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Instability of Poiseuille flow at extreme Mach numbers: Linear analysis and simulations
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We develop the perturbation equations to describe instability evolution in Poiseuille flow at the limit of
very high Mach numbers. At this limit the equation governing the flow is the pressure-released Navier-Stokes
equation. The ensuing semianalytical solution is compared against simulations performed using the gas-kinetic
method (GKM), resulting in excellent agreement. A similar comparison between analytical and computational
results of small perturbation growth is performed at the incompressible (zero Mach number) limit, again leading to
excellent agreement. The study accomplishes two important goals: it (i) contrasts the small perturbation evolution
in Poiseuille flows at extreme Mach numbers and (ii) provides important verification of the GKM simulation
scheme.
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I. INTRODUCTION

Couette and Poiseuille flows are prototypical shear flows
in which many fundamental physical features of practical
importance pertaining to instability, transition, and turbulence
can be investigated. Both flows describe fluid motion between
two parallel plates but driven in different ways. In a Couette
flow, the bottom plate is stationary, and the top plate moves
at a uniform velocity. The resulting flow has a linear velocity
profile which corresponds to uniform shear (velocity gradient).
The walls of a Poiseuille flow are stationary, and the fluid
between them is driven by an applied uniform pressure
gradient. The Poiseuille velocity profile is parabolic, and corre-
spondingly, the shear varies in space. In computer simulations,
the Couette flow away from the wall can be approximated
as a homogeneous shear flow. Instability and turbulence in
homogeneous shear flow have been extensively studied in
the literature. Most recently, the instability characteristics of
homogeneous shear flows at extreme values of Mach number
have been contrasted in [1,2]. In that same vein, the main
objective of this study is to examine the stability of Poiseuille
flow at the two extremes of Mach-number-incompressible
and highly compressible limits. In engineering literature, the
Poiseuille flow is also called the channel flow. The main
distinguishing feature between the two extreme limits of
Poiseuille or channel flow is the action of pressure.

Pressure plays a profound role in shaping the nature
of instability, transition, and turbulence phenomena in fluid
flows. The interaction between pressure and velocity fields
depends upon the flow-to-acoustic (pressure) time scale ratio
quantified by the Mach number. At the vanishing Mach
number limit, pressure evolves very rapidly to impose the
incompressibility constraint on the velocity field. Under these
conditions, hydrodynamic pressure can be completely deter-
mined from a Poisson equation. In such incompressible flows,
pressure-enabled energy redistribution mitigates instability in
hyperbolic flows but initiates and sustains instability in elliptic
flows [3]. The flow physics at low Mach numbers is described
by the incompressible Navier-Stokes equations.
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With increasing Mach number, the nature of pressure
action on the flow field changes. Pressure evolves according
to a wave equation resulting from the energy conservation
statement and the thermodynamic state equation. In high
speed flows, as the time scales of velocity and pressure
become comparable, pressure does not act rapidly enough to
impose the divergence-free constraint on the velocity field.
This in turn leads to the flow becoming compressible with
significant changes in density across the field. At the limit
of a very high Mach number, pressure evolution is very
slow compared to that of the velocity field. Consequently,
the velocity field evolves nearly imperviously to the pressure
field. The pressureless Navier-Stokes equation, called the
pressure-released equation (PRE), describes the evolution
at extremely high Mach numbers. The PRE flow behavior
has been shown to accurately characterize the high Mach
number Navier-Stokes physics in homogeneous shear (Cou-
ette) flows [1,2,4]. The PRE equation has also been widely
used to infer velocity gradient dynamics at very high Mach
numbers [5].

In this study, we will perform a linear perturbation analysis
of the PRE to describe the evolution of small perturbations in
very high Mach number Poiseuille flows. At the limit of a very
small Mach number, the classical Orr-Sommerfeld analysis
is used to evaluate perturbation evolution. In addition to the
analyses, direct numerical simulations (DNS) of the Poiseuille
flow at extreme Mach numbers will be performed using the
gas-kinetic method (GKM). Apart from providing insight into
the instability flow physics at extreme Mach numbers, the
present study has an important second goal to benchmark the
validity of the GKM simulations at these limits.

The study can be broken down into four parts: (i) for-
mulate and solve the linearized PRE for describing velocity
perturbation evolution in high Mach number Poiseuille flow,
(ii) contrast the high and low Mach number Poiseuille flow
instability characteristics, (iii) perform (GKM) numerical
simulations of instability evolution at these extreme Mach
numbers, and (iv) compare the analytical and numerical results
for mutual verification.

