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We analyze electro-osmotic flow about a dielectric solid of zero surface charge, using the prototypic
configurations of a spherical particle and an infinite circular cylinder. We assume that the ratio δ of Debye
width to particle size is asymptotically small, and consider the flow engendered by the application of a uniform
electric field; the control parameter is E—the voltage drop on the particle (normalized by the thermal scale)
associated with this field. For moderate fields, E = O(1), the induced ζ potential scales as the product of the
applied-field magnitude and the Debye width; being small compared with the thermal voltage, its resolution
requires addressing one higher asymptotic order than that resolved in the comparable analysis of electrophoresis
of charged particles. For strong fields, E = O(δ−1), the ζ potential becomes comparable to the thermal voltage,
depending nonlinearly on δ and E. We obtain a uniform approximation for the ζ -potential distribution, valid
for both moderate and strong fields; it holds even under intense fields, E � δ−1, where it scales as log |E|.
The induced-flow magnitude therefore undergoes a transition from an E2 dependence at moderate fields to an
essentially linear variation with |E| at intense fields. Remarkably, surface conduction is negligible as long as
E � δ−2: the ζ potential, albeit induced, remains mild even under intense fields. Thus, unlike the related problem
of induced-charge flow about a perfect conductor, the theoretical velocity predictions in the present problem may
actually be experimentally realized.
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I. INTRODUCTION

A. Counterintuitive problem

Consider a chemically inert dielectric particle suspended in
an electrolyte solution. By varying the solution pH one can
reach the isoelectric point, where the electrical charge density
on the particle boundary is zero. No double layer is formed,
and the cations and anions are uniformly distributed. When
consulting with standard textbooks in the field one may get
the impression that no electrokinetic flow would be generated
when an external electric field is applied. The calculation of
the electric-field distribution will then appear to belong to the
realm of electrostatics. Such an “electrostatic” distribution,
however, is incompatible with the ohmic nature of a uniform
electrolyte solution, where electric fields are accompanied
by electric currents (through cations moving with the field
and anions moving against it): for any finite ratio γ of the
solid-to-liquid permittivity values, the electric field at the
surface would possess a normal component, which would
paradoxically deliver electric current into or out of an inert
solid.

The present scenario thus falls into the category of induced-
charge electro-osmosis [1,2]. An induced diffuse-charge (“De-
bye”) layer must develop about the surface, modifying the
streamline pattern predicted by the “purely electrostatic”
calculation. The action of the electric field on the charged
liquid within this layer results in Coulomb body forces, which,
in turn, animate electrokinetic flow. This is most evident in the
limit of thin Debye layers, where the ratio δ of Debye width to
particle size is asymptotically small. In steady state, the field
lines outside the Debye layer must be approximately tangential
to the surface. This situation clearly resembles induced-charge
flow about a perfectly conducting (metal) particle, discussed
in detail in Ref. [2] in the limit of small δ. There is, however,
a crucial difference: in the case of a perfect conductor, the
surface acquires a (nonuniform) charge distribution opposing

that in the diffuse layer (microscopically, this distribution is
formed through rearrangement of electrons within the metal);
a double layer is accordingly formed, albeit in an induced
fashion. No such surface charge appears on the boundary of the
dielectric particle [3]. Thus, in the latter case there is no “net”
macroscopic electroneutrality in a slab-shaped control volume
spanning the diffuse layer and the solid surface [4]. Common
intuition, based upon small deviations from equilibrium, is
here misleading.

The resemblance also breaks down when considering the
mathematical modeling in the limit of thin Debye layers.
In the scheme presented by Squires and Bazant [2] for
the case of perfect conductors, the electric potential is first
calculated in the electroneutral “bulk” fluid, outside the thin
Debye layer. The ζ potential, namely the voltage across the
Debye layer, is then found by subtracting the resulting electric
potential distribution, evaluated at the bulk boundary, from
the uniform value of the electric potential in the conducting
solid. The resulting distribution of induced ζ potential scales
as the product of the applied-field magnitude and the linear
dimension of the particle. This scheme is inapplicable for a
dielectric solid in which the electric potential is nonuniform,
and, in any event, cannot be determined in that fashion. An
example of an erroneous attempt to adopt the procedure of
Squires and Bazant to the case of an uncharged dielectric
solid can be found in a recent paper by Zhang and Li [5]: for
moderate ratios of γ their expression for the ζ potential [see
their Eq. (6)] is absurdly of the same scaling as that found in
Ref. [2] for a perfect conductor.

B. Present state of knowledge

The erroneous expression obtained by Zhang and Li [5]
is only a symptom of the existing confusion associated with
the effect of dielectric-solid polarization on electrokinetic
phenomena. Before heading to analyze the specific problem of
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induced-charge flow about an uncharged dielectric solid, it is
expedient to review the relevant literature discussing various
effects of solid polarization in the limit of thin Debye layers.

