
PHYSICAL REVIEW E 89, 042916 (2014)

Interaction of streamers and stationary corrugated ionization waves in semiconductors
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A numerical simulation of evolution of an identical interacting streamers array in semiconductors has been
performed using the diffusion-drift approximation and taking into account the impact and tunnel ionization. It
has been assumed that the external electric field E0 is static and uniform, the background electrons and holes
are absent, the initial avalanches start simultaneously from the nodes of the plane hexagonal lattice, which is
perpendicular to the external field, but the avalanches and streamers are axially symmetric within a cylinder of
radius R. It has been shown that under certain conditions, the interaction between the streamers leads finally
either to the formation of two types of stationary ionization waves with corrugated front or to a stationary plane
ionization wave. A diagram of different steady states of this type of waves in the plane of parameter E0,R has
been presented, and a qualitative explanation of the plane partition into four different regions has been given.
Characteristics of corrugated waves have been studied in detail and discussed in the region of R and E0 large
values, in which the maximum field strength at the front is large enough for the tunnel ionization implementation.
It has been shown that corrugated waves ionize semiconductors more efficiently than flat ones, especially in
relatively weak external fields.
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I. INTRODUCTION

The streamer mechanism of electric discharge has been
used for a long time for the description of pulse breakdown
of various matters. A set of works is devoted to theoretical
and experimental study of streamers; however, between these
two ways of research there is an essential discrepancy. In vast
majority of the theoretical works performed by both analyt-
ical and numerical methods, single streamers were studied.
Meanwhile in practice the discharge is usually carried out
by a large number of interacting streamers. Such electrostatic
interaction has to be essential, in particular, in a pulse crown
and in a streamer zone of a long spark where the characteristic
distance between streamers is less than their lengths, but
there is more than their diameters [1,2]. Excellent photos that
especially visually illustrate this circumstance have been made
in the last years (see, for example, Refs. [3,4]). Modeling
of such multistreamer discharges is a very complex three-
dimensional problem, so as a first step towards its solution a
very simplified situation should be studied: the evolution of an
identical streamers, which simultaneously starts from nodes
of a one-dimensional (in this case, the model corresponds to
experiments [5,6]) or two-dimensional periodic lattice.

As far as we know, the first attempt of this kind was
made in Ref. [7] whose author studied evolution of the
one-dimensional periodic array of the cylindrical streamers
propagating in air from a thin wire to the plane parallel
to it. Interaction between the charged streamers was taken
into account by the approximate analytical solution of the
corresponding electrostatic problem and introduction of thus
obtained amendments to the field strength in a numerical model
of a single streamer. It was shown that field strength before
the front of each streamer in the array and the speed of their
propagation considerably decrease in comparison with a single
streamer. This result is quite expected. However, the author [7]
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did not manage to receive any additional information, because
in the framework of the so-called 1.5-dimensional numerical
model which he used, the cross sizes and a form of each
streamer are a priori set and therefore are not subject to
interstreamer interaction.

This shortcoming is absent in Ref. [8], whose authors
simulated the evolution of a two-dimensional periodic array
of negative streamers in gases in a uniform external field
E0, using a “minimal model” (taking into account the drift,
diffusion, and impact ionization of electrons, background
electrons are absent, and additional mechanisms of ionization
are not taken into account [9]). At the initial stage, streamers
develop independently from each other so that their length and
front curvature radius increase with constant velocities [10,11].
But the nature of further evolution depends strongly on
the distance 2L between streamers. If L is greater than
some critical value Lc(E0), the front of each streamer starts
quickly becoming distorted as a result of transverse instability,
described in Refs. [12–16] for gases and in Refs. [11,17] for
semiconductors. However, at L < Lc(E0) this instability is
suppressed, and eventually the propagation of the streamers
array becomes stable and self-similar: all of them travel with
constant velocity uf and an unaltered form of the front, which
does not depend on the initial conditions and can be described
by a multivalued function

yf (x) = 2

π
bL arccos

[
exp

(
π

2

x − xf

aL

)]
, (1)

where xf = uf t is a front position on the axis x parallel to
the external field, yf is a distance from the axis x to the
front, b < 1, and a are adjustable parameters. This formula
was obtained in Ref. [18] to describe the shape of the
interface between two incompressible fluids with very different
viscosities (for example, water, which forces the glycerin)
moving in the narrow gap between two plates with width 2L

(Hele-Shaw cell) [19,20]. In this case the boundary velocity
uf is (1 + a/b) times more than velocity u0 of a viscous fluid
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far ahead the border, and therefore the matter conservation law
provides the relation

a + b = 1. (2)

The formula (1) is also applicable to describe a number
of other physically different but mathematically equivalent
processes, provided that the normal velocity of the interface
un at each point is proportional to the gradient of some potential
function ϕ(x,y), which satisfies the Laplace equation, and the
interface itself is equipotential:

ϕ(x,yf ) = const, un ∝ En ≡ |∇nϕ(x,yf )|. (3)

In experiments with Hele-Shaw cells (in this case, ϕ is
pressure) it always gets b = 1/2, that is, after the establishment
of the steady state motion of the interface less viscous
liquid supplants exactly half of the cell width. This nontrivial
selection phenomenon was explained by the influence of a
small, but finite deviation from the first condition in (3) because
of the surface tension [19,20] or kinetic undercooling [21].

