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Bistability and metabistability scenario in the dynamics of an ellipsoidal particle
in a sheared viscoelastic fluid
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The motion of an ellipsoidal particle in a viscoelastic liquid subjected to an unconfined shear flow is addressed
by numerical simulations. A complex dynamics is found with different transients and long-time regimes depending
on the Deborah number De (De is the product of the viscoelastic liquid intrinsic time times the applied shear
rate). Spiraling orbits toward a log-rolling motion around the vorticity are observed for low Deborah numbers,
whereas the particle aligns with its major axis near to the flow direction at high Deborah numbers. The transition
from vorticity to flow alignment is characterized by a periodic regime with small amplitude oscillations around
orientations progressively shifting from vorticity to flow direction by increasing De. A range of Deborah numbers
is detected such that the periodic solution coexists with the flow alignment regime (bistability). A further range of
De is found where flow alignment is attained differently for particles starting far from or next to the shear plane:
in the latter case, very long transients are found; hence an effective bistability (metabistability) is predicted to
occur in a large time lapse before reaching the fully aligned state. Finally, the computed Deborah number values
for flow alignment favorably compare with available experimental data.
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I. INTRODUCTION

The motion of nonspherical particles suspended in fluids
is of great relevance in industrial applications and biological
systems. For instance, elongated rigid particles are added
into fluids to confer special final properties to the compos-
ite material [1–4]. Also, shape anisotropy of bioparticles
such as bacteria [5–7], microswimmers [8], sperm cells [9],
platelets [10], and heterocell aggregates [11] imparts peculiar
dynamical properties to the overall flowing materials.

For the case of unconfined shear flow, Jeffery predicted
the dynamics of a single, rigid, non-Brownian ellipsoidal
particle in a Newtonian fluid [12]. The orbits described by
the particle orientation vector (the so-called Jeffery’s orbits)
are closed periodic curves around the vorticity axis, i.e., the
axis orthogonal to the shearing plane. Those predictions found
later confirmation in experiments (e.g., [13]).

Particles (both passive and active) are often immersed
in fluids that are non-Newtonian (e.g., polymer-filled mate-
rials [4,14], spermatozoa swimming through the viscoelas-
tic cervical mucus [15], bacteria in cross-linked polymer
gels [16]). The complexity of the suspending liquid strongly
alters the observed particle dynamics with respect to that with
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a Newtonian fluid in analogous flow conditions. Experiments,
indeed, have evidenced that an elongated particle in a sheared
viscoelastic liquid at small shear rates drifts across the Jeffery’s
orbits, and its major axis eventually aligns along the vorticity
direction (the so-called log-rolling motion) [17,18]. On the
other hand, by increasing the shear rate, a transition from
vorticity to flow alignment is found [19,20]. Along with
those two limiting regimes, seemingly stable intermediate
orientations between vorticity and shearing direction have also
been observed [17,19]. A complete and recent experimental
work [21] deals with a dilute suspension of ellipsoidal particles
(with aspect ratios ranging from 2 to 8) in several non-
Newtonian fluids. Optical microscopy images clearly showed
the transition from vorticity to flow alignment for increasing
shear rates. The critical conditions for the alignment of the
ellipsoids along the flow direction at high shear rates have
been measured. In a range of intermediate shear rates, however,
bimodal orientational distributions were reported, although the
achievement of a true steady state could not be confirmed.
The two coexisting preferred orientations are either close to
vorticity or close to flow direction.

An asymptotic theory [22] in the limiting case of an
infinitely elongated particle immersed in a specific non-
Newtonian liquid (“second-order fluid”, see Ref. [23]) captures
the spiraling motion toward the vorticity axis at small shear
rates along with the alignment to the flow direction at higher
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shear rates. On the other hand, no theoretical predictions are
available for more realistic particles (i.e., with finite aspect
ratios) and/or non-Newtonian fluids, to describe the observed
complex dynamics far from the two limiting (log-rolling and
flow-aligning) cases.