Solid polarization is traditionally neglected in analyses of
electrokinetic phenomena [6]. In the past decade, however,
it became evident that solid polarization plays a key role in
electrokinetic flows about sharp corners [7,8] and microchan-
nel junctions [9], as well as in nonconventional configurations
involving dielectric stripes over electrodes [10]. The effect
of dielectric-solid polarization was reviewed by Squires and
Bazant [2] in their unified treatment of induced-charge flows.
While their general discussion regards metals and dielectrics
on the same par (“polarizable” materials), their analysis tends
to focus on the former, with configurations involving dielectric
surfaces presented in less detail. One such configuration is
a dielectric cylinder coated by another dielectric material,
for which the authors provide the final expression for the
induced ζ potential. Of special interest is their result (6.13)
appropriate to the limit of vanishing coating thickness (i.e., a
single dielectric material). For moderate values of the ratio γ

of solid-to-liquid dielectric constants, their expression reveals
that the ζ potential scales as the product of the applied-field
magnitude and the Debye thickness, in marked contrast with
the scaling corresponding to a perfect conductor. This appears
to be the first analysis of electro-osmotic flows about an
uncharged dielectric surface.

The technical procedure for dealing with solid polarization
was explicitly detailed by Yossifon, Frankel, and Miloh [11].
Assuming low ζ potentials (the Debye-Hückel limit), the
authors showed that the electric potential within the solid
satisfies a Robin-type boundary condition, governed by the
parameter

α = δγ (1.1)

(which has already appeared in Ref. [2]); this work was
later generalized to allow for nonsmall ζ potentials [12]. The
results in Ref. [11] indicate that for dielectric materials which
are realistically encountered in electrokinetic applications,
where γ is at most moderate [13], the induced ζ potential
is proportional to the Debye width, in agreement with the
predictions of Squires and Bazant [2]. (This result alone clearly
indicates that the calculation of Zhang and Li [5] is erroneous.)

It is important to emphasize, however, that the analysis in
Refs. [2,11,12] makes use of the standard bulk description
appropriate to the thin-double-layer limit, which neglects
terms which are O(δ) small. While this is legitimate if
one implicitly assumes that α is O(1), it is not a priori
self-consistent for realistic dielectric materials, where (1.1)
implies that α is at most O(δ), as is then the induced ζ

potential. More importantly, it is clear that the approach in
these papers is unsuitable for the case where the applied field
is strong: this limit, which is actually prevailing in many
practical applications, has never been addressed in the context
of induced-charge flows.

C. Plan of operation

In what follows we systematically address the problem of
electro-osmotic flow about an uncharged dielectric particle
for both moderate and strong fields (the distinction will

be made clear later on). For brevity we elect to illuminate
the electrokinetic transport in the simplest context which
is nonetheless representative. The configuration we choose
consists of a spherical particle exposed to a uniform and
constant electric field. Following the analysis pertaining to
this geometry, we briefly present the comparable key results
for the two-dimensional flow about an infinite circular cylinder.
In analyzing the problem, we employ inner-outer asymptotic
expansions in a fashion resembling our earlier analysis of more
“conventional” electrokinetic phenomena involving charged
dielectric solids [14]. It is important to emphasize, however,
that, owing to the absence of an electroneutral double-layer
structure (either fixed or induced) in the present problem, the
present analysis is necessarily different.

Prior to carrying out the analysis, several remarks are in
place concerning the assumption of an uncharged surface.
This assumption may raise some concerns since the process of
surface-charge formation is a statistical one, which inevitably
results in charge fluctuations: even when tuning the conditions
in an electrolyte (e.g., the pH) in such a way that the surface
charge vanishes, it does so only on average [15]. Nonetheless,
the idealization of an uncharged surface is instrumental in
focusing upon the unique features of electrokinetic flows
animated by solid polarization. Moreover, the results obtained
for electro-osmosis under intense electric fields, and especially
the unique velocity scaling [see, e.g., Eq. (5.11)], imply that the
solid-polarization mechanism would dominate “conventional”
electro-osmotic flow provided the “equilibrium” ζ potential is
small compared with the thermal voltage. The electrokinetic
analysis under the assumption of a zero surface charge may
accordingly provide a leading-order description for the flow
about a weakly charged particle.

II. PROBLEM FORMULATION

A chemically inert solid sphere (radius a∗) is suspended in
a symmetric (valencies ±Z) electrolyte solution, whose two
ionic species possess the diffusivities D∗± (dimensional quan-
tities being hereafter decorated by an asterisk). This solution
is treated as a dielectric Newtonian liquid (permittivity ε∗;
viscosity μ∗). The solid particle is dielectric, with permittivity
γ ε∗.

The particle boundary is assumed uncharged. Thus, in
the absence of an applied field, both ionic species possess
uniform concentrations; the concentrations are identical, say
of value c∗, and the electric potential is uniform throughout.
Our interest lies in the steady-state flow resulting from
the application of a uniform and constant electric field of
magnitude E∗. In view of the inherent fore-aft symmetry in
the problem, it is legitimate to consider a stationary sphere.

