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Order and chaos in the rotation and revolution of two massive line segments
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As a generalization of Newton’s two body problem, we explore the dynamics of two massive line segments
interacting gravitationally. The extension of each line segment or slash (/) provides extra degrees of freedom that
enable the interplay between rotation and revolution in an especially simple example. This slash-slash (//) body
problem can thereby elucidate the dynamics of nonspherical space structures, from asteroids to space stations.
Fortunately, as we show, Newton’s laws imply exact algebraic expressions for the force and torque between the
slashes, and this greatly facilitates analysis. The diverse dynamics include a stable synchronous orbit, families of
unstable periodic orbits, generic chaotic orbits, and spin-orbit coupling that can unbind the slashes. In particular,
retrograde orbits where the slashes spin opposite to their orbits are stable, with regular dynamics and smooth
parameter spaces, while prograde orbits are unstable, with chaotic dynamics and fractal parameter spaces.
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I. INTRODUCTION

The dynamics of two point particles interacting gravita-
tionally is one of the most famous problems in classical
mechanics. The solution to this celestial two body or dot-dot
(··) problem includes the beautiful result that all the orbits are
conic sections. The two body solution explains Kepler’s laws
and anchors our understanding of the solar system. Newton’s
“superb theorem” [1], which states that spherically symmetric
bodies gravitate as if all their masses are located at their centers,
ensures the two body solution’s practicality, as stars and planets
are naturally nearly spherical.

It is reasonable to try to extend this success to nearby
problems. However, the chaotic dynamics enabled by the
addition of just one more particle both enriches and com-
plicates such progress, prompting Newton to write, “My
brain never hurt more than in my studies of the Moon (and
Earth and Sun)” [2]. While the three and N body problems
remain centrally important [3–6], extensions are possible in
other directions. For example, contemporary variations of
the two body problem can also exhibit chaotic dynamics.
Confining two interacting bodies to a spherical universe results
in arbitrarily complicated orbits due to the compactness of
the space [7]. Preserving Newton’s second law but inverting
Newton’s third law converts regular two body dynamics into
chaotic dynamics [8]. Relaxing the point mass approximations
leads to the full body problem [9], in which masses have
arbitrary rotational inertias and experience net torques as
well as net forces. Connecting two point masses by a
massless rod [10] or a spring [11] can model artificial and
tethered satellite systems or tidal synchronization and orbit
circularization [12].

In 2000 and 2001, NASA’s NEAR-Shoemaker spacecraft
became the first to orbit and land on an asteroid, the potato-
shaped 433 Eros [14]. In 2003, Elipe and Lara [15] studied the
motion of a point particle orbiting a rotating line segment as
a simple model of NEAR orbiting Eros. In 2010, Lindner
et al. [16] considered more generally the dynamics of a
massive line segment or slash (/) and a massive point or dot (·)
interacting gravitationally. For this slash-dot (/.) body problem,
they derived algebraic expressions for the force and torque on

the slash and studied the flow of angular momentum from spin
to orbit. The slash-dot body problem is a natural extension
of the dot-dot problem, where one of the two point masses
is extruded into a line segment mass, thereby enabling it to
spin. In this paper we further extend the dot-dot problem by
extruding both point masses into line segment masses, thereby
enabling both masses to spin. Predicting the motion of the
Fig. 1 trojan binary asteroids is an approximate but natural
example of such a slash-slash (//) body problem. Our results
suggest that typical solutions are a pleasing mix of order and
chaos, as in Fig. 2.