Numerical works dealing with the motion of nonspherical
particles in viscoelastic fluids are quite limited. The slow
settling of an ellipsoid through a quiescent viscoelastic liquid
(second-order fluid) has been studied by the fictitious domain
method [24]. The forces and torques acting on the particle
have been calculated in this paper, but actual dynamics of
the particles (i.e., trajectories) is not. The rotation of an
ellipsoid in a viscoelastic fluid subjected to shear flow has been
investigated by a double layer boundary integral method [25].
An Oldroyd-B model [23] is considered as the constitutive
equation for the liquid. The simulation results for an aspect
ratio equal to 2 and Deborah number De = 0.7 (the Deborah
number is defined as the product of the fluid relaxation time
and the applied shear rate) show the slowing down of the
rotation period as well as the tendency of the particle to spiral
toward the vorticity axis. However, as remarked by the authors,
the large amount of CPU time limits the simulations to few
rotation periods, small Deborah numbers, and low particle
aspect ratios.

The aim of this work is to use direct numerical simula-
tions to investigate the detailed dynamics of a nonbuoyant
anisotropic particle in a sheared viscoelastic liquid. Numerical
results for particle aspect ratios ranging from 1 (sphere) to
16, for different Deborah numbers and initial orientations,
are presented. A comparison with the available theories and
experimental data is carried out.

II. GOVERNING EQUATIONS

The investigated system is sketched in Fig. 1. A single
ellipsoidal particle is located between two parallel plates
moving at equal but opposite velocities (simple shear flow).
We denote with a and b the semimajor and semiminor
ellipsoid axes, and we denote with AR = a/b the aspect
ratio. The distance between the two plates W is much larger
than a so as to represent an unconfined system. A Cartesian
reference frame is centered at the particle center of mass,
and x, y, and z axes are the flow, gradient, and vorticity

FIG. 1. (Color online) Schematic representation of the problem
investigated in this work. On the right, the generated flow field without
the particle (simple shear flow) is reported.

directions, respectively; i.e., the imposed velocity field far
from the ellipsoid is u∞ = (ux,uy,uz) = (γ̇ y,0,0), with γ̇

being the shear rate. The particle orientation is described by
the orientation pseudovector p that identifies the direction of
the ellipsoid major axis.

By neglecting both fluid and particle inertia, the fluid
motion is governed by the continuity and the momentum
balance equations:

∇ · u = 0, (1)

∇ · σ = 0, (2)

where u is the fluid velocity and σ is the total stress tensor,
expressed as

σ = −p I + 2ηs D + τ . (3)

In Eq. (3), p, I , ηs , and D = (∇u + (∇u)T )/2 are the pressure,
the unity tensor, the viscosity of a Newtonian “solvent”,
and the rate-of-deformation tensor, respectively. Finally, τ

is the viscoelastic stress tensor that needs to be specified
by choosing a constitutive equation. In this work, as the
constitutive equation we consider the Giesekus model [23]
that, despite its simplicity, has been proven to quantitatively
describe the rheological properties of several non-Newtonian
fluids [26–28]:

λ
∇
τ +αλ

ηp

τ · τ + τ = 2ηp D. (4)

In this equation, ηp is a viscosity, λ is the fluid relaxation time,
the symbol (∇) denotes the upper-convected time derivative

∇
τ≡ ∂τ

∂t
+ u · ∇τ − (∇u)T · τ − τ · ∇u, (5)

and α is a (dimensionless) constitutive parameter. We recall
that the Giesekus model predicts, in simple shear flow,
viscosity thinning with increasing the shear rate for any value
of the constitutive parameter α greater than zero. In addition,
such a model predicts both nonzero first and second normal
stress differences, N1 = σxx − σyy and N2 = σyy − σzz. (The
existence of normal stresses in shear is the “fingerprint” of a
viscoelastic liquid.) Finally, we also recall that the limiting case
α = 0 in Eq. (4) corresponds to the well-known Oldroyd-B
model and that, for small values of the Deborah number [see
Eq. (9)], the Giesekus model tends to the second-order fluid
constitutive equation.