In describing the governing equations we employ a dimen-
sionless formulation, normalizing length variables by a∗, the
two ionic concentrations by c∗, and the electric potentials by
the thermal scale (≈26 mv for univalent solutions at room
temperature),

ϕ∗ = k∗T ∗

Ze∗ , (2.1)

in which k∗T ∗ is the Boltzmann temperature and e∗ the
elementary charge. The pressure is normalized by the Maxwell
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scale ε∗ϕ∗2/a∗2 and the velocities by

ε∗ϕ∗2

a∗μ∗ . (2.2)

A. Liquid transport

The electrokinetic transport within the fluid is described in
terms of the two ionic concentrations c±, the electric potential
ϕ, the velocity field u, and the pressure p. These variables
satisfy the following differential equations.

(1) Nernst-Planck ionic conservation:

∇ · j± + m±u·∇c± = 0. (2.3)

Here, the molecular ionic fluxes j± (respectively normalized
by D∗±c∗/a∗) are provided by the constitutive expressions

j± = −∇c± ∓ c±∇ϕ (2.4)

describing transport due to the combined action of diffusion
and electromigration. The dimensionless groups

m± = ε∗ϕ∗2

μ∗D∗± , (2.5)

multiplying the advection terms, represent the ionic drag
coefficients; these groups are independent of both a∗ and c∗;
for typical diffusivities (≈10−9m2s−1) in univalent aqueous
solutions (μ∗ ≈ 10−3kgm−1 s−1), they are �0.5 [16].

(2) Poisson:

−2δ2∇2ϕ = c+ − c−. (2.6)

Here,

δ = λ∗

a∗ (2.7)

is the ratio of the Debye width

λ∗ =
√

ε∗ϕ∗

2Ze∗c∗ (2.8)

to particle size.
(3) Mass conservation:

∇·u = 0. (2.9)

(4) Inhomogeneous Stokes equation:

∇p = ∇2u + ∇2ϕ∇ϕ, (2.10)

governing the inertialess motion of the fluid, subject to
Coulomb body forces.

B. Boundary conditions

The boundary conditions are conveniently prescribed using
spherical coordinates (r,θ,
 ) with r measured from the
particle center and θ = 0 in the applied-field direction.
Because of axial symmetry, the velocity field adopts the form
u = êru + êθ v. All scalar variables, as well as u and v, are
independent of the azimuthal angle 
 .

On the particle boundary, r = 1, we have the following.
(1) No flux of ions:

êr ·j± = 0, (2.11)

representing the inability of the solution ions to discharge on
the chemically inert solid surface.

(2) Electric-potential continuity:

ϕ = ϕ̀, (2.12)

in which ϕ̀ is the electric potential within the dielectric solid.
(3) Electric-displacement continuity:

∂ϕ

∂r
= γ

∂ϕ̀

∂r
, (2.13)

representing Gauss’s boundary condition in the absence of
surface charge.

(4) Impermeability to flow:

u = 0. (2.14)

(5) No slip:

v = 0. (2.15)

Additional conditions apply at large distances from the
particle, as r → ∞, where the ionic concentrations approach
their equilibrium value,

c± → 1, (2.16)

the flow attenuates,

u → 0, (2.17)

and the electric field becomes uniform,

ϕ ∼ −Er cos θ. (2.18)

Here,

E = a∗E∗

ϕ∗ (2.19)

is the dimensionless magnitude of the applied field.

C. Within the solid

Conditions (2.12) and (2.13) couple the transport within
the liquid to the electric potential ϕ̀ within the solid; since no
charge is present there, Poisson’s equation yields

∇2ϕ̀ = 0. (2.20)

D. Alternative formulation

As an alternative to the use of c± we can employ the average
(“salt”) concentration (normalized by c∗) and volumetric
charge density (normalized by 2Ze∗c∗),

c = 1
2 (c+ + c−), q = 1

2 (c+ − c−). (2.21)

Defining

j = 1
2 (j+ + j−), i = 1

2 (j+ − j−), (2.22)

we find, using (2.4),

j = −∇c − q∇ϕ, i = −∇q − c∇ϕ. (2.23)

043005-3



ORY SCHNITZER AND EHUD YARIV PHYSICAL REVIEW E 89, 043005 (2014)

Mutual addition and subtraction of the Nernst-Planck
equations (2.3) respectively yield the salt and charge balances,

∇ · j + m+ + m−

2
u·∇c + m+ − m−

2
u·∇q = 0, (2.24)

∇ · i + m+ − m−

2
u·∇c + m+ + m−

2
u·∇q = 0. (2.25)

In addition, Poisson’s equation (2.6) becomes

−2δ2∇2ϕ = q. (2.26)

Lastly, when expressed in terms of the reduced variables,
the no-flux conditions (2.11) become

êr ·j = 0, êr ·i = 0, (2.27)

while the far-field conditions (2.16) read

c → 1, q → 0. (2.28)

III. THIN DEBYE LAYER

We consider the limit of thin Debye width, δ � 1. In what
follows, we assume that all other parameters are O(1). We
therefore restrict the investigation here to moderate fields,

E = O(1). (3.1)

The comparable analysis for strong fields is performed in
Sec. IV.