The paper is organized as follows. Section II contains the
fundamental governing equations and linear analyses at the
two Mach number limits. The GKM numerical scheme is
described in Sec. III. Details of the simulations are also given.
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A comparison between the analysis and numerical results is
shown in Sec. IV. The paper concludes in Sec. V with a brief
discussion.

II. GOVERNING EQUATIONS AND LINEAR ANALYSIS

In this section, we present the linear analysis of small
perturbation evolution at both high and low Mach number
limits. The compressible Navier-Stokes equations along with
the ideal-gas assumption form the basis of our analysis.
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where asterisks denote dimensional quantities, c∗
v is the

specific heat at constant volume, k∗ is the coefficient of
thermal conductivity, R is the specific gas constant, μ∗ is the
coefficient of dynamic viscosity, and λ∗ is the coefficient of
second viscosity. The dynamic viscosity is assumed to follow
Sutherland’s law [6].

The equations are nondimensionalized with the following
reference quantities: density ρ0, velocity U0, temperature T0,
characteristic length L, viscosity μ0, heat conductivity k0, and
speed of sound a0. The specific values of these quantities
depend on the flow under consideration. For the channel flow,
the reference values are those of background flow at the
centerline at t = 0. L is half channel width. The dimensionless
quantities are defined as

ρ = ρ∗/ρ0, ui = u∗
i /U0, T = T ∗/T0,

P = P ∗/ρ0a
2
0, xi = x∗

i /L, t = U0t
∗/L, (7)

μ = μ∗/μ0, λ = λ∗/μ0, k = k∗/k0.

The dimensionless compressible Navier-Stokes (NS) equa-
tions can be rewritten as follows:
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The pressure equation is
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The relevant dimensionless parameters are Reynolds number
Re, Mach number M , Prandtl number Pr, and specific heat
ratio γ :

Re = ρ0U0L
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p

c∗
v

. (10)

In the DNS simulations the Prandtl number Pr is held constant
at 0.7. The specific heat ratio γ is held constant at 1.4.

A. High Mach number linear analysis

While the DNS performed in this work employs the
full equation set, the analysis is restricted to inviscid (and
nonconducting) flow phenomena. The simplified equations are
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To investigate flow stability, we examine the small perturbation
evolution. We decompose the flow field into background flow
and perturbation quantities:

ρ = ρ̄ + ρ ′, ui = ūi + u′
i , P = P̄ + P ′. (14)

The background flow equations have a form that is similar to
that of total flow:
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The perturbation evolution equation can be obtained by
subtracting the background flow equations (15)–(17) from the
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corresponding full equations (11)–(13):
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Equation (19) stipulates the balance between flow inertia on the
left hand side (LHS) and the pressure forces on the right hand
side (RHS). The pressure forces are inversely proportional to
the square of the Mach number, indicating its reduction with
increasing flow velocity. At the limit of infinite Mach number,
the pressure effects can be negligible, and the momentum
following a background streamline will be nearly unchanged:
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This represents the pressure-released limit of flow. Clearly,
the description will be valid only for a finite period of time
as the integrated RHS, however small initially, will ultimately
affect the momentum [2,7]. Equation (19) in the absence of
the pressure terms is called the pressure-released equation for
velocity perturbations. The form of Eq. (19) clearly indicates
that the duration of PRE validity will increase with increasing
Mach number as demonstrated in [7] for homogeneous shear
flow. During the period of PRE validity, the energy equation
decouples from the momentum equation as the changes in
thermodynamic fluctuations are too slow to affect the velocity
field evolution.

We take x, y, and z to be streamwise, normal, and spanwise
directions. The background flow follows the parallel shear flow
condition, and planar velocity perturbations are considered:

ūi = (U (y),0,0), (22)

u′
i = (u,v,0). (23)

As in the incompressible transition analysis, we restrict our
considerations to planar velocity perturbations. Nonplanar and
oblique perturbations will be considered in future works. Now
we formulate the PRE analysis for the evolution of small
perturbations in a channel flow. We linearize the equations,
retaining only terms of order 1 in the perturbation field. Finally,
the linearized PRE for small perturbation evolution in parallel
nonuniform shear flows can be written as

∂u
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Perturbations that are periodic in the x direction are inves-
tigated. We take the normal mode approach [8,9] to solve

the perturbation evolution equations. Normal mode forms of
perturbations are given as

u = û(y,t)eiαx + c.c., (26)

v = v̂(y,t)eiαx + c.c. (27)