The slash-slash system is an instructive prototype for the
interplay between rotation and revolution, which characterize
asteroids but not the interaction of idealized points. For
simplicity we focus on the planar slash-slash body problem,
where initial conditions are constrained so that all motion is in
a plane. Its diverse dynamics include a strongly stable orbit,
families of unstable periodic orbits, spin-stabilized nonchaotic
orbits, and generic chaotic orbits. Exploiting the system’s
extra degree of freedom, we show how angular momentum
can flow from rotation to revolution and back, increasing or
decreasing the slashes’ spins while decreasing or increasing
their orbit. Such angular momentum exchange can even unbind

FIG. 1. (Color online) Trojan binary asteroid 617 Patroclus, in-
frared imaged at (a) 1.6 μm and (b) 2.2 μm, is an approximate
slash-slash body system. Angular scale bar represents 50 mas and the
components are separated here by 640 km. Reprinted by permission
from Macmillan Publishers Ltd. [13], copyright 2006.
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FIG. 2. (Color online) Typical spacetime plots of the rotation and
revolution of two line segments or slashes demonstrating complex
spin and orbital angular momentum exchanges. Arrows indicates
time increasing upward.

the slashes in situations where two dots would remain bound,
and this may have implications for asteroid rotation and
escape rates [17,18]. In addition, retrograde motions where
the slashes spin opposite to their orbits are stable, with regular
dynamics and smooth initial condition spaces, while prograde
motions are unstable, with chaotic dynamics and fractal initial
condition spaces.

Section II below writes the gravitational potential energy of
the slashes as a double integral over their lengths and explicitly
evaluates the integral in closed form. It then uses the slash-slash
Lagrangian to write the exact equations of motion. Finally, it
expresses the forces and torques compactly in terms of vectors
joining the ends and midpoints of the slashes and verifies the
correct limiting behaviors. Section III discusses three exact
solutions for special circular orbits. Section IV describes our
techniques for numerically integrating the exact but nonlinear
equations of motion and discusses some interesting orbits.
Sections V and VI describe parameter space scans of the
slashes’ alignment and the product of their spins to probe
the generic structure of the orbits. Section VII summarizes our
results. The mathematics in this paper is explicitly checked by
computer algebra [19].

II. THEORY

A. Potential energy

The Newtonian gravitational potential energy of two line
segments or “slashes” of masses mi , lengths �i = |��i |, orien-

FIG. 3. (Color online) Geometry for the dot-dot, slash-dot, and
slash-slash problems. The displacement �r separates mass m1 from
mass m2. Displacements �rij separate the midpoint and ends of the
two slashes. Vectors ��1 and ��2 encode the lengths and orientations of
the slashes, which are at angles ϕ1 and ϕ2 from the displacement �r ,
which itself is at an angle θ from an inertial reference line.

tations �̂i = ��i/�i , and center-to-center separation �r = rr̂ is

V =
∫∫

−G
dm1dm2

r12

= −G
m1m2

�1�2

∫ +�1/2

−�1/2

∫ +�2/2

−�2/2

dλ1dλ2

|�r + λ1�̂1 − λ2�̂2|
. (1)

Define the displacement vectors

�rij = �r + i
��1

2
− j

��2

2
(2)

connecting the ends and centers of the slashes, as in Fig. 3, and
denote the indices i,j ∈ {−1,0, + 1} by {n,o,p}. Evaluate the
double integral explicitly [19] to find

V = −Gm1m2

�1�2

�̂1 × �̂2

|�̂1 × �̂2|2
·
{
�̂1 ×

(
�rop log

[
rnp + �rnp · �̂1

rpp + �rpp · �̂1

]

+ �ron log

[
rpn + �rpn · �̂1

rnn + �rnn · �̂1

])

+ �̂2 ×
(

�rpo log

[
rpn − �rpn · �̂2

rpp − �rpp · �̂2

]

+ �rno log

[
rnp − �rnp · �̂2

rnn − �rnn · �̂2

])}
. (3)

If the slashes are short compared to their separation, �1,�2 � r ,
then

V ∼ −Gm1m2

r

[
1 + �2

1(1 + 3 cos 2ϕ1) + �2
2(1 + 3 cos 2ϕ2)

48r2

]
.