Concerning the boundary conditions, we apply unperturbed
shear flow u∞ far from the particle. More details on this con-
dition are given in the next section, where the computational
domain used in the simulations is discussed. On the particle
boundary P (t), the rigid-body motion is imposed:

u = ω × r on ∂P (t), (6)

where r denotes the position vector of a point on the particle
surface and ω is the angular velocity of the particle (to be
determined).

As inertia is neglected, no initial condition for the velocity
field needs to be specified. On the other hand, since the
time derivative of the viscoelastic stress tensor appears in the
constitutive equation, an initial condition for τ is required.
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We assume a stress-free condition, i.e., that the stress is zero
everywhere in the fluid at the initial time:

τ |t=0 = 0. (7)

To close the set of governing equations, the hydrodynamic
torque acting on the particle needs to be specified. As inertia
is neglected, the particle is torque free; i.e., the total torque T
on the spherical surface is zero:

T =
∫

∂P (t)
r × (σ · n) dS = 0, (8)

where n is the outwardly directed unit normal vector on ∂P .
The solution of the above equations gives the time evolution

of the fields u, p, and τ and of the unknown ω. Knowledge of
the latter quantity allows one to update the particle orientation,
i.e., to compute the particle trajectory p(t). A specific initial
orientation is chosen by selecting an initial value p|t=0 = p0.

It is convenient to make the above equations dimensionless.
We select the reciprocal of the imposed shear rate as charac-
teristic time tf = γ̇ −1, the major semiaxis a as characteristic
length, and ηp/tf as characteristic stress. Then, the Deborah
number defined as

De = λγ̇ (9)

appears in all the equations. The Deborah number compares the
fluid characteristic time λ and the flow time tf . The Newtonian
liquid response is obtained for De = 0, since the Newtonian
liquid has no characteristic time. The dimensionless system
of equations contains three dimensionless parameters: α,
the viscosity ratio ηs/ηp, and the Deborah number De.
Furthermore, the only geometrical parameter is the aspect ratio
AR. All the simulations have been performed by selecting
α = 0.2 and ηs/ηp = 0.1. This particular choice for α denotes
a shear-thinning fluid whose rheology fairly describes the
liquid with the most complete data set in Ref. [21]. The
dynamics of an ellipsoidal particle in a viscoelastic liquid is
analyzed for different Deborah numbers and aspect ratios.

III. NUMERICAL METHOD

The above described system of equations is solved by
the finite element method. To assure convergent solutions
at relatively high Deborah numbers, we implement the
Discrete Elastic Viscous Split Stress-G/Streamline Upwind
Petrov Galerkin formulation [29–31] together with a log
representation for the conformation tensor [32,33]. We recall
that the angular velocity ω is an unknown and needs to be
calculated in order to satisfy the torque-free condition Eq. (8).
Such a condition is imposed through constraints in each node
of the particle surface by means of Lagrange multipliers [34].
In this way, the angular velocity is automatically computed by
solving the augmented system of equations.

Once the angular velocity ω is available, we need to
update the orientation of the ellipsoid. This is done by using
the quaternion formalism [35]. Quaternions are quadruples
of real numbers (q1,q2,q3,q4) related to the Euler angles.
The quaternion formalism provides an easy way to track the
orientation of bodies in space [35]. Indeed, it can be shown

that the following relationship holds [35,36]:⎛
⎜⎜⎜⎝

q̇1

q̇2

q̇3

q̇4

⎞
⎟⎟⎟⎠ = 1

2

⎛
⎜⎜⎜⎝

q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

ωx

ωy

ωz

0

⎞
⎟⎟⎟⎠ ,

(10)

i.e., the time evolution of the quaternion is related to the angular
velocity ω through a 4 × 4 matrix. From the knowledge of
quaternion dynamics, we can evaluate the rotation matrix R(t)
[corresponding to the angular velocity ω(t)]:

R(t)

= 2

⎛
⎜⎝

q2
1 + q2

4 − 0.5 q1q2 + q3q4 q1q3 − q2q4

q1q2 − q3q4 q2
2 + q2

4 − 0.5 q2q3 + q1q4

q1q3 + q2q4 q2q3 − q1q4 q2
3 + q2

4 − 0.5

⎞
⎟⎠ .