Here û and v̂ are the mode amplitudes of the u and v velocity
perturbations, and c.c. stands for complex conjugate. The
resulting mode amplitude equations are

Dû(y,t)

Dt
= −v̂(y,t)

dU

dy
, (28)

Dv̂(y,t)

Dt
= 0. (29)

D
Dt

represents the time rate of change in the frame moving
with the background flow. The mode amplitudes are clearly
functions of the y coordinate and time. Therefore, the solutions
to these equations will be of the form

û(y,t) = û(y,0) − v̂(y,0)
dU

dy
(y)t, (30)

v̂(y,t) = v̂(y,0). (31)

The solution is very similar to the homogeneous shear
flow PRE result, with the exception that the amplitude is
dependent on the y coordinate as shear is not uniform.
Given the background shear variation(dU/dy) and the initial
perturbation profile û(y,0) and v̂(y,0), all the flow variables
can be analytically determined at later times. Bertsch et al.
[2] estimate the duration as a function of Mach number over
which the PRE solution will remain a reasonable idealization
of a high Mach number homogeneous shear flow. They show
that the PRE result is valid for the time range [2]

τ = St∗

M1/2
∼ 1.8, (32)

where S is the local value of shear which is uniform in
homogeneous shear flow. These results will be used to examine
the high Mach number behavior of flow perturbations in the
results section.

B. Low Mach number linear analysis

For incompressible flow, the linear analysis of small pertur-
bation evolution is well established [8–10]. The divergence-
free velocity condition decouples the momentum and energy
equations. The flow can again be decomposed into background
and perturbation velocities. The perturbation velocity equa-
tions are obtained by subtracting background flow equations
from total flow equations:
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(34)

Here the prime represents perturbation quantities and the bar
represents background quantities as before. The normalization
is similar to Eq. (7), except pressure is normalized in
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incompressible flows as P0 = ρ0U
2
0 . The specific values of

these quantities depend on the flow under consideration. For
the channel flow, the reference values are those of background
flow at the centerline at t = 0. L is half channel width. The
only dimensionless parameter of relevance is the Reynolds
number Re.

The background flow and perturbations are again as in
Eqs. (22) and (23). This planar velocity perturbation is found
to be most unstable from the linear stability theory perspective
[8,9]. The perturbation equations reduce to the following
forms:
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= 0, (35)
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)
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In this analysis, the viscous term is retained as its effect
is essential for the instability under consideration. We take
a complex normal mode approach to solve the perturbation
equations. Normal modes of perturbations are given as [9]

u = ψ(y)eiα(x−ct) + c.c., (38)

v = φ(y)eiα(x−ct) + c.c., (39)

p′ = p(y)eiα(x−ct) + c.c. (40)

ψ , φ, and p are the complex magnitude of perturbation velocity
and pressure. α is the wave number of perturbation along the
streamwise direction. c is the complex phase speed. Substitut-
ing those normal mode forms into perturbation equations and
combining those equations together, we can generate a single
stability equation, the Orr-Sommerfeld equation (OSE)[10].
The OSE is given as

d4φ

dy4
− 2α2 d2φ

dy2
+ α4φ

− iαRe

[
(U − c)

(
d2φ

dy2
− α2φ

)
− d2U

dy2
φ

]
= 0. (41)

For channel flow, the background velocity profile is

U = 1 − y2. (42)

U is normalized with centerline velocity, and y is normalized
with half channel width. With boundary conditions y =
±1,φ = φ′ = 0, Eq. (41) reduces to an eigenvalue problem.
There are many well-established procedures to solve this
eigenvalue problem [11,12].

Two flow condition sets are considered in this work.
For Re = 30 406,α = π/4, the most unstable mode has the
eigenvalue c = 0.1734 + 0.009105i. For Re = 45 458,α =
π/4, the most unstable mode has the eigenvalue c = 0.1614 +
0.009788i. Those corresponding eigenfunctions (ψ ,φ) are
obtained by solving the eigenvalue problem.