(4)

The factors of 2 in the arguments of the cosines reflect the
symmetry of the slashes. In terms of the o-plus and o-minus
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logarithmic functions

©± ij

kl,m = log

[
rij ± �rij · �̂m

rkl ± �rkl · �̂m

]
, (5)

the potential energy is the sum of the box products

V = −Gm1m2

�1�2

ẑ

sin �
· [

�̂1 × ( ⊕np

pp,1 �rop + ⊕pn

nn,1 �ron

)
+ �̂2 × ( �pn

pp,2 �rpo + �np

nn,2 �rno

)]
, (6)

where �̂1 × �̂2 = ẑ sin � and � = ϕ2 − ϕ1 is the angle be-
tween the slashes. This expression is exact for all slash lengths;
check it by shrinking the lengths to zero. If the length of one
slash shrinks to zero, V = V// reduces to the slash-dot potential
energy

V/. = −Gm1m2

�
log

[
rp − �rp · �̂

rn − �rn · �̂

]
, (7)

and if the length of the remaining slash shrinks to zero, V/. in
turn reduces to the familiar dot-dot potential energy

V .. = −Gm1m2

r
. (8)

B. Lagrangian

Relative to the inertial center-of-mass, the kinetic energy

T = 1
2m1 �̇r1 · �̇r1 + 1

2m2 �̇r2 · �̇r2 + 1
2I1φ̇

2
1 + 1

2I2φ̇
2
2, (9)

where the angles φi = θ + ϕi and the rotational inertias Ii =
mi�

2
i /12. Alternately, write

T = 1
2μ(ṙ2 + r2θ̇2) + 1

2I1(θ̇ + ϕ̇1)2 + 1
2I2(θ̇ + ϕ̇2)2, (10)

where the reduced mass μ = m1m2/(m1 + m2) and the
relative displacement �r = +m1�r1/μ = −m2�r2/μ. Given the
Lagrangian L = T − V , rearrange the Euler-Lagrange
equations

μr̈ = d

dt

∂L

∂ṙ
= ∂L

∂r
= −∂V

∂r
+ μrθ̇2, (11a)

μ(r2θ̈ + 2rṙ θ̇ ) + I1(θ̈ + ϕ̈1) + I2(θ̈ + ϕ̈2)

= d

dt

∂L

∂θ̇
= ∂L

∂θ
= 0, (11b)

I1(θ̈ + ϕ̈1) = d

dt

∂L

∂ϕ̇1
= ∂L

∂ϕ1
= − ∂V

∂ϕ1
, (11c)

I2(θ̈ + ϕ̈2) = d

dt

∂L

∂ϕ̇2
= ∂L

∂ϕ2
= − ∂V

∂ϕ2
, (11d)

for Newtonian analysis as

Fr = μ(r̈ − rθ̇2) = −∂V

∂r
, (12a)

Fθ = μ(rθ̈ + 2ṙ θ̇) = 1

r

(
∂V

∂ϕ1
+ ∂V

∂ϕ2

)
, (12b)

τ1z = I1(θ̈ + ϕ̈1) = − ∂V

∂ϕ1
, (12c)

τ2z = I2(θ̈ + ϕ̈2) = − ∂V

∂ϕ2
, (12d)

and for numerical analysis as

r̈ = − 1

μ

∂V

∂r
+ rθ̇2, (13a)

θ̈ = + 1

μr2

(
∂V

∂ϕ1
+ ∂V

∂ϕ2

)
− 2ṙ θ̇

r
, (13b)

ϕ̈1 = − 1

μr2

(
∂V

∂ϕ1
+ ∂V

∂ϕ2

)
+ 2ṙ θ̇

r
− 1

I1

∂V

∂ϕ1
, (13c)

ϕ̈2 = − 1

μr2

(
∂V

∂ϕ1
+ ∂V

∂ϕ2

)
+ 2ṙ θ̇

r
− 1

I2

∂V

∂ϕ2
. (13d)

C. Force and torque

From Eq. (12) the radial component of the force between
the slashes is the box product

Fr = −Gm1m2

�1�2

ẑ

sin �
· r̂

× [
�̂1

( ⊕np

pp,1 + ⊕pn

nn,1

) + �̂2
( �np

nn,2 + �pn

pp,2

)]
. (14)

If the slashes are short compared to their separation, �1,�2 � r ,
then

Fr ∼ −Gm1m2

r2

[
1 + �2

1(1 + 3 cos 2ϕ1) + �2
2(1 + 3 cos 2ϕ2)

16r2

]
.