A model of streamers satisfying conditions (3) (in this case,
ϕ is electric potential) was first used in Ref. [22] (see also the
book [23]) and was improved later in Refs. [10,24], but in fact
they can be performed only very approximately. Violation of
the former is due to the finite conductivity of the plasma behind
the front and nonzero thickness δ of the front, and the latter to
a more complicated dependence of un on the field strength En

normal to front. Within the framework of the “minimal model”
of streamers in gases, with some reservations, it is possible to
use the formula [9,25]

un = u∗ ≡ ve + 2Deλ
∗, (4)

where λ∗ =
√

veαe/De is a parameter of exponential decay
of the electron concentration n ahead of the front, and ve,
De, and αe are a drift velocity, a diffusion coefficient, and
an impact ionization coefficient, which locally depend on En.
Usually in gases the second term in the right-hand side of (4)
is relatively small [9,25], so at a constant electron mobility μe

front velocity un ≈ μeEn. This is a fact the authors of Ref. [8]
deemed a sufficient basis for applicability of formula (1) to
interpret their results of numerical simulations, in particular,
the approximate ratio1 EM ≡ En(xf ,0) = 2E0; however it was
ignored that in the case of streamers there was no reason for
equality (2).

The study of a similar problem with regard to semicon-
ductors is also very important. In practical terms, this is
due to the fact that multistreamer breakdown mechanism
determines (at least in some regimes) [26,27] the operation
of avalanche voltage sharpeners, which are commutators with
unique characteristics [28,29], but in scientific terms this is
due to features of microscopic processes in semiconductors.
Among them there are particularly important ones:

(1) Saturation of dependencies ve,h(E) in relatively very
low fields E ∼ Es ∼ 10 kV/cm, which, in particular, leads
to significantly (relative to gas) increasing the ratio un/ve,h

1This ratio is rather well performed for the streamers array
investigated in Ref. [8] at the highest values of L < Lc, when δ 	 L

and the deviation from the first condition (3) is minimal.

even within the framework of the “minimal model” of
streamers [30,31] and

(2) Existence of tunneling ionization, which can also
increase the ratio of un/ve,h by orders of magnitude
[11,32–37].

These features lead to the fact that un ∝ En only at
En 	 Es , but in the usual range of En ∼ 10–103 kV/cm
function un(En) varies from constant to exponentially strong.
Therefore, the second of the conditions (3) is never executed,
and Eq. (2) can be satisfied only by chance at some relations
between the parameters of the problem. Such a radical change
in the classical formulation of the problem [19,20] can lead to
substantially different scenarios of evolution of the interface
between the phases in a highly nonequilibrium conditions.

In this paper, we study this interesting problem by nu-
merical simulation of the interaction between the streamers
in semiconductors. The main aim of this work is to obtain
maximally detailed and complete results for the simplest case
of a static uniform external field E0, which can provide the
basis for further research.

II. MATHEMATICAL MODEL OF STREAMERS ARRAY

Similar to the most works on the numerical simulation of
streamers, the diffusion-drift approximation is used. In this
approximation, the distributions of electrons, n(t,r), and holes,
p (t,r), are described by the continuity equations, which we
conveniently write in the form

∂(p + n)

∂t
+ ∇·(jh + je) = 2(sg − sr ), (5)

∂(p − n)

∂t
+ ∇·(jh − je) = 0, (6)

where the terms sg,r describe all possible mechanisms of gen-
eration and recombination, and the free carrier flux densities
are given by the expression

je = ven − ∇(Den), jh = vhp − ∇(Dhp),

where the subscripts e and h correspond to electrons and holes,
respectively. In this paper, we considered only indirect-gap
semiconductors such as Si, Ge, or SiC, in which the rate of
radiative recombination (and, hence, photoionization rate) is
very small. Therefore the generation of pairs occurs primarily
due to the impact and tunnel ionization; consequently, the
generation rate has the form

sg = (αeven + αhvhp)h(n + p − nth) + gt ,

where h(x) is the Heaviside unit step function, and nth is a
certain threshold density. It is introduced in order to exclude
the appearance of nonphysical solutions due to the impact
ionization far ahead of the streamer front, where the densities
of the electrons and holes generated by the tunnel ionization in
the external field are very low (n + p < nth) and the continual
approximation is certainly inapplicable [32,38]. Under the
assumption that the lifetime of charge carriers is much larger
than the propagation time of the streamers, recombination is
disregarded; i.e., sr = 0 is set. Moreover, the impact ionization
coefficient αe,h, drift velocities ve,h, and tunnel ionization
rate gt are assumed to be specified instantaneous and local
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functions of the field strength E(t,r), satisfying the Poisson
equation

∇·E = q

ε
(p − n) = −
ϕ, (7)

where ϕ is the electric potential, q is the elementary charge,
and ε is the permittivity of the semiconductor. The usual
approximations,

vh = −ve = μE, μ = vs/(E + Es),

αe = αh = α̃ exp(−Ẽ/E),

gt = g̃t (E/Et )
2 exp(−Et/E),

are used, and the dependence of the diffusion coefficients
De,h on E is disregarded, i.e., De = Dh = D = const. The
parameters vs, Es, α̃, Ẽ, g̃, and Et are determined by the band
structure of semiconductors and electron and hole scattering
mechanisms. We used the same typical values vs = 107cm/c,
Es = 15 kV/cm, α̃ = 106 cm−1, Ẽ = 1.5 MV/cm, g̃ = 6.7 ×
1035 cm−3s−1, Et = 22.5 MV/cm, D = 20 cm2 c−1, and
ε = 11.8ε0, as in Ref. [11].