III. GKM: SCHEME AND SIMULATION CASES

The gas-kinetic method is emerging as a viable alternative
to the NS based flow simulation scheme, especially for
compressible flows. One of the potential advantages of the
gas-kinetic approach over more conventional methods is
that the former employs a single scalar particle distribution
function f to directly compute the fluxes of mass, momentum,
and energy densities [13]. The underlying argument is that it
is more holistic to apply the discretization to the fundamental
quantity: the distribution function f , rather than the derived
quantities, the primitive or conservative variables. The
constitutive relationships such as the stress tensor and heat
flux vector are computed as moments of a gas distribution
function on the same stencil as convective fluxes, leading to
inherent consistency between various discretized conservation
equations and avoiding additional viscous or conductive
discretization [14]. The GKM also offers a more convenient
numerical platform for including nonthermochemical
equilibrium and noncontinuum effects as precise constitutive
relations are not invoked in the simulations [1].

In a series of works, our research group has explored the
applicability of kinetic theory based methods of the lattice
Boltzmann method (LBM) and GKM to a variety of turbulent
flows [1,15–20]. In [20], the authors compare the LBM and
GKM against Navier-Stokes in mildly compressible turbulent
flows. The GKM is augmented with a weighted essentially
nonoscillatory (WENO) interpolation scheme and is examined
over a large range of Mach numbers in decaying isotropic and
homogeneous shear turbulence in [1].

It is important to distinguish GKM from other kinetic
theory-based models such as the LBM and the direct simula-
tion Monte Carlo (DSMC) method. LBM is a discrete velocity
model wherein the different velocities at a given point represent
a lattice structure on a velocity space grid. DSMC is based on
conceptual particles that represent a collection of molecules.
GKM, on the other hand, is a hybrid finite volume method
whose details are given below.

A. GKM scheme

GKM is a finite volume numerical scheme which combines
both fluid and kinetic approaches. The fluid part comes from
the fact that macroscopic fluid variables are solved. The kinetic
part comes from the fact that the fluxes are calculated by taking
moments of a particle distribution function. The governing
equation for GKM is

∂

∂t

∫
�

Udx +
∮

A

�F · d �A = 0. (43)

Equation (43) shows the conservation of a macroscopic flow
quantity U in a control volume �. U represents mass,
momentum, or energy. �F is the flux through the cell interfaces
�A. The GKM scheme can be decomposed into three stages:

reconstruction, gas evolution, and projection. In reconstruc-
tion, the values of macroscopic variables at the cell center
are interpolated to generate values at the cell interface. The
WENO scheme is used for reconstruction in our solver. The
WENO method is a high order accuracy interpolation scheme
which also captures the steep gradients like shocks. The details
of the WENO scheme are presented in [21].
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In the gas evolution stage, the fluxes across the cell interface
are calculated using the kinetic approach. The flux through a
cell interface for the one-dimensional flow case is

F1 = [Fρ,Fρv1 ,FE]T =
∫ ∞

−∞
v1ψf (x1,t,v1,ξ )d�. (44)

Equation (44) represents the flux calculation of mass Fρ ,
momentum Fρv1 , and energy FE by calculating the moments
of the particle distribution function f . Here, d� = dv1dξ , ξ is
the molecular internal degrees of freedom, and ψ is the vector
of moments. The expression for ψ is given by

ψ =
(

1,v1,
1

2

(
v2

1 + ξ 2
))

. (45)

To calculate f the Boltzmann equation with the Bhatnagar-
Gross-Krook (BGK) collision operator is used [13]. The
distribution function f is solved in the form of the following:

f (xi+1/2,t,v1,v2,v3,ξ )

= 1

τ

∫ t

0
g(x ′

1,t
′,v1,v2,v3,ξ )e−(t−t ′)/τ dt ′

+ e−t/τ f0(xi+1/2 − v1t). (46)

The particle distribution function f at cell interface xi+1/2

and time t is presented in Eq. (46). Here, x ′
1 represents the

particle trajectory, v1, v2. and v3 are particle velocity space, τ

is the characteristic relaxation time, f0 is the initial distribution
function, and g is the equilibrium distribution function. f0 and
g are calculated from the reconstructed macroscopic variables
at the cell interface.

After f has been solved and updated, the fluxes are
calculated through Eq. (44). Then in the projection stage,
with calculated fluxes, Eq. (43) gives updated cell center
macroscopic values.

Un+1
j = Un

j − 1

xj+ 1
2
− xj− 1

2

∫ t+�t

t

(
Fj+ 1

2
(t) − Fj− 1

2
(t)

)
dt.

(47)

Equation (47) shows the macroscopic variable updating in the
one-dimensional flow case. Here, n represents the time step.
The overview discussion of GKM and the full details of GKM
can be found in [13].