(15)

Again the factors of 2 in the arguments of the cosine reflects
the symmetry of the slashes. The azimuthal component of the
force is the box product

Fθ = −Gm1m2

�1�2

ẑ

sin2 �
· r̂

× {
�̂1

[ �np

nn,2 + �pn

pp,2 +�̂1 · �̂2
( ⊕np

nn,1 + ⊕pn

pp,1

)]
+ �̂2

[ �np

nn,1 + �pn

pp,1 +�̂1 · �̂2
( ⊕np

nn,2 + ⊕pn

pp,2

)]}
. (16)

If the length of one slash shrinks to zero, the force reduces to
the slash-dot force

�F/. = −Gm1m2

�r
(r̂p − r̂n) × �̂ × r̂

|�̂ × r̂|2

= −Gm1m2

�r

ẑ × (r̂p − r̂n)

sin �
, (17)

and if the length of the remaining slash shrinks to zero, F/. in
turn reduces to the famous dot-dot force

�F .. = −Gm1m2

r2
r̂ . (18)

The torque on slash 1 about its center

τ1z = Gm1m2

�1�2

{[ �np

nn,1

+ �pn

pp,1 + �̂1 · �̂2
( ⊕np

pp,2 + ⊕pn

nn,2

)] r sin ϕ2

sin2 �

− rnn + rpp − rpn − rnp

sin �

}
, (19)
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FIG. 4. (Color online) Forces �Fi are equal and opposite but not
necessarily along the line joining the slash centers. Torques �τi with
respect to the slash centers need be neither equal nor opposite.

and the torque on slash 2 about its center

τ2z = Gm1m2

�1�2

{[ �np

nn,2

+ �pn

pp,2 + �̂1 · �̂2
( ⊕np

pp,1 + ⊕pn

nn,1

)] r sin ϕ1

sin2 �

+ rnn + rpp − rpn − rnp

sin �

}
, (20)

where r̂ × �̂i = ẑ sin ϕi defines the angles between the slashes
and the line joining their centers. These torques need be neither
equal nor opposite, as in Fig. 4, although the torque on the
entire system about its center of mass always vanishes. As one
slash rotates through 360◦ the force and torque on the other
repeats twice, as in Fig. 5, due to the symmetry of the slashes.
If the length of one slash shrinks to zero, the torques reduce to
the slash-dot torque

�τ/. = −Gm1m2

�
(r̂p − r̂n) · r̂

�̂ × r̂

|�̂ × r̂|2

= Gm1m2

�

(r̂p − r̂n) · r̂

sin �
ẑ, (21)

FIG. 5. (Color online) Torques τ1z and τ2z on both slashes and
forces components Fr and Fθ on one slash as the other rotates through
0 � ϕ2 � 2π corresponding to the bottom case of Fig. 4. The dotted
line indicates the (radial) force F·· if both slashes were dots.

and if the length of the remaining slash shrinks to zero, the
torques vanish, as they should for the dot-dot torque

�τ .. = 0. (22)

III. EXACT SOLUTIONS

Although a generic slash-slash orbit is chaotic, we were
able to solve exactly for three kinds of circular orbits. If the
slashes’ separation r is constant, then Eq. (13a) reduces to

ω = θ̇ =
√

1

μr

∂V

∂r
=

√
−Fr

m2r2
. (23)

We evaluated this expression [19] for three different scenarios:
the “pointing” orbit −−, where each slash lies along the line
joining them; the “perpendicular” orbit −|, where one slash
lines along the line joining them and the other is perpendicular
to the line; and the “parallel” orbit | |, where both slashes
are perpendicular to the line joining them (but parallel to
each other). By Eq. (23) the orbital frequencies and angular
velocities of these circular orbits are

ω−− = ωK

√
r2

�1�2
log

[
4r2 − (�1 − �2)2

4r2 − (�1 + �2)2

]
, (24a)

ω−| = ωK

√√√√√√ r2

�1�2
log

⎧⎨
⎩

[√
�2

2 + (�1 − 2r)2 + �2
][√

�2
2 + (�1 + 2r)2 − �2

]
[√

�2
2 + (�1 − 2r)2 − �2

][√
�2

2 + (�1 + 2r)2 + �2
]
⎫⎬
⎭, (24b)