(11)

R(t) transforms a vector from the (fixed) laboratory frame to
a (time-dependent) frame that follows the ellipsoid:

v(t) = R(t) · v0, (12)

with v0 being a generic vector in the fixed frame and v(t)
being the same vector in the frame oriented according to
the principal axes of the ellipsoid. Notice that the rotation
matrix in Eq. (11) is updated every time step. By applying the
rotation matrix computed at the current time level R(tn+1) to
a vector having initial orientation v(t0), we obtain the vector
v(tn+1) that is oriented according to a reference frame that
followed the ellipsoid dynamics. Specifically, if the vector v(t)
is the direction p(t) of the ellipsoid major axis, we can easily
compute the particle orientation during the whole simulation.
The same formalism will also be applied to rotate the whole
simulation mesh (see below).

The computational domain used in our simulations consists
of a sphere including the ellipsoid and with its center
coinciding with its barycenter. The choice for such a domain
is convenient for the reasons explained below. We divide
the space between the spherical surface and the ellipsoid
in tetrahedral elements with smaller elements close to the
ellipsoid where larger gradients are expected. The unperturbed
shear flow boundary conditions are then applied on the
spherical surface. Results of the computations will become
independent from the sphere radius for Rout much larger than
the ellipsoid major axis a. Notice that, due to the applied
boundary conditions, some regions of the spherical surface are
inflow sections and the stress tensor needs to be specified. On
the nodes belonging to those sections, we set the stress values
computed for the same fluid used in the simulations, subjected
to shear flow without any particle and taken at the same instant
of the simulation time. In this way, we assume that, far from
the particle, the viscoelastic stress field is the unperturbed one;
i.e., we apply far-field boundary conditions for both velocity
and stresses.

To account for the particle motion, we adopt the arbitrary
Lagrangian-Eulerian moving mesh method [37]. According to
this method, the mesh follows the particle motion and the
internal nodes are updated by solving a Laplace equation
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for the mesh velocity [37]. The computed mesh velocity
um is, then, subtracted from the convected terms appearing
in the governing equations. Since inertia is neglected, the
only convective term is present in the upper-convective time
derivative Eq. (5). As the elements become more and more
distorted, after some steps, remeshing should be performed
and the solution on the old mesh would need to be projected
on the new one. For the system under investigation, however,
we can rigidly rotate the whole mesh by following the ellipsoid
dynamics. In this way, the relative distance between the
node elements does not change and no distortion occurs,
avoiding remeshing and projection steps. Therefore, at each
time step, we apply Eq. (12) to all the mesh nodes xm. The
mesh velocity um is computed from the node positions xm

by using a first-order Euler scheme for the first time step
and a second-order backward differencing for the second and
further steps. As the computation proceeds, the nodes of the
external boundary rotate as well. The choice of a spherical
domain easily allows us to compute the inflow nodes where
the unperturbed stress tensor needs to be applied. Further
details on the time discretization of the constitutive equation,
the weak formulation, and the adopted solver can be found
elsewhere [38].

Spatial and temporal convergence as well as the adequate-
ness of the domain size in order to assure unperturbed flow
far from the particle are checked for all the calculations
presented in this work. We conclude this section by giving
some information about the computational times. The CPU
time required for a simulation is strongly affected by the aspect
ratio and the Deborah number. High values of those parameters
limit the maximum time step size to be used. In addition,
high aspect ratios correspond to large rotation periods and,
consequently, require large integration times to fully describe
the particle orbit. A typical simulation to compute the orbit
for an ellipsoid with aspect ratio AR = 2 and De = 4 initially
released out of the xy plane requires about 2–3 days of CPU
time. For an ellipsoid with AR = 16 (the maximum explored
in this work) the computational time increases to 2–3 weeks.