We employ the generic expansion

f (r,θ ; δ) = f0(r,θ ) + δf1(r,θ ) + · · · . (3.2)

With ϕ being O(1), Poisson’s equation (2.26) readily yields
electroneutrality at both O(1) and O(δ),

q0 ≡ 0, q1 ≡ 0, (3.3)

implying that

j0 = −∇c0, i0 = −c0∇ϕ0. (3.4)

At O(1), the salt and charge balances (2.24) and (2.25),
respectively, read

∇2c0 = m+ + m−

2
u0·∇c0, (3.5)

∇·(c0∇ϕ0) = m+ − m−

2
u0·∇c0. (3.6)

The no-flux condition (2.27) in conjunction with (3.4) yield
the homogeneous boundary conditions

∂c0

∂r
= 0,

∂ϕ0

∂r
= 0. (3.7)

In view of the homogenous differential equation (3.5) and
far-field condition governing c0 − 1, we obtain the uniform
concentration:

c0 ≡ 1. (3.8)

It then follows from (3.6) that ϕ0 is harmonic

∇2ϕ0 = 0. (3.9)

Since it also satisfies the far-field condition,

ϕ0 ∼ −Er cos θ, (3.10)

all that remains is to apply the appropriate boundary condition
at r = 1. The second of (3.7) then yields

ϕ0 = −E

(
r + 1

2r2

)
cos θ. (3.11)

A. Incompatibility with Gauss’s law?

Rather than applying the second of (3.7), one could
in principle determine ϕ0 using the electrostatic boundary
conditions,

ϕ0 = ϕ̀0,
∂ϕ0

∂r
= γ

∂ϕ̀0

∂r
. (3.12)

The solution for Laplace’s equation governing ϕ0 and ϕ̀0

satisfying these conditions together with (3.10) is well known:

ϕ0 = −E

(
r − γ − 1

γ + 2
r−2

)
cos θ, ϕ̀0 = −3Er cos θ

γ + 2
.

(3.13)

This is different from (3.11).

B. Singular limit

The apparent inconsistency reflects the familiar singular
nature of the limit δ � 1, associated with the multiplication
of the small expansion parameter by the highest derivative
in Poisson’s equation (2.26). It implies that the preceding
expansions are nonuniform: a boundary (“Debye”) layer of
O(δ) width develops about the interface r = 1. Note that in
the present problem a diffuse-charge layer forms despite the
absence of surface charge.

The generic expansion described by (3.2) thus applies to
the outer region, outside the boundary layer; the boundary
conditions on the interface apply to the inner Debye-scale
fields. The error in (3.12) has to do with the application of
boundary conditions to the outer fields. The correct approach is
to separately analyze the inner and outer regions, and then use
asymptotic matching to derive effective boundary conditions
governing the electrokinetic transport in the outer domain.
Use of such inner-outer asymptotic expansions is widespread
in electrokinetic analyses [14,17]. We now apply this approach
in the delicate case of an uncharged dielectric surface.

To emphasize the distinction between the two domains,
we use r̄ for the radial coordinate in the outer region. Thus
r̄ = 1 represents the effective boundary, rather than the literal
interface r = 1, where the boundary conditions are specified.
The O(δ)-wide Debye layer is resolved using the stretched
radial coordinate

Z = r − 1

δ
, (3.14)

whereby the boundary conditions apply at Z = 0. The generic
expansion in the inner region, replacing (3.2), is

f (r,θ ; δ) = F0(Z,θ ) + δF1(Z,θ ) + · · · . (3.15)

Specifically, the radial components of the ionic fluxes are
expanded as

êr ·j± = J±
0 (Z,θ ) + δJ±

1 (Z,θ ) + · · · . (3.16)
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The previous nonuniformity can readily be clarified. In the
inner region, the Nernst-Planck equations (2.3) at O(δ−1) read
∂J±

0 /∂Z = 0; the no-flux conditions (2.11) thus give

J±
0 ≡ 0. (3.17)

Asymptotic matching with the outer region then provides the
effective conditions

êr ·j0 = 0, êr ·i0 = 0 at r̄ = 1. (3.18)

Using (3.4) it then follows that conditions (3.7) still apply,
but are now understood to hold at r̄ = 1 (with the partial
differentiation being carried with respect to r̄). It follows that
(3.8)–(3.11) remain valid (with r̄ replacing r throughout).

C. Absence of ζ potential and electro-osmosis at O(1)

Following standard Debye-scale analyses [14], we start by
noting the absence of O(δ−1) radial fluxes. Using (2.4), this
implies

−∂C±
0

∂Z
∓ C±

0

∂�0

∂Z
= 0. (3.19)

Integration of (3.19) in conjunction with asymptotic matching
provides the Boltzmann distributions

C±
0 = e∓
, (3.20)

wherein


 = �0 − ϕ0 (3.21)

is the “excess” Debye-layer potential, relative to the bulk
potential at r̄ = 1. (In what follows, outer variables appearing
in the Debye-scale analysis are understood to be evalu-
ated at this effective boundary.) Substitution into Poisson’s
equation (2.26) yields at leading order

∂2


∂Z2
= sinh 
. (3.22)

This equation is subject to large-Z decay together with the
leading O(δ−1) balance of Gauss’s condition (2.13)

∂


∂Z
= 0 at Z = 0. (3.23)

In contrast to standard electrokinetic analysis involving
charged surfaces [14], here Gauss’s law stipulates a homo-
geneous boundary condition. It follows that 
 ≡ 0, whereby
�0 is independent of Z:

�0(θ ) = ϕ0. (3.24)

The ζ potential thus vanishes at O(1). In addition, (3.20) yields

C±
0 ≡ 1. (3.25)

Thus, unlike standard Debye-scale analyses [14], here we find
that the leading-order electrochemical fields simply constitute
a trivial extrapolation of the respective outer fields. (As will
become evident in the next section, the situation is different in
the case of strong fields.)

