as a counterion, and
salt concentrations in the range c ∈ [10−3,10−1] mol L−1.
The distance between pore centers is L = 160 nm, and the
minimum channel diameter is dmin = 4 nm. While smaller
pores can be found in clay minerals, the PNP model used
here to describe the electrolyte in the channels is not accurate
below this limit. Since the purpose of the present work is not to
accurately describe a specific system but rather to demonstrate
the relevance of the PNM approach to model complex charged
porous materials, we simply restrict ourselves to situations
where the microscopic model on the channel scale applies.
The extension of the PNM beyond its domain of validity is
limited only by the availability of appropriate expressions for
the conductance matrix of the channel.

We consider several values of the mean diameter d̄ (18,
24, 30, and 36 nm) and standard deviation δ (1.5, 6, and
12 nm). We found that for this range of parameters, a number
M = 80 samples to perform averages over networks for a given
distribution function provided a good compromise between
accuracy and computational cost. This parameter will be kept
constant throughout this paper. In order to remain in the
linear response regime, which is the only one considered
here, we apply small macroscopic gradients. More specifi-
cally, the results reported below were performed with ∇P =
10−6 Pa nm−1, ∇C = 10−9 J nm−1, and ∇V = 10−14 V nm−1.
Another consequence of the linear response is that the fluxes
measured in the presence of several macroscopic gradients
should be additive. We have checked that this is indeed verified
numerically in all the considered cases (with relative errors
smaller than 10−5%).

The last parameter which should be chosen carefully is
the number N = n3 of network nodes. This number should
be sufficiently large to ensure a good sampling of the size
distribution function. The measured average transfer matrix
Kn should converge for large network sizes to a limit K∞,
which is the “true” average over the size distribution (note
that one should also consider the limit of infinite number M

of samples). As an example of this convergence, results for
the permeability KP

0 as a function of n are reported in Fig. 3,
for a mean diameter d̄ = 18 nm and several values of the
standard deviation δ. For each network size n, the average and
variance of the permeability over the M samples are indicated.
The average permeability converges toward a finite value K∞
for large n and the variance of the distribution of K around
K∞ decreases as n increases or as δ decreases, as expected.
Note that in the simple case where all the channels are identical
(δ = 0 nm), the macroscopic transfer matrix K should be equal
to that of each channel g. For the range of parameters given
above, this is indeed the case with relative errors smaller than
10−5% for sizes n < 30. In the following, we use n = 20,
which typically provides estimates of K∞ within 1%. Such a
network size is comparable to previous PNM studies of other
transport phenomena (see e.g., Ref. [49]).

IV. MACROSCOPIC TRANSFER MATRIX

We now turn to the numerical study of the macroscopic
transfer coefficients. We first investigate, for a given channel
diameter distribution, the influence of the solid surface charge
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FIG. 3. (Color online) Permeability KP
0 as a function of the

network size n for a surface charge density σ = −0.1 e nm−2 and
salt concentration in the reservoir c = 0.001 mol L−1. Results are
reported compared to the limit K∞ (taken as the value for n = 30),
for diameter distributions of mean d̄ = 18 nm and standard deviation:
δ = 12 nm (black), 6 nm (blue), and 1.5 nm (orange). The average and
variance are computed over M = 80 realizations for each distribution.
The results obtained with other values for c and σ are very similar.

density and of the salt concentration in the reservoir. We then
turn, for a given surface charge density, to the combined effect
of diameter distribution and salt concentration. As explained
above, for each distribution the reported results correspond to
an average over several samples from this distribution.

A. Influence of surface charge density and salt concentration

Firstly, we study the influence of the salt concentration
c in the reservoirs and of the surface charge σ for a given
channel size distribution. Specifically we consider a Weibull
distribution with a mean diameter d̄ = 18 nm and a standard
deviation δ = 12 nm. The other parameters are taken as
described in the previous section. The macroscopic transport
matrix is symmetric, as expected, and we report its coefficients
in the same way as the channel coefficients in Sec. II B.

Figure 4 reports the macroscopic permeability KP
0 . While

for neutral walls (σ = 0) it is independent of the salt con-
centration c in the reservoirs, KP

0 decreases with increasing
|σ | or decreasing c. Such a result may seem surprising,
because for a single channel the permeability [Eq. (5)] does
not depend on the presence of charges on the wall or in
solution. This variation on the macroscopic scale is due to
the fact that the macroscopic fluxes result from a balance
between different local fluxes, including electrokinetic ones.
As an example, a macroscopic pressure gradient induces local
streaming currents which tend to separate charges locally. In
turn, this results in local electric potential gradients across the
channels which induce electro-osmotic flow, thereby mitigat-
ing the local pressure-driven solvent flow. Such electrokinetic
couplings are more pronounced for large |σ | and low c. For
high salt concentrations (near 0.1 mol L−1), the screening
of electrostatic interactions results in smaller electrokinetic
effects, hence a smaller influence of the surface charge density

FIG. 4. (Color online) Macroscopic permeability KP
0 (in nm2) as

a function of the salt concentration c in the reservoirs in equilibrium
with the charged porous material, and of the surface charge density
σ of the channels.

on the macroscopic permeability. As will be discussed below,
the coupling between the various types of local fluxes and the
resulting decrease in the macroscopic permeability KP

0 also
depends on the heterogeneity of the material.