IV. RESULTS

We proceed by illustrating the detailed dynamics of an
ellipsoid with aspect ratio AR = 4, which corresponds to
the most investigated value in Ref. [21]. For De = 1 and
an initial particle orientation lying in the gradient-vorticity
plane close to the vorticity axis, the orbit described by the
orientation vector is reported in Fig. 2(a). A spiraling motion
eventually leading to alignment along the vorticity direction
is found. Thus, the final regime is the so-called log-rolling
motion with the ellipsoid rotating around its axis of revolution
that coincides with the vorticity direction. Similar results are
found for whatever initial condition of the ellipsoid, out of the
shearing plane, as shown in Fig. 2(b) for an ellipsoid initially
oriented with its major axis near the gradient direction. When
the initial orientation lies within the shear plane, instead, the
ellipsoid forever tumbles around the vorticity axis, with its
major axis always in the shear plane (see the Appendix).

The situation at a substantially higher Deborah number is
shown in Figs. 2(c) and 2(d) (De = 3). Starting from the same
initial conditions of Figs. 2(a) and 2(b), an initial fast dynamics

FIG. 2. (Color online) Orbits described by the orientation vector
for an ellipsoid with aspect ratio AR = 4 and De = 1 (a and b)
and De = 3 (c and d). In the leftmost panels, the initial orientation
vector (red circles) is (px,0,py,0,pz,0) = (0,0.31,0.95) whereas in the
rightmost panels it is (px,0,py,0,pz,0) = (0,0.95,0.31).

of p is observed toward the flow-vorticity plane, followed by
a very slow motion leading to the flow axis. The ellipsoid
eventually attains a steady-state regime, with its major axis
aligned within the shear plane, and very close to the flow
direction (in fact, slightly below it). Such a final regime is
found for any initial condition, including those with the initial
orientation within the shear plane (see the Appendix).

Those simulation results correctly capture the experimen-
tally observed transition from vorticity to flow alignment
moving from low to high Deborah numbers. As mentioned
above, a change in the orientation direction from log-rolling
motion to flow alignment had been previously predicted for
slender bodies [22]. We would like to note, however, that
our computed final orientation at high shear rates lies in the
flow-gradient plane but is slightly below the flow direction,
at variance with the theoretical prediction (i.e., the major
axis exactly along the flow axis). Such a difference can be
ascribed to the finite aspect ratio used in the our calculations.
Other simulations carried out at larger aspect ratios indeed
confirm that the orientation vector approaches the flow axis
for progressively more elongated particles.

Through numerical simulations we are capable of investi-
gating the intermediate De range by following the ellipsoid
dynamics throughout, up to the long-time regimes. In Fig. 3,
the particle dynamics for De = 2.2 (a–c), De = 2.5 (d–f),
and De = 2.7 (g–i), for the same initial positions close to
the vorticity (left columns) and gradient (central columns)
directions, are reported. For all the investigated Deborah
numbers, by releasing the particle near the vorticity direction,
the orientation vector initially moves toward the flow axis
approaching the flow-vorticity plane, then inverts its direction
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FIG. 3. (Color online) Orbits described by the orientation vector for an ellipsoid with aspect ratio AR = 4 and De = 2.2 (a–c), De = 2.5
(d–f), and De = 2.7 (g–i). In the leftmost panels, the initial orientation vector (red circles) is (px,0,py,0,pz,0) = (0,0.31,0.95) whereas in the
central panels it is (px,0,py,0,pz,0) = (0,0.95,0.31). In the rightmost panels, the time evolution of the z component of the orientation vector
corresponding to the orbits in the left and central columns is reported. Insets: The details of the oscillations over a time window of 100
dimensionless units.

moving back toward the vorticity, and finally stops at an
equilibrium position in between the x and z axis. The final
orientation is closer to the flow axis for increasing Deborah
number values. Actually, a closer inspection of the orbits
described by the orientation vector at long times shows the
existence of small amplitude periodic oscillations. Such a
periodic regime is clearly visible in the rightmost column of
Fig. 3, where the time evolution of the z component of the
orientation vector is reported as solid lines.