The initial conditions for the system of equations (5)–(7)
have the form

ϕ(0,r) = −E0x, (8)

σ (0,r) = σ0(r − ri), ρ(0,r) = 0, (9)

where E0 is the strength of the external field, which is directed
along the x axis, σ = q(p + n)/εα̃Ẽ and ρ = q(p − n)/εα̃Ẽ

are dimensionless concentration and the space charge density
of electrons and holes, and σ0(r) is any quite strongly localized
function satisfying the normalization condition

∫
σ0(r)dr =

2q/εα̃Ẽ. The Gaussian distribution is used,

σ0(r) = σ 0
0 exp

(−r2
/
r2
σ

)
, (10)

where σ 0
0 = 2q/π3/2εα̃Ẽr3

σ . These initial conditions corre-
spond to the appearance of one electron hole pair at each
point r = ri at time t = 0. In accordance with what was
said in the introduction, these points coincide with the nodes
of a planar, for example, hexagonal, lattice located in the
plane x = 0. In this case, avalanches and streamers generated
by them have the symmetry of a regular hexagonal prism.
Therefore, in the cylindrical coordinate system r = {x,y,ϑ}
(hereinafter y is the distance from the point r to axis x, and
ϑ is the azimuthal angle), strictly speaking, one should take
into account the dependence of n,p, and ϕ on ϑ , which is
necessary to solve the three-dimensional Cauchy problem with
natural boundary conditions on the lateral faces of the prism,
which requires very large computing resources. Meanwhile,
the problem can be considerably simplified if a prism with the
width of the lateral faces H is approximate by a cylinder with
a radius R = H

√
3
√

3/2π ≈ 0.91H . In this case the area of
the base of a prism and cylinder are the same, and the distance
between their lateral surfaces does not exceed 0.1H . Such a
small difference between forms of the side surfaces should not
have a significant impact on the processes of ionization and
transport near the axis of symmetry, which mainly determines
the evolution of an array of streamers. To confirm the validity
of this statement the main parameters (the maximum field

strength on the front EM , the concentration of electrons and
holes in the x axis behind the front σ−, and the front velocity
uf ) of a plane, axially and hexagonal symmetrical streamers
obtained by modeling with the same finite element meshes are
shown in the table below. As can be seen, the parameters of
the plane streamer differ significantly from almost matching
parameters of axially and hexagonal symmetrical streamers. At
the same time, the dimensionless computing speed �xf /�tvs

(here �t is the time spent modeling the process of promoting
the front on the distance �xf ) for a hexagonal streamers almost
100 times less than for an axially symmetric one. Therefore, in
this paper we neglect the dependencies of n,p,ϕ(ϑ), weak at
actual values of y � H/2 ≈ R/2, and assume that avalanches
and streamers have axial symmetry.

Parameters of various streamers at
E0 = 0.5Ẽ, L = R = 0.91H, H = 289/α̃

Parameter Plane Axial Hexagonal

EM/Ẽ 0.773 1.17 1.18
σ− 0.17 0.58 0.59
uf /vs 1.88 4.14 4.12
�xf /�tvs 0.36 0.15 0.0017

Under the above assumptions, our task is also symmetrical
with respect to the plane x = 0, so it is enough to solve it in a
rectangular area,

0 � x � X, 0 � y � R, (11)

the length of which X should be much longer than streamer
length. In this case, the boundary conditions take the form

ϕ(t,0,y) = 0, ∂ϕ(t,x,y)/∂x|x=X = E0,
(12)

∂ϕ(t,x,y)/∂y|y=0,R = 0,

σ (t,X,y) = 0,
(13)

∂σ (t,x,y)/∂x|x=0 = ∂σ (t,x,y)/∂y|y=0,R = 0,

ρ(t,X,y) = ρ(t,0,y) = 0
(14)

∂ρ(t,x,y)/∂y|y=0,R = 0.

The Cauchy problem (5)–(14) was solved by the finite
element method with adaptive nonuniform mesh in the way
described in Ref. [11].

III. RESULTS AND DISCUSSION

The calculations were performed for values E0 =
(0.2–0.7)Ẽ and R = (20–8000)α̃−1. The simulation results are
presented in Figs. 1–13. They are very weakly dependent on
the choice of the quantities rσ [36] and σth = qnth/εα̃Ẽ [11];
in the present study, we used the values rσ = 2/α̃ and σth =
10−8.

As might be expected, avalanches and streamers develop
independently from each other as described in Ref. [11],
while their length 2xf 	 2R. At xf = (2.5–3)R an electro-
static interaction between them becomes significant (see the
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FIG. 1. The evolution of fronts of identical streamers, which
starts simultaneously from a planar hexagonal lattice nodes, with
E0 = 0.36Ẽ and different R. The relevant areas of the plane
[1/E0,R] (see Fig. 3) are indicated in parentheses. Black indicates
the zone of the front, inside which the space charge density is
greater than 0.002εα̃Ẽ ≈ 3,2 mC/m3 at times t = i/α̃vs ≈ 10i ps,
i = 1,2, . . . ,8.