ω | | = ωK

√
r

�1�2
[
√

4r2 + (�1 + �2)2 −
√

4r2 + (�1 − �2)2], (24c)
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FIG. 6. (Color online) Orbital frequencies ω normalized to the
Kepler frequency ωK versus a common slash length �1 = �2 for
the pointing, perpendicular, and parallel configurations (left), where
vertical asymptotes correspond to slash intersections. Special orbits
occupy potential energy V versus initial angles ϕ1 and ϕ2 extrema
(right).

where from Kepler’s third law ωK =
√

G(m1 + m2)/r3 is the
orbital frequency of two dots.

All three circular frequencies correctly reduce to the two
corresponding slash-dot body circular frequencies when the
length of one of the slashes shrinks to zero [16]. The
frequencies obey ω−− � ω−| � ωK � ω | | , as in Fig. 6.
Heuristically, if two dots are extruded to slashes parallel
to the line joining them, the mean gravitational force (and
hence the orbital frequency) increases because of the nonlinear
inverse-distance-squared nature of the force. The same effect is
present but lesser if one slash is extruded perpendicular to the
line joining them, and the opposite effect is obtained if both
slashes are extruded perpendicular to the line joining them.
The forces (and hence the frequencies) diverge if two slashes
touch. The Fig. 6 potential energy as a function of initial angles
suggests, and numerical integration confirms, that the pointing
orbit is stable but the perpendicular and parallel orbits are not.

IV. NUMERICAL INTEGRATION

The Sec. II exact equations of motion greatly expedite
numerical integration of slash-slash orbits. However, the force
and torque expressions suffer a 0/0 instability when the slashes
are parallel. This occurs, for example, when the relative angle
between the slashes � = 0 in the Eq. (17) force law. One basic
approach to resolving this issue is to multiply the numerator
and denominator by a large constant, when the denominator
is near zero, to keep more significant digits in the computed
quotient. Another option is to add a very small constant to
the formula’s denominator [20], so that a 0/0 case yields
a zero quotient, while the quotient is largely unchanged in
other situations. If the exact value at the singularity can be
computed via L’Hôpital’s rule, then it can be applied whenever
the numerator and denominator are both sufficiently near zero.
We chose the last of these approaches, along with using high
working precision, which reduces the size of the neighborhood
on which the exact solution at the singularity must be applied.

In Obj-C/C++ we coded an adaptive step size Runge-
Kutta-Fehlberg (RKF) algorithm [21,22] to integrate the
equations of motion. A standard method for solving nonstiff
differential equations, the RKF algorithm computes both
fourth-order and fifth-order Runge-Kutta approximations at
each step, using the latter to estimate the error associated with

the former. Given a specified error tolerance, which we fixed
at 5 × 10−5 by balancing computation time versus integration
accuracy, the error estimate determines the appropriate size of
the next step, as well as when a step should be repeated. By
careful selection of the function evaluation points and their
weights, this algorithm requires only six function evaluations
per step, as compared to ten with a less-sophisticated approach.
By using very small step sizes only when necessary, the RKF
method requires far fewer steps than the classic RK4 method,
to obtain a given level of accuracy. Using RKF, we integrated
the equations of motion in 64 digit precision using the GNU
multiple precision arithmetic floating point libraries GMP [23]
and MPFR [24]. We deployed this program concurrently
on multiple processors for two-dimensional parameter space
scans and checked our accuracy by monitoring the relative
change in the system’s total energy and angular momentum.
We further cross checked the orbits using Mathematica [25] at
large working precision.