A different scenario occurs for an ellipsoid starting with its
major axis close to the flow-gradient plane. The central plots
of Fig. 3 show that the ellipsoid orientation vector initially
moves toward the xz plane for all three cases. However,
whereas for De = 2.2 [Fig. 3(b)] and De = 2.5 [Fig. 3(e)]
the major axis drifts toward the aforementioned periodic
regime, for De = 2.7 the particle orientation vector tends to the

flow-gradient plane. In other words, for De = 2.7, we found
the coexistence of two equilibrium orientations, i.e., a periodic
regime with oscillations around an orientation in between the
flow and vorticity directions, and a steady-state regime with
the major axis aligned near the flow direction. The dashed lines
in the right column of Fig. 3, corresponding to the orbits just
discussed, further clarify the ellipsoid dynamics evidencing
the achievement of a different long-time regime for De = 2.7.

The complex dynamics just presented can be conveniently
represented through the so-called solution diagram [39] of our
dynamical system (for AR = 4) by reporting the long-time
particle dynamics as a function of the Deborah number.
Indeed, the complete picture of results at various De values
is illustrated in Fig. 4. The solution is represented by the z

component of the orientation vector of the particle. Only the
positive range (0,1) of pz is plotted, as negative values are
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FIG. 4. (Color online) The z component of the orientation vector corresponding to equilibrium regimes as a function of the Deborah
number. The solid blue curves denote stable steady-state regimes, the closed blue circles correspond to stable periodic regimes, the horizontal
dashed red line refers to unstable steady-state regimes, and the open red circles denote unstable periodic regimes. Four regions corresponding
to different behaviors are identified and are denoted by different colors. The vertical dashed lines refer to the orbits reported in Fig. 3.

mirror symmetric with respect to pz = 0. The solid blue curves
in Fig. 4 denote stable steady-state equilibrium orientations,
whereas the filled blue circles refer to stable periodic solutions.
Dashed red lines and empty red circles refer to unstable steady-
state and unstable periodic solutions, respectively. In the
solution diagram, we can identify four regions characterized
by different dynamical behaviors. Regions I and IV are the the
log-rolling and flow-aligning solutions as discussed above and
shown in Fig. 2.

Regions II and III refer to the dynamically rich intermediate
De range. We first note that a bistability scenario is predicted
in region III, corresponding to the situation in Figs. 3(g)–3(i):
Two stable regime solutions coexist, namely, a flow-aligning
steady solution and a periodic solution around some 0 < pz <

1. Thus, a population of noninteracting ellipsoids observed
from the shear gradient direction (as in [21]) in such conditions
would show orientations both along the shearing direction
and at a certain angle with that direction (actually, two
angles symmetric with respect to the shearing direction). Our
predictions for the aspect ratio under scrutiny show that the
bistability region is rather narrow, however, as it extends from
De = 2.6 to 2.75.

By decreasing the De value, we enter region II in the so-
lution diagram, where the steady-state flow-aligning solution
becomes unstable: the only stable solution remains the periodic
one with average orientation becoming progressively close to
the vorticity direction (pz = 1) as De decreases. The orbits
in Figs. 3(a)–3(f) belong to such a region. It is worthwhile to
mention, however, that, although the particle orientation for
De within region II reaches a unique periodic regime at long
times, the transients at different De are quite dissimilar. At
low De in region II, the final regime is attained in a relatively
short dimensionless time [see Fig. 3(c)]. By increasing De
still in region II, i.e., getting progressively closer to region III,
the orbit starting close to the shear plane remains close to the
velocity direction for a substantially large lapse of time [see
Fig. 3(f)].