The osmotic coefficient KC
0 , governing the solvent flow

under a salt concentration gradient, is reported in Fig. 5. As
expected, the osmotic flux increases with the salt concen-
tration. As observed for the permeability, the effect of the
surface charge density is more pronounced for smaller salt
concentrations. The evolution of KC

0 with c and σ qualitatively
follows that of the corresponding coefficient on the channel
scale gC

0 given by Eq. (6). The latter is discussed in Ref. [43].
From the symmetry of the macroscopic transfer matrix, these

FIG. 5. (Color online) Macroscopic osmotic coefficient KC
0 (in

nm−1) as a function of the salt concentration c in the reservoirs in
equilibrium with the charged porous material, and of the surface
charge density σ of the channels.
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FIG. 6. (Color online) Macroscopic electro-osmotic coefficient
KV

0 (in nm−1) as a function of the salt concentration c in the reservoirs
in equilibrium with the charged porous material and of the surface
charge density σ of the channels.

results also hold for the salt flux under a pressure gradient,
quantified by the coefficient KP

1 .
Figure 6 reports the electro-osmotic coefficient KV

0 , which
quantifies the solvent flux under an electric potential gradient.
When σ = 0, this effect is absent; it increases with |σ |. As
gV

0 on the channel scale [43], the macroscopic coefficient
KV

0 decreases with increasing ionic strength as a result of
the screening of the surface charge. At large surface charge
densities, decreasing the salt concentration to very small values
results in a slight decrease of KV

0 . This contrasts with the
case of a single channel, given by Eq. (7), which plateaus in
this limit (see also Fig. 11 below). Such a decrease is also a
consequence of the balance between different types of local
fluxes.

The coefficient KC
1 , reported on Fig. 7 quantifies the flow

of solute under a macroscopic concentration gradient. This
coefficient is mainly controlled by the salt concentration c. It
captures both the effect of diffusion and that of advection by

FIG. 7. (Color online) Macroscopic coefficient KC
1 (in nm−4) as

a function of the salt concentration c in the reservoirs in equilibrium
with the charged porous material, and of the surface charge density
σ of the channels.

FIG. 8. (Color online) Macroscopic coefficient KV
1 (in nm−4) as

a function of the salt concentration c in the reservoirs in equilibrium
with the charged porous material and of the surface charge density σ

of the channels.

the osmotic flow. For large surface charge densities, the latter
slightly increases the overall solute flux, as does gC

1 given by
Eq. (8).

The effect of electric field on the solute transport is
quantified by KV

1 , reported in Fig. 8. A noticeable feature of
this coefficient is the existence of two regions corresponding
to negative and positive values. This is due to the different
values of the diffusion coefficients for sodium cations and
chloride anions considered here (D− > D+). Depending on
their relative concentrations in the porous medium, controlled
by both the surface charge density and the salt concentration
in the reservoirs, the overall salt flux can be either in the
direction of the electric field or in the opposite one. Note that an
improved description of the ionic transport inside the channels
could capture the effect of internal fields stemming from the
different ionic mobilities (Nernst-Hartley theory). At large
surface charge densities, decreasing the salt concentration to
very small values results in a slight decrease of KV

1 , as observed
for KV

0 . In the present case, however, this decrease is already
present at the channel level, i.e., gV

1 , given by Eq. (7).
Finally, Fig. 9 reports the macroscopic electrical conduc-

tance KV
2 . It increases with the salt concentration and with the

surface charge density. The latter increase is more pronounced
for lower salt concentrations. Here again, the variations of the
macroscopic coefficient follow that of the microscopic one,
gV

2 , given by Eq. (10).

B. Influence of the diameter distribution

Overall, it appears that except for the permeability, the
macroscopic coefficients behave qualitatively as their micro-
scopic counterparts for a single channel of diameter d = d̄ ,
the average diameter. The deviations, including the qualitative
difference for the permeability, arise from combined effect
of the couplings between the various types of fluxes, which
must balance locally and of the heterogeneity of the sample
(we recall here that for a network with identical channels
the macroscopic coefficients coincide with the microscopic
ones). Therefore, we now turn to the effect of the diameter
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FIG. 9. (Color online) Macroscopic electrical conductance KV
2

(in nm−4) as a function of the salt concentration c in the reservoirs
in equilibrium with the charged porous material and of the surface
charge density σ of the channels.

distribution on the macroscopic coefficients. We focus here
on the permeability KP

0 and on the electro-osmotic coefficient
KV

0 . The numerical study in this section is performed for a
surface charge density σ = −0.05 e nm−2.