B. Simulation cases

Temporal channel flow simulations of small perturbation
evolution with a specified background velocity field are
performed using the GKM. The Mach number range of
the simulations is 0.08–7.2, and Reynolds number range is
30 000–230 000. The characteristic length is taken to be the
channel half width, which is specified to be 0.020032 m. The
domain size along the streamwise direction is considered one
wavelength of perturbation. The wavelength is taken to be 8
times the channel half width. The background velocity field is
parabolic and is sustained at a steady rate using a streamwise
body force or pressure gradient. While both techniques yielded
identical results, the body force approach was used in the
final calculations for the high Mach number study as it allows
the background thermodynamic state to be nearly steady. The

TABLE I. Background flow conditions for the low Mach number
limit.

U0 (m/s) ρ (kg/m3) T (K) Re M grid (x × y × z)

Case 1 30 1 353 30406 0.08 160 × 100 × 4
Case 2 45 1 353 45458 0.12 160 × 100 × 4

background temperature increase due to viscous losses was
found to be minimal and did not affect the outcome of the
simulations even at high Mach numbers.

Two channel flow cases are examined in the low Mach
number study, and they are detailed in Table I. The initial
perturbation profile for the low Mach number study is chosen
to be the most unstable wave mode of the OSE analysis.
Simulations are performed for multiple perturbation velocity
amplitudes: 0.1%, 0.5%, and 2% of the background flow
centerline velocity.

The high Mach number study involves three cases, the
flow conditions of which are given in Table II. Following the
transition to turbulence study [22], the background velocity is
taken to be parabolic in shape, corresponding to a laminar flow.
The PRE verification process admits any initial perturbation
profile. Therefore, for the sake of simplicity, we use the
low Mach number OSE solution as the perturbation profile.
The streamwise wavelength and amplitude of the perturbation
profile are also similar to that of the low Mach number study.
In both low and high Mach number studies, the background
thermodynamic field is uniform initially and evolves slowly
with time. The grid resolutions are chosen based on a grid
convergence investigation.

IV. RESULTS: ANALYSIS VS SIMULATIONS

The results are presented in three parts. In the first part we
compare the linear analysis-based evolution of perturbation
kinetic energy at low and high Mach numbers. The second
part focuses exclusively on the high Mach number limit. The
analytical results are compared against DNS data. A similar
comparison is performed in the third part, but at the low Mach
number limit.

A. Analytical results at high and low Mach number limits

At both Mach number extremes, the streamwise perturba-
tion velocity dominates the contribution to the perturbation
kinetic energy. In Fig. 1, the streamwise perturbation kinetic
energy evolution as computed from linear analyses at the two
Mach number extremes is plotted. The streamwise perturba-
tion kinetic energy is calculated by performing spatial average

TABLE II. Background flow conditions for the high Mach
number limit.

U0 (m/s) ρ (kg/m3) T (K) Re M grid (x × y × z)

Case 1 705.2 0.0189 61 65754 4.5 160 × 200 × 4
Case 2 931.6 0.02 60 93900 6.0 160 × 200 × 4
Case 3 1108.5 0.04 59 227763 7.2 160 × 200 × 4
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FIG. 1. Comparison of streamwise kinetic energy from linear
analyses at high and low Mach number limits (low Mach number
of 0.12).

along the y direction. In the absence of pressure effects, the
kinetic energy grows rather rapidly in the pressure-released
high Mach number limit. The low Mach number OSE solution
exhibits very slow growth. It is therefore reasonable to say that
the action of Poisson pressure is to significantly diminish the
growth rate when compared to the pressure-released equation.
This is consistent with the findings of Mishra and Girimaji [3]
for homogeneous shear (Couette) flows. But it is important to
note that the pressure-released effect will not last indefinitely,
and consequently, the linear PRE may be valid only for a finite
period of time. This will be examined by comparing linear
PRE against DNS data in the next section.

B. High Mach number limit: DNS vs PRE

In Fig. 2, we compare the linear PRE results against DNS
data at different Mach numbers. Nonlinear and viscous effects
are present in DNS computations. The solid line in Fig. 2(a)
represents the analytical PRE result obtained from squaring
and integrating Eq. (30). The DNS results of various Mach
numbers are shown with symbols. Clearly, the agreement is
excellent at early times. It is evident that the larger Mach
number simulations follow the asymptotic analytical behavior
for a longer period of time, as anticipated in [2]. Next, we
examine the precise duration over which the PRE formulation
is valid in Fig. 2(b). Clearly, the departure of the DNS solution
from PRE occurs at the estimated time τ , which has an
approximate value of 1.8, the same as in [2]. Beyond this
time, pressure effects begin to influence the flow field.