In Fig. 4, some unstable solutions are reported as well.
The open red circles at pz = 0 refer to the tumbling motion
around the vorticity observed by releasing the ellipsoid with
its major axis on the flow-gradient plane. Such a periodic
regime becomes steady around De = 1.75 (the dashed red line
in Fig. 4). As mentioned above, both equilibrium solutions are

unstable (see the Appendix), i.e., small perturbations lead the
ellipsoid toward the log-rolling motion or the periodic regime,
depending on the Deborah number. Finally, the dashed red
line at pz = 1 denotes unstable solutions with the ellipsoid
major axis oriented along the vorticity direction. It should
be remarked that the reported unstable solutions are not
exhaustive. Indeed, at least one more unstable regime is
expected to be in region III that divides the periodic and
steady-state solutions. Such an unstable regime, however,
cannot be detected by time integration and different techniques
are required (e.g., parametric continuation [40]).

It so appears that simulations correctly capture the recently
observed bimodality in orientational distribution within a
range of shear rates for a population of noninteracting
ellipsoids in a non-Newtonian fluid [21]. One might argue,
however, that the predicted bistability region is indeed quite
narrow. In contrast, the above discussed predictions of tran-
sients as those reported in Figs. 3(d)–3(f) enlarge the effective
bistability range, as it is seen that ellipsoids starting close to the
shearing plane (pz0 = 0) spend a considerable amount of time
aligned around the flow direction before slowly approaching
the unique stable periodic solution. Thus, experiments with
limited observation time windows would evidence particles
that quickly align between flow and vorticity and particles
aligned along the flow. This is coherent with the suspicions of
the authors of Ref. [21]: “we cannot be sure that (our findings)
represent the true-steady state”.

To sum up, the rich dynamic features in the intermediate De
region (regions II and III) somehow connect the two extreme
behaviors of a unique attractor along the vorticity as soon as
De is switched on and of another unique attractor along the
flow direction for high De values; both such attractors were
indeed discussed in Ref. [22]. In the intermediate De range, it
is as if the mutual attractor strengths were smoothly switched
from one to the other, thus promoting a window with periodic
solutions. Simulations have been repeated for an aspect ratio
AR = 8. The same qualitative behavior as for AR = 4 is found,
with the existence of the four regions depicted in Fig. 4. The
general behavior is that the transition between consecutive
regions occurs at lower Deborah numbers.

From the data in Fig. 4, we can define a critical Deborah
number for flow alignment Deflow as the lowest De value
such that the ellipsoid aligns in the flow-gradient plane, i.e.,
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FIG. 5. (Color online) Critical Deborah number for flow align-
ment as a function of the aspect ratio. The lower (upper) triangles are
the minimum (maximum) simulated values such that flow alignment
is a stable (unstable) solution. The dashed line passes through the
average value of the lower and upper triangles and serves as guide for
the eye. The solid red curve is the theoretical prediction in Ref. [22].
The closed blue circles are experimental data taken from Ref. [21].

the boundary between regions II and III of Fig. 4. For an
aspect ratio AR = 4, we find Deflow = 2.6. By repeating the
simulations for different aspect ratios, we observe that Deflow

decreases for more and more elongated particles. We report the
computed values in Fig. 5 as lower triangle symbols. The upper
triangles in the same figure refer to the maximum simulated
Deborah numbers such that the flow axis is an unstable solution
regime. Therefore, the exact critical Deborah number value
for alignment near the flow direction lies in between the
upper and lower triangles. By taking the average values, we
obtain the dashed black line in Fig. 5 as a guide for the eye.
In the same figure, we add the theoretical predictions from
Ref. [22] (the solid red line). The constitutive parameters
used for the second-order fluid to draw the red line are
selected such that, at vanishing Deborah numbers, the same
rheological properties of our Giesekus model are reproduced.
Recalling that the theory assumes small Deborah numbers
and very high aspect ratios, the solid red curve starts to
be valid at the lower-right part of the diagram. Hence, it
is not surprising that strong discrepancies are observed for
low aspect ratios (corresponding to relatively high critical
Deborah numbers), whereas the two trends get closer and
closer for more elongated particles (and correspondingly lower
Deflow). Finally, the blue circles in Fig. 5 are the critical
Deborah numbers taken from the experiments in Ref. [21].
An aqueous solution of Polyethylene Oxide with a molecular
weight of 4 × 106 g/mol was used as the suspending liquid,
with rheological properties that are fairly described by the
Giesekus model with the constitutive parameters considered in
this work. A fair quantitative agreement between experimental
data and numerical predictions is found.