Appendix). At first, it slows down the expansion of streamers
(Fig. 1) and reduces the maximum field strength EM at the front
(Fig. 2). Further results of the interaction depend strongly on
the values of the control parameters E0 and R. It turns out
that the plane of [1/E0,R] splits into four regions shown in
Fig. 3, in which the character of streamers array evolution is
qualitatively different.

In regions 1 [i.e., at R > Rt (E0)] and 2 [i.e., at R0(E0) <

R < Rc(E0)] expansion of streamers with time stops, and their
form and parameters (EM , σ−, uf ) stop changing, that is,
the entire array of streamers becomes a stationary ionization
wave, with more or less strongly curved (corrugated) front
(see Fig. 1). For these regions the tendency for a decrease of
parameters EM , σ−, uf and the front curvature along together
with R is common (see Fig. 4).

For a description of these waves it is convenient to use the
dimensionless coordinate system r̂ = (r − uf x)/R, moving
with the front, and look for a solution in the form of

∣∣∣∣∣∣∣∣∣

σ (t,r)

ρ(t,r)

ϕ(t,r)

E(t,r)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

σ̂ (r̂)

(α̃R)−1ρ̂(r̂)

ẼRϕ̂(r̂)

ẼF(r̂)

∣∣∣∣∣∣∣∣∣
. (15)

FIG. 2. (Color online) Maximum field strength EM in the stream-
ers array vs time at E0 = 0.36Ẽ and different values of R. Open
symbols: calculation with R0 < R < Rc; dark symbols: calculation
with R > Rt ; values for R0,Rc,R0 are given in caption to Fig. 3. Solid
line: calculation for an isolated streamer; dashed line: the external
field E0.

The substitution of (15) into (5)–(7) leads to a system of
equations

uf

R

∂σ̂

∂x̂
+ 2

(
σ̂ vα + qgt

εα̃Ẽ

)
= 1

R2

[
1

α̃
∇̂·(ρ̂v) − D
̂ σ̂

]
,

(16)

FIG. 3. (Color online) Diagram of steady states of the hexagonal
streamers lattice. Lines separate the plane [1/E0,R] into four qual-
itatively different regions (see text). Triangles: at R < Rt tunneling
ionization is negligible. Solid squares: at R > Rc the local transverse
instability of the 3D front arises if tunneling ionization is negligible
(with E0 > 0.4Ẽ). Open squares: at L > Lc the local transverse
instability of the 2D front in gases arises (according to Ref. [8]).
Circles: at R < Rc (hexagonal 3D array, solid circles) and L < Lc (2D
array, open circles) perturbations generated by the primary avalanche
decay. Dashed line: calculation from formulas (28) and (29).
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FIG. 4. (Color online) Maximum field strength EM , front veloc-
ity uf , maximum σ−, and the average over the area σav concentrations
of charge carriers behind the front vs parameter R at E0 = 0.36Ẽ.

uf

R

∂ρ̂

∂x̂
− ∇̂·(σ̂v) = − D

α̃R3

̂ ρ̂, (17)

∇̂·F = ρ̂ = −
̂ ϕ̂, (18)

where differential operators ∇̂ and 
̂ are with respect to r̂.
In region 1 the maximum field strength at the front EM

reaches a sufficiently large value (of the order of Ẽ with
our chosen values of semiconductor parameters) for tunneling
ionization to become noticeable. For very large R shape of
the front yf (x) and parameters EM , σ− are independent
on R, the space charge density qρ ∝ 1/R, and the velocity
uf ∝ R, and much higher than the maximum drift velocity
vs (see Fig. 4). These scaling laws are a direct consequence
of the structure equations (16)–(17): their right-hand sides
are negligible at R → ∞, and the dimensionless function
σ̂ (r̂), ρ̂(r̂), ϕ̂(r̂), and F(r̂) cease to depend on R, if the front
velocity uf ∝ R.

It is interesting to note that the solution (15) is quite similar
to the exponentially self-similar solution (4) of Refs. [36,41],
which describes evolution of a standalone streamer in a
uniform field in infinite space. The only distinction is that
exponentially growing spatial scale in our case does not
depend on time and is equal to R. Therefore the rise time
of the spatial scale, entering into the exponentially self-similar
equations (11) and (12) of Refs. [36,41], is replaced by time,
for which the front moves ahead for distance R in Eqs. (16)
and (17) without their right-hand sides. The principle is that
both types of self-similarity realize only for sufficiently large
R and uf , when the terms with the factors R−2 or u−2

f can
be neglected. The physical meaning of this approach lies in
the fact that for large R the front velocity uf is much more
than the average directed velocity of the charge carriers. In this
limit, their transport is not directly involved in the variation of
σ , which is caused exclusively by the ionization as described
by (16). The role of the drift is reduced to the formation of the
space charge [see Eq. (17)], which suppresses the field behind
the front according to Poisson equation (18), and determines
the structure of a wave as a whole.

FIG. 5. (Color online) Steady-front shapes of a hexagonal lattice
of streamers with α̃R = 8000 and various external field strengths E0.
The symbols indicate the positions of the points behind the front,
where the field strength on the results of the numerical simulation is
equal to 0.001Ẽ. Lines: approximation by formula (1).