As mentioned above, the permeability of the charged
network depends on the salt concentration in the reservoir,
as a result of a balance between different types of local
fluxes. This contrasts with the case of neutral walls. In Fig. 10
we illustrate the variations of the macroscopic permeability
for σ = −0.05 e nm−2 with the salt concentration c in the
reservoirs, for different diameter distributions. The decrease of
the macroscopic permeability due to local electrokinetic flows

FIG. 10. (Color online) Macroscopic permeability, normalized
by the permeability for neutral channels (σ = 0), as a function of the
salt concentration c, for diameter Weibull distributions with various
means and standard deviations (d̄,δ). The symbols correspond to
δ = 6 nm (+) and δ = 12 nm (�). The different colors indicate the
mean diameter d̄ (from bottom to top): 18 nm (black), 24 nm (blue),
30 nm (purple), and 36 nm (orange).

FIG. 11. (Color online) Macroscopic electro-osmotic coefficient
as a function of the salt concentration. The solid lines show the result
for a single channel with diameter d = d̄; see Eq. (7). The same
symbols and colors as in Fig. 10 are used.

is more pronounced at low salt concentration. In addition, in
this regime this decrease is larger for smaller average diameters
d̄ and, for a given d̄, for larger standard deviation δ: Both
cases correspond to the presence of smaller channels, where
electrokinetic effects are more important.

The effect of the diameter distribution on the macroscopic
electro-osmotic coefficient KV

0 is illustrated in Fig. 11. KV
0

decreases with increasing salt concentration and decreasing
average diameter, as for a single channel of diameter d = d̄,
also indicated in the figure. KV

0 also decreases as the standard
deviation δ of the distribution increases, as a result of the
presence of a larger number of smaller channels, where
electrokinetic effects (which may mitigate the response to
the imposed macroscopic gradient) are more pronounced.
This is consistent with the results of the previous section.
Nevertheless, the behavior of the electro-osmotic coefficient
of the complex networks is semiquantitatively described by
that for the corresponding channel with the average diameter.

C. Discussion

The present PNM approach thus allows us to demonstrate
the combined effect of the coupling between different types
of fluxes and the heterogeneity of the sample. For coefficients
which already depend strongly on the surface charge density
and salt concentration on the channel scale, the macroscopic
coefficient exhibits the same dependence on the sample scale.
Some qualitative differences may nevertheless arise for high
surface charges and low salt concentrations. The effects are
more important for coefficients whose dependence on the
surface charge and salt concentration is limited, or absent
(permeability), on the channel scale.

The overall effect of electrokinetic couplings (more pro-
nounced in smaller, more highly charged channels and at lower
salt concentrations) is to reduce the macroscopic transport
coefficients, compared to the microscopic ones for an average
channel. This is consistent with Le Châtelier’s principle, as
fluxes will locally generate coupled induced flows mitigating
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the effect of the macroscopic gradient. This underlines the fact
that the coefficients of the homogenized transfer matrix K are
not simply the homogenized version of the coefficients of the
microscopic one, g. The upscaled, transport matrix remains,
however, symmetric, in agreement with Onsager’s theory. The
symmetry of the macroscopic matrix can be derived using
the mathematical tools of homogenization theory [18–20]
or, as done by Brunet and Ajdari, from general symmetry
arguments [46]. The numerical method introduced in this work
provides a practical tool to explicitly compute the macroscopic
transport matrix and investigate how it depends on the
properties of the material. The observed symmetry provides
an additional consistency check of the proposed algorithm.

Let us finally comment on the connection between the
present model and homogenization. As already mentioned in
Sec. II, the pores enter in the present model only via the pore
variables P , C, and V . The macroscopic transfer matrix is
then determined by ensuring the conservation of the various
species (∇ · qα = 0) at the nodes of the network. Therefore,
the present algorithm could also be seen as a discretization of
the following continuous problem:

∇ · (
gγ

α (F )∇Fγ

) = 0 (17)

with {α,γ } ∈ {0,1,2}, F0 = P (r), F1 = C(r), and F2 = V (r)
and using Einstein’s notation for the implicit sum over the
index γ . The coupling matrix g(r) depends on the value of the
fields F (r) via the local Donnan equilibrium. The fluxes qα(r)
are then analogous to the average over the small-scale model
(which we took for simplicity as an infinite cylindrical channel)
in the homogenization approach. More interestingly, we can
make an analogy between the pore variables and the equivalent
bulk variables, which were introduced as the natural variables
for upscaling in the homogenization approach of Moyne and
Murad [18,19]. How far this analogy can be pushed remains,
however, to be determined.