V. CONCLUSIONS

In summary, we have investigated the dynamics of an
ellipsoidal particle in a sheared non-Newtonian fluid by
numerical simulations. Our results reveal a complex scenario

with different behaviors depending on the Deborah number.
The transition from vorticity to flow alignment is charac-
terized by a rich intermediate regime, with alignment in
between the vorticity and flow direction with small amplitude
periodic oscillations. A bistability range of De values is
detected with two stable orientations (region III). A further
metabistability range of De values is also found, with very
long transients for ellipsoids starting close to the shear plane
(the rightmost part of region II). Finally, the critical Deborah
number for flow alignment (the transition from region II
to III) favorably compares with experiments. The present
study reconciles the various experimental and theoretical
observations reported in previous works within an overall
picture.

The present findings demonstrate that real particle shape
and fluid rheology must be accounted for to obtain realistic
results. We infer that similar accuracy in the description
of the dynamics will also be required when studying the
motion of active particles in complex media. Finally, single-
object dynamics of anisotropic particles will have impor-
tant implications on the bulk rheology of particle-filled
suspensions, giving rise to very different non-Newtonian
overall properties depending on the actual orientational
states.

APPENDIX: THE SPECIAL CASE OF AN ELLIPSOID
INITIALLY ORIENTED ON THE FLOW-GRADIENT

PLANE

The dynamics of an ellipsoid initially oriented with its
major axis on the flow-gradient plane is here presented. In
this condition, the angular velocity vector ω has only one
nonzero component (rotation around the vorticity direction)
that is denoted by ω. Furthermore, because of the symmetry,
the ellipsoid major axis always lies on the xy plane. Notice
also that the initial orientation is irrelevant as, after the start-up
due to the viscoelastic stress development, different initial
orientations correspond to angular velocity (and rotation angle)
trends that are shifted in time.

Simulations are performed for particles with aspect ratios
ranging from 1 (sphere) to 16 and for different Deborah
numbers. It is found that, after an initial transient due to
the stress development, the ellipsoid can tumble around the
vorticity direction or attain a steady state with the major axis
slightly below the flow direction, depending on the aspect
ratio and the Deborah number. For the periodic case, the
(normalized) angular velocity averaged over a period ω is
calculated. (The average is performed after the initial start-up.)
In the case in which a steady state is achieved, we set ω = 0.
Figure 6 shows ω as a function of the Deborah number
for different aspect ratios. It is readily observed that fluid
viscoelasticity always slows down the particle rotation, in
agreement with previous studies for spherical particles [34].
No steady state is found for AR = 2 in the range of Deborah
numbers investigated. In contrast, flow alignment is found
for AR = 4 and beyond a critical Deborah number of De =
1.75. By increasing the aspect ratio, the average angular
velocity decreases, similarly to the Newtonian case [12] that
corresponds to the data on the y axis of the plot. Furthermore,
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FIG. 6. (Color online) Average angular velocity as a function of
the Deborah number for different aspect ratios. An ellipsoid initially
released with its long axis on the flow-gradient plane is considered.

the blockage of the ellipsoid near the flow direction is found
for smaller Deborah numbers as the particle is more elongated,
in agreement with the theoretical predictions [22].

As a final comment, we remark that all the data in Fig. 6
corresponding to the particle flow alignment are equilibrium
points. However, from this figure, no indication can be given
about the stability of those points because of the very special
initial condition of a particle with its long axis lying on
the flow-gradient plane. Therefore, due to the symmetry, the
particle remains on the xy plane even if the flow alignment
condition is an unstable equilibrium point. The analysis of
the final stable regime attained by the ellipsoid requires
simulations with particles released out of the flow-gradient
plane, as those presented in the main text. In this sense, the
curves in Fig. 6 are a subset of the full particle dynamics. In
particular, the data for AR = 4 correspond to the curves in the
solution diagram of Fig. 4 for pz = 0.
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