With �0 independent of Z, it follows from the momentum
balance in the radial direction that the pressure is only O(1)
[as apposed to O(δ−2) as in the case of a charged solid
[14]]. Moreover, it readily follows from the no-slip condition

together with the leading O(δ−2) balance of the Stokes
equation in the θ direction that v vanishes at O(1). It therefore
possesses the expansion [cf. (3.2)]

v = δV1(R,θ ) + · · · . (3.26)

The mass-conservation equation (2.9) in conjunction with the
impermeability condition (2.14) thus implies that u is O(δ2):

u = δ2U2(R,θ ) + · · · . (3.27)

Asymptotic matching then necessitates that the outer velocity
is O(δ),

u = δu1 + · · · . (3.28)

It is evident that, unlike the case of a charged solid,
determination of the leading-order flow requires here going
to one higher asymptotic order. Before proceeding to do so
we note that, in view of the transverse uniformity of �0, the
O(1) balance of (2.12) in conjunction with (3.11) yields the
boundary condition

ϕ̀0 = − 3
2E cos θ at r = 1. (3.29)

Since ϕ̀0 is harmonic, we readily find that the electric field
within the solid is uniform:

ϕ̀0 = − 3
2Er cos θ. (3.30)

D. Next asymptotic order

We start with the outer region. With the fluid velocity being
O(δ), the O(δ) balances of (2.24) and (2.25) are unaffected by
convection,

∇·j1 = 0, ∇·i1 = 0. (3.31)

Using the O(δ) electroneutrality [see (3.3)], we find

j1 = −∇c1, i1 = −∇ϕ1 − c1∇ϕ0. (3.32)

Thus (3.31) yield

∇2c1 = 0, ∇2ϕ1 = −∇·(c1∇ϕ0). (3.33)

To obtain effective conditions governing c1 and ϕ1 we
now consider the ionic transport in the Debye layer. With
the inner velocity scaling (3.26) and (3.27), the Nernst-Planck
equations (2.3) at O(1) are still unaffected by ionic advection,
∂J±

1 /∂Z = 0. The no-flux conditions then give

J±
1 ≡ 0, (3.34)

whereby asymptotic matching, in conjunction with (3.7) and
(3.32), yields the homogeneous effective conditions

∂c1

∂r̄
= 0,

∂ϕ1

∂r̄
= 0 at r̄ = 1. (3.35)

Since the far-field conditions [see (2.16) and (2.18)],

c1 → 0, ϕ1 → 0, (3.36)

are also homogeneous, it follows that both c1 and ϕ1 vanish.
The leading-order velocity is therefore governed by the
homogeneous Stokes equations,

∇·u1 = 0, ∇p1 = ∇2u1. (3.37)
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Consider now the explicit form of (3.17). Making use of
(3.24) and (3.25), they read

−∂C±
1

∂Z
∓ ∂�1

∂Z
= 0. (3.38)

The solution that matches (3.36) is

C±
1 = ∓�1. (3.39)

Substitution into Poisson’s equation (2.26) at O(δ) yields the
differential equation

∂2�1

∂Z2
= �1. (3.40)

Its solution, which matches the trivial outer-region potential,
is

�1 = A(θ )e−Z. (3.41)

The function A is obtained using the O(1) balance of Gauss’s
boundary condition (2.13), namely,

∂�1

∂Z

∣∣∣∣
Z=0

= γ
∂ϕ̀0

∂r

∣∣∣∣
r=1

. (3.42)

Upon substitution of (3.30) we obtain

A(θ ) = 3
2γE cos θ. (3.43)

We can now calculate V1 using the O(δ−1) momentum
balance in the θ direction,

0 = ∂2V1

∂Z2
+ ∂2�1

∂Z2

d�0

dθ
. (3.44)

Two successive integrations, in conjunction with the require-
ment of asymptotic matching, yield

V1 = v1 − �1
d�0

dθ
. (3.45)

Application of the no-slip condition together with (3.11),
(3.24), (3.41), and (3.43) eventually provides the effective slip
condition

v1 = 9
4γE2 sin θ cos θ. (3.46)

This is supplemented by the effective impermeability condition

u1 = 0, (3.47)

which readily follows from matching with the O(δ2) radial
velocity in the Debye layer.

Equations (3.46) and (3.47), together with the Stokes
equations (3.37) and the requirement of far-field decay,
uniquely determine u1. The solution of this equation set is
of course well known, since (3.46) possess the same structure
as the slip condition on a perfectly conducting sphere [2].
Note that one cannot get the former from the latter by simply
applying the limit γ → ∞.