In the PRE analysis, the perturbation velocity field is a
strong function of the wall-normal coordinate y. It is therefore
important to verify whether the streamwise and wall-normal
perturbation velocity profiles are captured by DNS. In Fig. 3,
we compare the streamwise perturbation velocity u profile
obtained from DNS data at different lapse times against the
PRE solution at the corresponding times. Only the results
for the Mach 6 case are shown as other cases show similar
behavior. The DNS (Mach 6) results match the PRE solution at
nearly all locations at all times. The numerical and analytical
profiles show a small but discernible difference at the peak
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FIG. 2. DNS vs PRE for streamwise kinetic energy evolution: (a)
shear time and (b) mixed time.

u locations. This observation can be attributed to the fact that
peak u values occur in regions of very steep second derivatives.
In these peak regions, viscous effects (second derivative)
dominate over inertial effects (first derivative). Thus, the
inviscid PRE solution is slightly different from the full-physics
DNS solution. A comparison of DNS and PRE wall-normal
perturbation velocity v profiles at different elapsed times is
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FIG. 3. Perturbation velocity u profile evolution with time at
M = 6: t = U0t
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FIG. 4. Perturbation velocity v profile evolution with time at
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given in Fig. 4. The PRE analysis indicates that this profile is
invariant in time. The DNS solutions do indeed capture this
time independence. Overall, it is evident that the computational
scheme represents the physics of the pressure-released limit
accurately over the initial stages of perturbation growth; further
the duration over which the DNS results are consistent with
PRE is similar to that in homogeneous shear flows [1] at the
high Mach number limit.

C. Low Mach number limit: DNS vs OSE

While PRE represents the asymptotic limit of pressure
being too slow to modify the velocity field evolution,
incompressible flow represents the opposite extreme in which
pressure acts instantly to keep the velocity field divergence
free at all times. We will now investigate if DNS captures the
linear evolution of small perturbations as dictated by the OSE.

We commence with a comparison of DNS and OSE velocity
field evolution. The DNS at two incompressible Mach numbers
performed with different initial perturbation amplitudes are
plotted along with OSE solutions in Fig. 5. Figure 5(a) shows
case 1, for which Reynolds and Mach numbers are 30 408
and 0.08, respectively. The streamwise perturbation velocity
magnitude maxima at different wall-normal distances in the
DNS solution are considered. The maxima evolution for three
initial intensities (0.1%, 0.5%, 2%) is found to follow the
linear analysis result very closely at the early stages before
nonlinear effects begin to appear. Here the time is normalized
by characteristic length and initial background flow centerline
velocity. In Fig. 5(b), case 2 (Re = 45 458, and M = 0.12)
is examined. In this plot the square root of volume-averaged
kinetic energy is considered. Once again, excellent agreement
between the DNS results and the OSE solution is seen
irrespective of the initial perturbation intensity.

Next, we compare the evolution of streamwise perturbation
velocity u and wall-normal perturbation velocity v profiles in
Figs. 6 and 7. Only the M = 0.12 (Re = 45 458) results are
shown as both Mach number cases yield identical outcomes.
Since the OSE solution adopts the normal mode form as (38)
and (39), whose spatial and time dependency are separate, the
normalized profiles of both u and v must be invariant in time.
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FIG. 5. Comparison of perturbation growth rate: (a) M = 0.08
and (b) M = 0.12.

Indeed, the DNS solution preserves the normal mode shape
accurately.

V. SUMMARY AND CONCLUSION

We develop a linear pressure-released Navier-Stokes equa-
tion analysis to describe the stability of very high Mach number
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FIG. 7. Perturbation velocity v profile evolution with time at
M = 0.12: t = U0t

∗/L.

Poiseuille flow. The high speed pressure-released analysis
and low speed Orr-Sommerfeld analysis are compared against
Poiseuille flow simulation results at extreme Mach numbers.
The numerical solver employs the gas-kinetic method to
study small perturbation evolution in channel flows over
a range of Mach and Reynolds numbers. The agreement
between numerical simulations and linear analysis is excellent.
Overall, the present study reveals the physical accuracy and
numerical viability of the gas-kinetic method for simulating
wall-bounded flow instabilities over a large Mach number
range. Further, the importance of pressure-released analysis for
describing wall-bounded nonuniform shear flow at the early
stage of evolution is firmly established.
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