Dependencies yf (x) for such distant streamers shown in
Fig. 5 are well described by a function (1) after replacement of
L to R. However, for the reasons mentioned in the introduction,
the function (1) should be considered only as one of the suitable
approximations of the simulation results. Fitting parameters
a,b included in it depend on E0 essentially (see Fig. 6),
moreover a = b and (a + b) = 1. Dependencies of other front
parameters on E0 are shown for this case in Figs. 7–9.

As expected, the maximum field strength at the front
EM increases with E0 at small E0 (Fig. 7); along with EM

dimensionless time uf /α̃Rvs for which the front moves ahead
at distance R (Fig. 7) and the concentration of σ−,σav (Fig. 8),
all of which are independent on R, increase too. However, the
ratio EM/E0 decreases (see Fig. 9). To explain this effects,
it should be noted that with increasing (xf − x) field En and
hence ionization rate vsα(E) decreases rapidly and becomes
negligible at x < xi , where En < Ei ≡ En(xi) ∼ 0.1Ẽ. It is
clear that the length (xf − xi) of the ionization region increases
with EM and E0, so radius bR of each streamer in the array

FIG. 6. (Color online) The parameters a (filled symbols) and b

(open symbols), which determine the steady-front shapes of the
streamers array [see (1)] vs the external field strength E0 with
α̃R = 8000 (squares) and α̃R = 4000 (circles).
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FIG. 7. (Color online) Maximum field strength EM and dimen-
sionless time of flight uf /α̃Rvs of the front distance R vs the external
field strength E0 with α̃R = 8000 (squares) and α̃R = 4000 (circles).

must also increase. The parameter a, characterizing the degree
of “sharpness” of a streamer front,2 also increases with E0,
but more slowly than b. In other words, this means that
streamers have to become sharper, but thicker when E0 rises
(Fig. 5). The results of numerical calculations of EM for the
simplest model of the streamers (see the Appendix) show
that the combined effect of these two factors should lead to
falling dependence EM/E0 on E0, which is consistent with
the simulation results (see Fig. 9) in qualitative terms. Some
excess of the expected relations over observable EM/E0 is
due to the fact that the front of the streamer has a finite
thickness δ, and the ratio of δ/R increases with E0 [37]. The
function EM (E0) (and, hence, function σ−[EM (E0)], which
does not depend on the front shape [11]) saturates at large E0

(Figs. 7, 8). At the same time the front velocity uf increases
not only with growth of EM , but also with the recession
slowing the field strength ahead of the front [36,37]. Therefore,
the function uf (E0) is not saturated even at the highest E0

(Fig. 7).
Here we must mention an important result for practical

applications: the average concentration σav of electrons and
holes behind a corrugated ionization wave is much more than
behind the front of a plane wave (Fig. 8). The reason for
this is that the reduction of the ionization area b2 times in a
corrugated wave compared with a flat one is compensated by
an exponential increase of impact ionization rate. This effect
is particularly large in a relatively weak external field, where
the dependence of α(E) is very sharp.

With decreasing R it becomes apparent that the front
resembles not a cylinder with an oval tip, but a badminton
shuttlecock (Fig. 1), and the slope of almost linear section
of yf (x) (shuttlecock feathers) decreases approximately in-
versely proportional to R (Fig. 10), and approximation (1)
is becoming less suitable for small R. To explain this effect,
it should be noted that in the case of a stationary wave the

2The more a, so the streamer front is sharper at a fixed value bR

because the curvature of line yf (x) is equal to a/b on the x axis.

FIG. 8. (Color online) Maximum σ− and the average over the
area σav concentrations of charge carriers behind the front vs the
external field strength E0 with α̃R = 8000 (squares) and α̃R = 4000
(circles). Line: calculation of σ− for a plane wave.

kinematic relation
dyf

dx
= − un√

u2
f − u2

n

(19)

holds, where un = un[En(x)]3 and yf (xf ) = 0, un(xf ) = uf

by definition. In the area of x < xi the front itself ceases to be
an ionization front, and it is just a thin layer of a space charge,
moving mainly due to an electron (if ρ < 0 at the front) or
holes (if ρ > 0 at the front) drift, so un = v[En(x)]. From this
and the scaling laws uf ∝ R, EM = ẼF (0,0), it follows that
the derivative of dyf /dx tends to zero, and the streamers radius
tends to a constant value of bR at R → ∞ and uf /vs → ∞.
It is easy to show that in this case the field En behind the front
decreases like

En(x) ≈ Ei exp[λE(x − xi)], (20)

where

λE ≈ 1

R

(
1.85

1 − b
− 1

)
(21)

is a minimal positive root of the equation

J0(λEbR)Y1(λER) = J1(λER)Y0(λEbR); (22)

Jν and Yν are Bessel functions of the first and second kind of
order ν. The substitution of (20) in (19) leads after integration
to asymptotic dependence

yf (x) = bR − v

λE

√
u2

f − v2
ln

[
1 + Ei

Es

eλE (x−xi )

]
, (23)

3The kinematic condition (19) of front stationarity is usually written
in the equivalent form un = uf cos ϑ , where ϑ is the angle between
the front normal and the x axis (see, e.g., Refs. [39,40]). If the wave
propagation is significantly affected by tunnel ionization, velocity un

depends not only on En, but also on the whole field distribution along
a force line intersecting the front [36,37]. This makes the analytical
calculation of the whole front form quite so hopeless, but has no effect
on the properties of the function yf (x) at x < xi .
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FIG. 9. (Color online) Ratio EM/E0 vs the external field strength
E0 with α̃R = 8000 (squares) α̃R = 4000 (circles). Filled symbols:
the simulation results, open symbols: calculation formulas (A1) using
the values of a and b, shown in Fig. 6.