IV. STRONG ELECTRIC FIELDS

The preceding analysis suggests a qualitative difference at
strong electric fields, scaling as δ−1, where solid polarization
is expected to enter the O(δ−1) balance of Gauss’s boundary
condition, giving rise to an O(1) ζ potential. We therefore

consider here separately the case where E is of order δ−1. This
is expressed by writing

E = δ−1Ẽ (4.1)

and considering Ẽ as an O(1) parameter.

A. Outer analysis

Clearly, the generic expansion (3.2) is not general enough
for the present case. Indeed, the electric potential is O(δ−1)

ϕ = δ−1ϕ−1 + ϕ0 + · · · , (4.2)

where

ϕ−1 ∼ −Ẽr̄ cos θ as r̄ → ∞. (4.3)

We anticipate fluid velocities of the same order [cf. (3.28)],

u = δ−1u−1 + u0 + · · · . (4.4)

A similar expansion applies for the pressure p.
We still expect that both c and q are O(1). In fact, Poisson’s

equation (2.26) gives again

q0 ≡ 0. (4.5)

It follows that the salt flux is O(1),

j = j0 + · · · , (4.6)

and is dominated by diffusion,

j0 = −∇c0. (4.7)

The current density, on the other hand, is O(δ−1),

i = δ−1i−1 + i0 + · · · , (4.8)

and is dominated by electromigration,

i−1 = −c0∇ϕ−1. (4.9)

Substitution into the salt balance (2.24) yields at O(δ−1)

(m+ + m−)u−1·∇c0 = 0. (4.10)

Since m± are both positive, salt transport is dominated by
advection. With the flow being steady, c0 is constant on
each streamline. We make the plausible assumption that the
streamlines of u−1 are open, originating at infinity. Since at
large distances c0 = 1, we find that

c0 ≡ 1. (4.11)

The charge balance (2.25) thus yields at O(1)

∇2ϕ−1 = 0. (4.12)

Poisson’s equation (2.26) then implies, again, O(δ) electroneu-
trality

q1 ≡ 0. (4.13)

The analysis of the outer region is easily continued in this
fashion to one higher asymptotic order, yielding

c1 ≡ 0 (4.14)

and

∇2ϕ0 = 0. (4.15)
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The Coulomb body force in the momentum equation (2.10)
thus disappears at O(δ−1):

∇·u−1 = 0, ∇p−1 = ∇2u−1. (4.16)

Before heading to analyze the Debye layer we note that, with
an O(δ−1) electric potential, the same scaling holds within the
solid,

ϕ̀ = δ−1ϕ̀−1 + · · · , (4.17)

where ϕ̀−1 is harmonic.

B. Debye scale

We now analyze the inner Debye region. As in the case of
moderate fields, we postulate O(1) concentrations

c± = C±
0 (Z,θ ) + · · · . (4.18)

Given the O(δ−1) electric field in the outer bulk, we postulate

ϕ = δ−1�−1(θ ) + �0(Z,θ ) + · · · , (4.19)

where the first term is independent of Z; asymptotic matching
then implies

�−1(θ ) = ϕ−1, (4.20)

where, as in the moderate-field analysis, bulk variables
appearing in Debye-scale equations are understood to be
evaluated at r̄ = 1. We also postulate an O(δ−1) velocity in
the θ direction,

v = δ−1V−1 + · · · , (4.21)

which can match (4.4). The continuity equation and imper-
meability condition then imply that the radial velocity u is
O(1).

As in the moderate-field analysis, the Nernst-Planck equa-
tions (2.3) at O(δ−2) in conjunction with the zero ionic flux at
Z = 0 imply zero transverse ionic fluxes at O(δ−1). We again
obtain (3.20), with 
, as defined by (3.21), being governed
by (3.22) and the large-Z decay. In the present case, however,
the electric displacement in the solid phase enters Gauss’s law
(2.13) at O(δ−1); hence the homogeneous equation (3.23) is
replaced by

∂


∂Z
(Z = 0,θ ) = γ

∂ϕ̀−1

∂r
(r = 1,θ ). (4.22)

For our purpose, we only need the distribution of 
 at
Z = 0 [the O(1) ζ potential],

ζ (θ ) = 
(Z = 0,θ ). (4.23)

Integration of (3.22) subject to to the requirement of large-Z
decay yields

∂


∂Z
= −2 sinh




2
. (4.24)

Substitution of (4.23) and (4.24) into (4.22) yields the equation

2 sinh
ζ

2
= −γ

∂ϕ̀−1

∂r

∣∣∣∣
r=1

, (4.25)

relating the ζ -potential distribution to the solid polarization.
Lastly, we consider the electrokinetic flow engendered

by the intense electric field in the θ direction. The radial

momentum component of (2.10) in conjunction with (4.19)
readily implies that the pressure is O(δ−2) and accordingly
does not contribute to the O(δ−3) tangential momentum
balance

∂2V−1

∂Z2
+ ∂2


∂Z2

d�−1

dθ
= 0. (4.26)