Figure 7 summarizes a typical evolution, where the rel-
ative numerical change in energy and angular momentum

FIG. 7. (Color online) Example time series. Top: Red (light gray)
and blue (dark gray) projections of the slashes on the line �r
joining their centers. Middle: Conserved energy E shuffling between
kinetic T and potential V . Bottom: Conserved angular momentum L

shuffling between spin LS and orbit LO .
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FIG. 8. (Color online) Escape from the slash-slash body system.
(a) In a time series plot, initially the orbit energy EO = E − ES

is negative indicating a bound orbit for the corresponding dot-dot
system, but (b) in a strobed animation, a close encounter transfers
energy from spin ES to orbit EO unbinding the slash-slash system.

are δE/E ∼ 10−6 and δL/L ∼ 10−7. The top graph plots
(μr/m1 + �1 cos ϕ1)/2 and (−μrm2 + �2 cos ϕ2)/2 as a func-
tion of time to suggest the dynamic interplay between rotation
and revolution. The bottom graphs illustrate the interplay
between kinetic and potential energy and spin and orbital
angular momentum.

Figure 8 demonstrates a dramatic escape. The orbital energy
of the slash-slash system is negative, so the corresponding
dot-dot system would be permanently bound. However, energy
stored in the slashes’ spins makes the system energy positive,
indicating the possibility of escape. Indeed, a close encounter,
illustrated by the strobed animation, transfers energy from spin
to orbit liberating the slashes.

Such encounters suggest one mechanism by which asteroids
or meteoroids escape from belt or ring systems. The inverse
process, where energy flows from orbit to spin, suggest one
reason why some asteroids have anomalously high spins.

V. ALIGNMENT SPACE

To systematically sample a broad range of slash-slash
orbits, we numerically integrated the exact but nonlinear
Eq. (13) equations of motion over a wide range of initial
conditions and parameters. Each point in a two-dimensional
plot corresponded to a different orbit and was colored (shaded)
according to some measure of the outcome.

For example, to study the relationship between the slashes’
spins, we defined the alignment

A = A12 = �̂1 · �̂2 = cos � = cos[ϕ2 − ϕ1] (25)

as a natural extension of the alignment defined in the study
of the slash-dot body problem [16]. The alignment A = ±1
when the slashes are parallel, and the alignment A = 0 when
the slashes are perpendicular.

Figure 9 plots the alignment A in a red-white-blue
(grayscale) palette as a function of the initial orbital angular
velocity ω, initial slash spin angular velocity ω1, and slash
length �1 (with fixed slash length �2), after one revolution
θ = 2π , for pointing initial conditions. Black codes collisions,
or near collisions, as in practice we abort the simulations just

FIG. 9. (Color online) Colors (shades) code the alignment A
versus initial orbital angular velocity ω = θ̇0 and initial spin angular
velocity ω1 (left) and A versus ω and slash length �1 (right), with blue
(dark gray) positive, red (light gray) negative, white zero, and black
collision, after one revolution θ = 2π , for pointing initial conditions.
Vertical dot-dash lines indicate the intersection of the two plots.

before contact to prevent our adaptive step size integrator from
wasting time. The dot-dash lines indicate the intersection of
these cross-sectional plots.

Reminiscent of similar plots for the slash-dot system, low
orbital velocities and long slash lengths imply collisions.
Striped patterns correspond to sequences of unstable periodic
orbits. The stable pointing orbit dominates the broad central
alignment region.

FIG. 10. (Color online) Colors (shades) code the alignment A
versus initial orbital angular velocity ω = θ̇0 and slash length �1,
with blue (dark gray) positive, red (light gray) negative, white zero,
and intermediate grays collision time tc, after one revolution θ =
2π , for pointing (left) and perpendicular (right) initial conditions.
Superimposed are ω−−, ω−|, and ω | | as a function of �1.
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FIG. 11. (Color) For asymmetric start ϕ1 
= ϕ2, (a) colors code final spin products ω′
1ω

′
2 as a function of the initial spins ω1 and ω2, (b)

magnified time sequence, and (c) further magnification, where grays codes collision times tc.

Figure 10 plots the alignment A as a function of the
initial orbital angular velocity ω and slash length �1, after one
revolution θ = 2π , for both pointing and perpendicular initial
conditions. Intermediate grays code time to collision. Super-
imposed are the Eq. (24) exact circular angular velocities. The
stable ω−− dominates the alignment plot for pointing initial
conditions, but the unstable ω|− does not dominates the align-
ment plot for perpendicular initial conditions, as expected.