which is valid under the condition that the second term is
small in comparison with the first term. In semiconductors, it
is usually Ei � Es , so there is an area where Es 	 En � Ei ,
v ≈ vs and

yf (x) ≈ yf (xi) − vs√
u2

f − v2
s

(x − xi) (24)

according to the simulation results (see Figs. 1 and 10). The
formula (24) should also be straight from (19) and therefore,
in contrast to (23), is valid even if the ratio of uf /vs is not very

FIG. 10. (Color online) The derivative of dyf /dx in the region of
linearity of function yf (x) (open symbols) and the decay length 1/λ−

of the field behind the front (filled symbols) vs R with E0 = 0.36Ẽ.
Symbols are obtained by processing the simulation results, dashed
line: calculation formulas (24) using the values of uf , shown in Fig. 4,
solid line: calculation formulas (21) using the values of b, shown
in Fig. 6.

FIG. 11. The radial distribution of the charge carriers density σ

at different distances from the front with R = 100α̃ and E0 = 0.36Ẽ.
Line: the simulation results, symbols: the calculation formulas (27)
with σav = 0.0138, σ00 = 0.059, and σ0R = 0.002.

large.4 Consequently it is advisable to use an approximation

yf (x) = 2

π
b∞R arccos

[
exp

(
π

2

x − xf

aR

)]

− vs√
u2

f − v2
s

(x − xf ), (25)

which is consistent with (24) in the region (xf − x) > 2aR at
an appropriate choice of b∞, coincides with (1) at vs/uf → 0
and well describes the shape of the front at all ratio vs/uf as
long as En > Es .

At more higher values of (xf − x) the inequality En 	 Es

is satisfied, so it follows from (23), that function yf (x) seeks
to bR exponentially:

yf (x) = bR − μ0Ei

λEuf

eλE (x−xi ), (26)

where μ0 = vs/Es is low-field mobility. In gases Es � Ei

(that is, μ = μ0 in the topical range of fields); therefore the
range of linearity of yf (x) has to be absent, which is consistent
with the results of Ref. [8]. In a planar case λE = π/2L(1 − b),
so that formula (26) correctly describes the asymptotic of
function (1) at (xf − x) → ∞, obtained as a result of an
exact solution of the corresponding problem. This coincidence
confirms the correctness of the above approximate method for
determining the shape of the front at x < xi .

However, it must be borne in mind that due to the expo-
nential decrease of the field strength En and the corresponding
front surface charge density the front as such actually ceases
to exist just where formula (26) is formally applicable for
semiconductors. Instead, the filament of quasineutral plasma
arises and fills the entire area of y < R, but this filament
is highly nonuniform in the transverse direction. The main
transport mechanism of the electrons and holes are becoming

4It is interesting to note a precise analogy between this ionization
front and the shock waves produced by supersonic motion of bodies
in gases.
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ambipolar diffusion, which results in a radial spreading of
plasma, so that σ → σav at x → −∞ (Fig. 11). This process
is well described by the formula

σ (x,y) = σav + B exp

(
x0 − x

x1

)
J0

(
a11

y

R

)

+C exp

(
x0 − x

x2

)
J0

(
a12

y

R

)
,

(27)

B = (σ00 − σav)J0(a12) − σ0R + σav

J0(a12) − J0(a11)
,

C = (σ00 − σav)J0(a11) − σ0R + σav

J0(a11) − J0(a12)
,

where xk = uf R2/Da2
1k and a11 ≈ 3.83, a12 ≈ 7.02 are the

first and second roots of equation J1(x) = 0, σ00, and σ0R is
concentration in a plane x = x0 < xi at y = 0 and y = R,
respectively, which, like the σav , are determined by processing
the simulation results. The formula (27) is obtained using
the first two terms of the series (8.3) from Chapter VII of
Ref. [42] and is applicable provided that x1 � D/uf , when
the longitudinal diffusion is negligible. Formula (27) also helps
to explain the fact that the transverse spreading of plasma is
almost imperceptible in region 1, but it becomes a determinant
at small xk ∝ uf R2, that is, in region 2.

In addition, the reduction of R also leads to two effects.
First, EM decreases so that when R < Rt (E0) a tunnel
ionization ceases to have significant influence on the evolution
of the streamers array, and at a relatively weak external field (at
E0 < 0.4Ẽ in our case) the stationary distribution of streamers
becomes impossible due to front transverse instability of each
of them. Second, an even greater reduction of R suppresses
the instability at last, and at R < Rc(E0) (in region 2 in
Fig. 3) evolution of a streamers array again completes by
the appearance of a stationary corrugated wave, which is
propagating now not only due to drift and impact ionization,
but also due to diffusion. The same mechanism determines the
evolution of isolated streamers during a “diffusion stage” [11].
It is not surprising that the streamer front instability comes
(according to Ref. [11]) where its radius is of the order of
Rc. It is interesting to note that the front of two-dimensional
streamers array in gases also becomes unstable [8], when
distance 2L between them is more than 2Rc (see Fig. 3). The
boundaries of the instability region (region 4 in Fig. 3) are
also determined by the inequalities Rt (E0) > R > Rc(E0), so
it exists only at E0 < 0.4Ẽ. In strong external fields tunneling
ionization does not “turn off” and suppresses the instability
even at R < Rc(E0).