Integrating twice with respect to Z in conjunction with the
no-slip condition and the requirement of asymptotic matching
with the O(δ−1) outer flow (which eliminates terms growing
as Z) yields the velocity profile

V−1 = (ζ − 
)
d�−1

dθ
. (4.27)

C. Effective boundary conditions

Asymptotic matching yields a set of effective boundary
conditions governing the outer bulk fields. To begin with,
matching the zero O(δ−1) transverse current density in the
Debye layer to the ohmic density (4.9) requires that

∂ϕ−1

∂r̄
= 0 at r̄ = 1. (4.28)

Next, matching the O(1) radial velocity component within
the Debye layer to the O(δ−1) outer flow yields an effective
impermeability condition

u−1 = 0 at r̄ = 1, (4.29)

while matching that flow with (4.27) yields a Smoluchowski-
type slip condition

v−1 = ζ
∂ϕ−1

∂θ
at r̄ = 1. (4.30)

Finally, as the O(δ−1) electric potential does not vary in the
Z direction within the Debye layer [see (4.19)], we readily
obtain

ϕ̀−1|r=1 = ϕ−1|r̄=1 . (4.31)

D. Induced ζ potential

The leading-order bulk potential ϕ−1 is governed by
Laplace’s equation (4.12) together with the homogeneous
Neumann boundary condition (4.28) and the far-field approach
to a uniform field (4.3). The solution to this linear problem is

ϕ−1 = −Ẽ

(
r̄ + 1

2r̄2

)
cos θ. (4.32)

Substituting (4.32) evaluated at r̄ = 1 into (4.31) yields a
boundary condition governing the solid-phase potential ϕ̀−1.
This harmonic potential is therefore given by

ϕ̀−1 = − 3
2 Ẽr cos θ. (4.33)

With the above result, Eq. (4.25) yields the nonlinear ζ -
potential distribution

ζ = 2 sinh−1 (
3
4γ Ẽ cos θ

)
. (4.34)

Making use of (4.32), the slip condition (4.30) reads

v−1 = 3Ẽ sinh−1
(

3
4γ Ẽ cos θ

)
sin θ. (4.35)

This condition uniquely determines the flow.
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V. UNIFORM APPROXIMATION

Consider the leading-order problems governing the outer
velocity u in the moderate- [see (3.37)] and strong-field [see
(4.16)] cases. In both limits we found that the flow is governed
by the homogeneous Stokes equations

∇·u = 0, ∇p = ∇2u, (5.1)

together with impermeability,

u = 0 at r̄ = 1, (5.2)

and far-field decay. The difference lies in the slip condition:
for moderate fields the O(δ) slip is [see (3.46)]

v = 9
4δγE2 sin θ cos θ, (5.3)

corresponding to the ζ -potential distribution δA(θ ) [see (3.41)
and (3.43)]; at strong fields we have obtained the O(δ−1) slip
[see (4.35)]

v = 3δ−1Ẽ sinh−1
(

3
4γ Ẽ cos θ

)
sin θ, (5.4)

corresponding to the ζ -potential distribution (4.34). Recalling
(4.1), we see that (5.4) constitutes a uniform approximation,
valid for both moderate and large field values. Using definition
(1.1), this approximation simply reads

v = 3E sinh−1
(

3
4αE cos θ

)
sin θ. (5.5)

Similarly, Eq. (4.34) constitutes a uniform approximation for
the ζ -potential distribution, namely

ζ = 2 sinh−1
(

3
4αE cos θ

)
. (5.6)

To describe the dependence of the resulting flow upon E, it
is expedient to identify a global quantity which represents the
flow magnitude. We here choose it as the mean slip velocity
over one hemisphere (cf. [18,19]),

〈v〉 = 1

2π

∫
0<θ<π/2

v dA. (5.7)

Use of the uniform approximation (5.5) yields

〈v〉 = 3E

∫ π/2

0
sinh−1

(
3

4
αE cos θ

)
sin2 θ dθ. (5.8)

Note the invariance to the sign of E. For small αE, we readily
get

〈v〉 = 3
4αE2. (5.9)

For large αE, use of the approximation

sinh−1 x ∼ ln(2|x|) sgn x + O(x−2) for x � 1 (5.10)

yields

〈v〉 = 3π

4
|E|

(
ln

3α|E|
4

− 1

2

)
. (5.11)

These approximations are illustrated in Fig. 1 for α = 0.1,
portraying (on a logarithmic scale) a transition from an E2

scaling to an essentially linear growth with E.
Another global estimate for the electro-osmotic mechanism

is the average of the ζ potential over one hemisphere,

〈ζ 〉 = 1

2π

∫
0<θ<π/2

ζ dA. (5.12)

10
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FIG. 1. (Color online) Average velocity 〈v〉, calculated using
(5.8) for α = 0.1, as a function of the applied field E. Also
shown (dashed) are approximations (5.9) and (5.11), respectively
corresponding to small and large αE.

Use of the uniform approximation (5.6) yields

〈ζ 〉 = 8

3αE

[
3αE

4
sinh−1 3αE

4
+ 1 −

√
1 +

(
3αE

4

)2]
.