VI. SPIN PRODUCT SPACE

To further investigate the relationship between spin and
orbit in the slash-slash body problem, we plotted the product

of the slashes’ spins ω′
1ω

′
2 after a fixed time t versus their

initial spins ω1 and ω2 in a red-white-blue palette where black
again denotes collisions. Figure 11 summarizes the situation
for asymmetric starts, in which the slashes begin pointing in
different directions.

The top-left plot has four well-defined quadrants {±,±}.
When both spins are negative {−,−}, and hence “against
the orbit” or retrograde, the orbits are stable in that small
changes in initial condition do not significantly change the
final conditions, corresponding to continuous color changes.
However, when both spins are positive {+,+}, and hence “with
the orbit” or prograde, the orbits are unstable in that small
changes in the initial condition can dramatically change the
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FIG. 12. (Color) For symmetric start ϕ1 = ϕ2, (a) colors code final spin products ω′
1ω

′
2 as a function of the initial spins ω1 and ω2,

(b) magnified time sequence, and (c) further magnification, where grays codes collision times tc.

final condition, corresponding to discontinuous color changes.
When the spins are mixed {+,−} or {−,+}, the orbits are
stable in the direction of the negative spin and unstable in the
direction of the positive spin. In a reference frame rotating
with the mean orbital angular velocity, the retrograde spins are
fastest and most stable.

The cell structure in the {+,+} quadrant corresponds to
orbits differing by an integer number of spin flips. Moving
vertically, by fixing ω1 and increasing ω2, each successive cell
starts an orbit with an extra 180◦ half flip of slash 2, at least
for short times. Similarly, moving horizontally, by fixing ω2

and increasing ω1, each successive cell starts an orbit with an
extra 180◦ half flip of slash 1.

The right-side sequence illustrates the time development of
these structures. The black collision region expands hinting at
a fractal web of noncollisional orbits all related by patterns of
extra spin flips. The bottom-right plot is a closeup of this cell
structure, where now grays code collision times.

The intricate, fractal-like structure inside the individual
cells is interesting as well. Moving along a 45◦ line from
triangle to triangle in the top-right corner of an individual cell,
one slash gains a half flip and the other loses a half flip per
orbit, again at least for short times.

Figure 12 summarizes the spin products for symmetric
starts, in which the slashes begin pointing in the same direction.
In this case, the spin product space is symmetric about the main
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diagonal ω1 = ω2, as expected. The magnified time sequence
and the t = 40 magnification use slightly different definitions
of “near collision” to abort the integrations; typical minimum
distances were 0.05 and 0.025.

VII. CONCLUSIONS

The slash-slash body problem is of theoretical, numerical,
and practical interest. It extends a classical problem in
mathematical physics and yields rich results and important
insights. For example, the force between the slashes is equal
(in magnitude) and opposite (in direction), but not along the
line joining the centers of the slashes, and the torques on the
slashes are typically neither equal nor opposite. Furthermore,
retrograde spins are stable while prograde spins are unstable.
Such results help break bad habits and build good intuition for
the full body problem, which becomes more important as deep
space flight activity increases. Indeed, the slash-slash problem
and its solution may elucidate the dynamics of asteroids and

large space structures, both of which are relevant to NASA’s
current plan to send astronauts to rendezvous with a small
asteroid captured into a lunar orbit.

Future work includes quantifying the chaos in the slash-
slash body problem. For example, numerically estimating
the maximum Lyapunov exponent as a function of pairs
of parameters, like slash length and initial orbital angular
velocity, would nicely complement the alignment plots of
Figs. 9 and 10. We anticipate that the blue (dark gray) aligned
regions would exhibit negative maximum Lyapunov expo-
nents, reflecting the stability of the pointing orbit, while the
misaligned (striped) regions would exhibit positive maximum
Lyapunov exponents, which are hallmarks of chaos. We also
hope to extend the slash-slash body problem from two to three
dimensions. Among other phenomena, we expect to observe
the rotation of the orbital plane due to the transfer of angular
momentum from spin to orbit, perhaps both rhythmically
and chaotically, for at least some parameters and initial
conditions.
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