With further decrease of R curvature of a corrugated front
and parameters EM , σ− are also reduced. Primary avalanches
begin to overlap before the avalanche-to-streamer transition
and form a periodically perturbed stationary ionization front.
The most long-wave harmonic of this perturbation is given
by the boundary conditions of our problem and has a wave
number k = π/R. Perturbation amplitudes (in particular, the
difference EM − E0) decrease monotonically with R as long
as become vanished at R = R0(E0). At still lower R (in region
3) perturbations generated by the primary avalanche decay,
so that over time a plane impact ionization wave arises. This
result is consistent with the conclusions of a linear theory of

transverse instability of the impact ionization waves. For gases,
such a theory was created by the authors of Ref. [15], which
showed that the perturbations with k < k0 ≈ λ∗/4 had to
increase with time, and the more short wave perturbations had
to decrease. This approval is also true for semiconductors [17]
if you use the appropriate to our case formula [30,31]

λ∗ = α0

√√√√ vs

Dα0
− 1

2
+

√
1

4
+ vs

Dα0
, (28)

where α0 = α(E0). This means that at

R < R0 ≈ 4π/λ∗ (29)

an array of avalanches should produce a plane impact ioniza-
tion wave5 in accordance with the results of modeling. This
wave propagates with the same rate

u∗ = D

2

(
3 +

√
1 + 4vs

Dα0

)
λ∗, (30)

for all R < R0 [30,31] only due to drift, diffusion, and impact
ionization, as the field strength at its front does not exceed E0

and is insufficient for tunneling ionization. The formula (29)
describes well the dependence of the critical radius R0 (and
coinciding with it the critical width L0 for an array of flat
streamers) on E0, obtained from the simulation (see Fig. 3).

Another feature of the corrugated ionization waves was
found, but not explained, in Ref. [8]. It consists in the fact
that the field behind the front tends to zero (in contrast to
the isolated streamers [11,36]), but decays much more slowly
than in the front of the plane waves. A typical example of such
differences is presented in Fig. 12. The paradox of this effect is
the following. In the case of stationary plane ionization waves,
as it is easy to show, the field strength is attenuated by the law
exp(λ−x) with6

λ− = uf

2D

(√
1 + 4σ−vs

α̃ẼD

Esu
2
f

− 1

)
(31)

in exact agreement with the simulation results (see Fig. 12).
The calculation of this formula for a corrugated wave always
gives a significantly (almost four times in the case corre-
sponding to Fig. 12) larger value of λ−, but the simulation
results give a significantly (approximately ten times) smaller
value of λ−.

The reason for this discrepancy is a curvature of the
front. In a stationary wave conduction current is accurately
compensated by displacement current, so that the total current
density is zero everywhere.7 The situation is completely

5A similar effect was observed earlier in the simulation of flame
propagation in a tube [43]: reduction of its diameter to a critical value
corresponding to this process suppressed transverse instability, and
the flame front remains flat.

6This formula is a bipolar analog of the formula (5.63) of Ref. [25].
7If the field ahead of the front of a stationary plane wave is not

uniform (as in the p+ − n − n+ junction), then the total current
density is not zero, but is constant everywhere [44], and the field
strength behind the front approaching a finite value exponentially
with exponent λ− is also determined by formula (31).
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FIG. 12. (Color online) Distributions of the field strength E and
charge carriers concentration σ along the x axis near the fronts of
the plane (solid lines) and corrugated (dashed lines) waves with R =
100α̃ and E0 = 0.36Ẽ. Symbols: the calculation formulas (31) using
the values of σ− and uf , obtained in the simulation of a plane wave.
Concentration σ on the axis of x is maximal at x = xσ � xf .

different in corrugated waves. Near the x axis ahead of the front
conduction current and the displacement current coincide with
the direction of wave propagation, but the displacement current
is opposite directed and dominates near the surface y = R

(where the concentration σ is very small). As a result, a vortex
of current is formed at the front. The example of such a vortex
is shown in Fig. 13. Near the surface y = R field strength, and
with it the displacement current decay exponentially according
to (20) with exponent λE . Obviously, the conduction current,
providing the appearance of an ohmic field behind the front,
decreases in the same way near the axis of x. It is clear that
this ohmic field should decrease approximately exponentially
with the increment of λ− ∼ λE . This conclusion is confirmed
by the simulation results given in Fig. 10.

In conclusion of this section we will note two more
circumstances. First, at given E0 and R a stationary corru-
gated ionization wave is an attractor for a wide range of
initial conditions; after sufficient time the same solution is

FIG. 13. The vector field of the current near the front of
corrugated ionization wave at R = 100α̃ and E0 = 0.36Ẽ. Length of
the arrows is proportional to yJ , where J is the sum of the conduction
and displacement current densities. The space charge density is more
then 0.002εα̃Ẽ ≈ 3.2 mC/cm3 inside the region shaded in gray.

obtained:
(1) For a point initial perturbation
(2) For an ellipsoidal initial perturbation with a transverse

semiaxis of order of R/2 (a similar result was obtained for the
two-dimensional streamers array in gases [8])

(3) As a result of restructuring a stationary corrugated wave
with control parameters {F ′

0,R} after changing F ′
0 to F0

(4) As a result of growth of small transverse perturbations
of the plane ionization front, if R < π/kM , where kM is a wave
number of the most rapidly growing perturbations [17] (similar
scenarios of evolution are also realized during the propagation
of plane fronts in various media, in particular, ionization fronts
in gases [14], premixed flames [43,45], electrochemical doping
fronts in organic semiconductors [46], etc.)