V. CONCLUSION

We proposed a Pore Network Model for the description
of the electrokinetic transport properties of charged porous
media. This PNM allows to consider the response of hetero-
geneous samples to external pressure, salt concentration, and
electric potential gradients. In order to illustrate the interest of
this approach, we used simple expressions for the microscopic
transport coefficients, based on the Poisson-Nernst-Planck
equations in cylindrical channels with given surface charge
density. We investigated numerically the effect of the surface
charge density, salt concentration, and channel size distribution
on the macroscopic transport coefficients.

The symmetry of the transport matrix is preserved by the
present upscaling method, as required from Onsager’s theory.
In general, the coefficients of this matrix qualitatively behave
as their microscopic counterpart for a channel with the average
diameter. However, the combined effects of electrokinetic
couplings on the local scale and of heterogeneity result in
a decrease of the overall transport coefficients, in accordance
with Le Châtelier’s principle. This decrease, as well as other
qualitative differences which may arise when the microscopic
coefficients depend weakly on the surface charge and salt
concentration, is more pronounced for large surface charge

densities and low salt concentrations. This is due to the fact that
electrokinetic couplings are stronger in these cases, even on the
channel scale. In addition, for a given average diameter, more
heterogeneous samples result in stronger effects, due to the
presence of smaller pores, in which electrokinetic effects are
more pronounced. Overall, the coupling between the complex
pore structure of porous media and electrokinetic effects
underlines the limitations of approaches based on idealized ge-
ometries (single slit pore or cylindrical channel) parametrized
directly from the experimental macroscopic properties.

The PNM approach presented here is very flexible and can
be straightforwardly enhanced by improving the description
of transport on the channel scale. For high surface charges,
the analytical expressions used here, which are based on the
linearization of the Poisson-Boltzmann equation, are not accu-
rate, but the solution of the nonlinear version can be obtained
numerically, as done in Ref. [43] in the case considered here
or using various mesoscale simulation strategies for electroki-
netic effects [52,53]. The description of osmotic effects could
be improved by considering explicitly the radial concentration
profiles inside the channel [14,54]. It is also well known that
the PNP model is not valid for very high salt concentrations
and very small channels, where the discrete nature of the
ions and solvent becomes relevant. Such limitations can be
overcome using improved liquid state theories, e.g., the mean
spherical approximation [55,56] or the Fundamental Measure
Theory [57], or by treating the electrolyte as a confined
mixture [58–60]. In principle, for diameters in the nanometer
range, it is even possible to determine the channel transfer
matrix using molecular dynamics simulations, to capture, e.g.,
the effect of slip at the solid-fluid interface [54,61]. The interest
of molecular simulations for the simulation of electrokinetic
effects has recently been reviewed [62]. In the particular
case of clay minerals, which were used here as a guide for
numerical applications, such simulations have demonstrated
the importance of accounting for slip at the surface to correctly
describe the hydrodynamic and electro-osmotic flows [63–65].

Other possible extensions of the proposed approach, this
time at the pore network level, include the assignment of
finite sizes to the pores, following, e.g., the approach proposed
in [49]. However, it remains to be seen how to parametrize such
an extended model, which in addition introduces short-range
spatial correlations between the pore and channel diameters.
Similarly, a strong assumption of the current model is the
neglect of the contribution of the interfaces between channels
and pores to the overall electrokinetic transport. One way to
improve the description would be to determine their effect
from simulations including these interfaces explicitly, as done
using a mesoscopic model by Marconi et al. to derive effective
one-dimensional transport equations [48] and to introduce the
results in modified conductance matrices for the channels. The
present model can now be used to determine the properties
of a given sample, if sufficient experimental data are available
for the parametrization of the model, or to investigate the
properties of generic materials, in particular percolation
properties [37,50,66] for the various types of fluxes.
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[22] J. Gonçalvès, G. de Marsily, and J. Trémosa, Earth Planet. Sci.

Lett. 339-340, 1 (2012).
[23] D. Coelho, M. Shapiro, J. F. Thovert, and P. M. Adler, J. Colloid

Interf. Sci. 181, 169 (1996).
[24] S. Marino, M. Shapiro, and P. Adler, J. Colloid Interface Sci.

243, 391 (2001).
[25] A. K. Gupta, D. Coelho, and P. M. Adler, J. Colloid Interf. Sci.

303, 593 (2006).
[26] I. Fatt, Petrol Trans AIME 207, 144 (1956).
[27] P.-E. Oren, S. Bakke, and O. Arntzen, SPE J. 3, 324

(1998).
[28] M. J. Blunt, Curr. Opinion Colloid Interf. Sci. 6, 197 (2001).
[29] M. I. J. van Dijke and K. S. Sorbie, Phys. Rev. E 66, 046302

(2002).
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