(5.13)

For small αE, we readily get

〈ζ 〉 = 3
4αE. (5.14)

For large αE, use of approximation (5.10) yields

〈ζ 〉 = 2

(
ln

3α|E|
2

− 1

)
sgn(E). (5.15)

These approximations are illustrated in Fig. 2, portraying
a transition from a linear scaling in E to an essentially
logarithmic growth.

It is expedient to supplement the preceding approximations
with the limitations imposed upon the value of E. Clearly,
the entire strong-field analysis breaks down when Ẽ becomes
comparable to δ−1. Since γ is assumed O(1), this means that
the strong-field approximation is valid only if

E � δ−2. (5.16)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

αE

ζ

FIG. 2. (Color online) Average ζ potential 〈ζ 〉, calculated using
(5.13), as a function of αE. Also shown (dashed) are approximations
(5.14) and (5.15), respectively corresponding to small and large αE.
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Another restriction,

δe|ζ |/2 � 1, (5.17)

follows from the shuffling of terms within the asymptotic hi-
erarchy occurring as the ζ potentials become moderately large
[14]. Application of (5.10) to (4.34) reveals that satisfaction of
(5.17) again yields (5.16). Thus, while the induced ζ potential
become logarithmically large for E � δ−1, the asymptotic
ordering remains intact [20].

VI. FLOW ABOUT AN INFINITE CIRCULAR CYLINDER

The preceding calculations can easily be carried out for
another prototypic configuration, namely an infinite cylinder
exposed to a uniform electric field perpendicular to its
axis. The two-dimensional transport is naturally described
using polar coordinates (r,θ ) with r = 1 being the cylinder
boundary (corresponding to a∗ being the dimensional cylinder
radius) and θ = 0 in the applied-field direction. Repeating the
analysis, it is readily found that [cf. (5.5)]

v = 4E sinh−1 (αE cos θ ) sin θ (6.1)

provides a uniform approximation for the electro-osmotic slip.
The representative electro-osmotic velocity is here naturally
chosen as the average over one quadrant [cf. (5.7)]

〈v〉 = 2

π

∫ π/2

0
v dθ. (6.2)

Use of (6.1) yields here

〈v〉 = 8

πα
[αE sinh−1(αE) + 1 −

√
1 + α2E2]. (6.3)

The analogs of (5.9) and (5.11) are

〈v〉 = 4

π
αE2 for αE � 1 (6.4)

and

〈v〉 = 8|E|
π

[ln(2α|E|) − 1] for αE � 1. (6.5)

VII. CONCLUDING REMARKS

We have analyzed the electro-osmotic flow engendered
about a dielectric particle of zero surface charge. Our key result
is the uniform approximation (5.5) for the electro-osmotic
slip. Assuming typical solids encountered in electrokinetic
applications, where γ is at most moderate, the polarization
parameter α is O(δ). Approximations (5.9) and (5.11) for
the average slip accordingly describe a transition from the

velocity scaling δE2 at moderate fields [E � O(1)] to the
newly identified scaling |E| ln(δ|E|) at intense fields [δ−1 �
E � δ−2].

Practically speaking, logarithmic terms may be considered
O(1), in agreement with the numerical values they realistically
attain. At intense fields, the dimensionless fluid velocity thus
scales essentially as |E|. In a dimensional notation [see (2.2)],
we have revealed here a transition from a velocity scale that
is proportional to the Debye width [see (2.7)] to one that is
independent of it; both scales are independent of particle size.

It is of interest to compare the present velocity scalings to
those pertaining to induced-charge flows about a perfectly
conducting (i.e., metal) sphere of zero net charge. In that
problem, the induced ζ potential scales as E at moderate fields
[2]; the dimensionless velocity thus scales as E2, representing
dimensional velocities that are linear in particle size. These
velocities, of course, are much larger than those predicted
in the present problem under moderate fields. It is well
understood, however, that the rapid growth with E of the
induced ζ potential about a perfect conductor introduces both
nondilute [21,22] and surface-conduction [14] effects already
at moderately large values of E; additionally, recent numerical
simulations of the exact Poisson-Nernst-Planck equations
about a cylinder predict an inherent instability occurring
beyond E ≈ 30 [23]. The large velocities predicted by the
weak-field theories are simply not realized, and the velocity
scaling at large values of E is yet unknown [24].

No such complications arise in the present problem of
an uncharged dielectric surface, where the ζ potential, albeit
induced, grows only mildly with the applied field, and surface
conduction is negligible even for E � δ−1. We therefore
conjecture that at sufficiently strong fields the induced electro-
osmotic velocities may be larger than those attained in the
flow about a perfect conductor. This suggests the need for a
revision in our perception of induced-charge electro-osmosis.
Following the introduction of this concept into the western
literature [1,2], the common view was that the induced-charge
mechanism can lead, through a field-square scaling, to large
velocities which are not attained in standard electro-osmotic
flows about a charged dielectric solid. It has since been found
that these predictions are both qualitatively and quantitatively
incompatible with experimental observations [25]. We propose
that large velocities might actually be achieved in the related
phenomena of induced-charge flows about uncharged dielec-
tric surfaces, traditionally assumed asymptotically small.
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