Second, apart from the above basic principles of evolution
of interacting streamers, more subtle effects were found. In
particular, at some values of control parameters E0 and R,
small quasiperiodic variations of the quantities σ behind the
front and the maximum field strength EM are observed, as well
as small quasiperiodic deviations of the front shape from the
linear function (24). A possible reason for such anomalies is
the use of a too coarse finite element mesh, the minimum size
of which is determined by the resources of our computers.
However, we can not exclude the physical reality of the
observed effects (see, for example, Ref. [25]).

IV. CONCLUSION

In the present article the results of numerical modeling of
the evolution of the two-dimensional periodic array of identical
streamers in a constant and uniform field are stated. It turned
out that the nature of the evolution of a streamers array in
semiconductors was much more complex in comparison with
gases in a framework of “minimal model” [8]. The evolution
of the array is completed in different ways, depending on the
control parameters of the problem: the external field E0 and
the distance 2R between the streamers. For classification of
various scenarios of evolution a diagram of the final state of
the streamers array, dividing the plane of [1/E0,R] for four
qualitatively various regions, is constructed and represented in
Fig. 3. In regions 1 and 2 interaction between streamers leads
over time to formation of two types of stationary ionization
waves with the corrugated front, differing with ionization
mechanisms. Specific characteristics of the fronts of these
waves, caused by features of processes of ionization and
charge transport in semiconductors, are described in detail and
explained on the basis of simple physical reasons. In region 3,
at enough small R, the array of primary avalanches generates
a planar impact ionization wave. In weak external fields
between regions 1 and 2 there is region 4 in which stationary
propagation of ionization waves is impossible because of
development of transverse instability. This instability observed
earlier at modeling of isolated streamers can be called local
because it destroys (or does not destroy) fronts of each streamer
in the array.

However, besides it global instability of array of streamers
(each of which is locally stable) is also possible. In fact, in this
work we considered that the primary avalanches generating
the array of streamers, started at the same time from nodes of a
ideal planar hexagonal lattice. Meanwhile small deviations in
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FIG. 14. (Color online) Ratio of the maximum field strength at
a single cylinder and an array of cylinders with hemispherical caps
η(R,b,l) vs their length 2l, radius bR, and distance between them 2R

with bR/l = 0.01–0.25 and R/l = 0.4–50.

time and/or in the provision of avalanches starting will lead to
emergence of “competition” between streamers of the nonideal
array: some of them will appear in a “preferred position” and
will develop quicker than others. Sooner or later such streamers
will start reducing considerably a field strength in the vicinity
and suppress propagation of neighbors. If distance d between
the electrodes is sufficiently large, only the earliest and/or most
remote from neighbors streamers will be able to overcome
it, and the average distance between such leading streamers
should be of the order of 3d (see the Appendix). These reasons
indicate the importance of a global instability problem, which
will be analyzed in a separate paper.

ACKNOWLEDGMENTS

The author is grateful to A. V. Gorbatyuk for helpful
discussions. This work was supported by RFBR (Grant
13-08-00474).

APPENDIX: THE ELECTROSTATIC INTERACTION
BETWEEN METAL CYLINDERS

WITH ELLIPSOIDAL TIPS

For a quick estimate of a maximum field strength EM of
streamers in the array each of them can be represented in the
form of a metal cylinder of length 2l with a radius bR and tips

FIG. 15. Ratio EM/E0 for an array of cylinders with ellipsoidal
tips vs the dimensionless length of the longitudinal ae = πa/2 and
transverse b semiaxes with b = 0.2–0.6 and ae = 0.2–1.2.

in the form of ellipsoids of rotation. To interpret the simulation
results you need to know how the array parameters affect the
two values.

The first of these, the ratio of η(R,b,l) ≡ EM (R,b,l)/
EM (∞,b,l), allows us to define the conditions under which
the influence of the electrostatic interaction between streamers
on EM becomes noticeable. These conditions depend little on
the longitudinal axis of the ellipsoids aeR; therefore, when
calculating η it would be possible to put ae = b for simplicity.
The results of these calculations are shown in Fig. 14. As
can be seen, for all relevant values of b and R/l they are
well described by the function η = tanh(5γ /2), where γ =
R/l[1 + 3(bR/l)1/3]. Interaction becomes significant when
η is noticeably different from the one that is at γ � 1 or
R � (2.5–3)l.

The second desired value, the ratio EM (b,ae)/E0 at l � R,

allows us to evaluate EM in a stationary propagating of
streamer array (or, in other words, in a stationary corrugated
ionization wave). In this case, the result depends strongly not
only on b, but also on ae. We used the value ae = πa/2,
since in this case the difference between the system “cylin-
der ellipsoid” and the surface of revolution with generating
lines a kind of (1) is minimal and for all a,b does not exceed
5%. The results of such calculations, presented in Fig. 15, are
well described by the dependence

EM (a,b) = 0.88E0b
−4/5(1 + 4a/5b). (A1)
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