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Dynamics of matter-wave condensates with time-dependent two- and three-body interactions
trapped by a linear potential in the presence of atom gain or loss
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Bose-Einstein condensates with time varying two- and three-body interatomic interactions, confined in a linear
potential and exchanging atoms with the thermal cloud are investigated. Using the extended tanh-function
method with an auxiliary equation, i.e., the Lenard equation, many exact solutions describing the dynamics of
matter-wave condensates are derived. An important issue is the time management of the cubic and the quintic
nonlinearities by tuning the rate of exchange of atoms between the condensate and the thermal background.
In addition, adjusting the strength of the linear potential, the rate of exchange of atoms, and many other free
parameters allow one to control many features of the condensate such as its height, width, position, velocity,
acceleration, and its direction, respectively. Full numerical solutions corroborate the analytical predictions.
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I. INTRODUCTION

The experimental observation of Bose-Einstein conden-
sates (BECs) of trapped atomic vapors [1–3] has allowed
investigations of some fundamental concepts of atomic physics
and condensed matter physics [4]. Among these concepts,
the question of how to control the dynamics of collective
assemblies of atoms that are in the same quantum state
is of great importance. It is well known that at very low
temperatures, the dynamical behavior of a BEC is well
described by the Gross-Pitaevskii equation (GPE) [4] which
is a nonlinear Schrödinger equation with an external potential.
The GPE exhibits many types of nonlinear excitations such
as dark solitons [4], bright solitons [4], compactons [5], and
so on. All the nonlinear phenomena observed in matter-wave
condensates can be better explained with exact analytical
solutions of the GPE. So, finding exact solutions of the
GPE is a task of relative importance. For example, exact
solutions may (i) help to choose appropriate experimental
parameters, (ii) provide a way for probing the validity of the
GPE at higher densities, (iii) help to analyze the stability of
condensates, (iv) check the numerical analysis of the GPE,
and (v) help to explain the formation and the propagation of
different kinds of patterns in BECs as well as their long-time
evolution. In the past few decades, many methods have been
used to exactly solve the GPE such as the inverse scattering
transform method [6], the mapping deformation method [7],
and the extended tanh-function method [8], just to name a
few. The extended tanh-function method is an approximate
method used to exactly solve nonlinear partial differential
equations. This method is a good technique for constructing
exact or approximate traveling wave solutions of nonlinear
wave equations arising in physics. The basic idea of the method
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is to choose a trial wave function with some free parameters
that have important physical significance. The trial wave
function is associated with an auxiliary equation (which has
known exact solutions) that depends on a traveling variable.
For example, Riccati equation φ′ = A + φ3, auxiliary ordinary
equation φ′2 = Bφ2 + Cφ2 + Dφ4, first kind elliptic equation
φ′2 = A + Bφ2 + Dφ4, the generalized Riccati equation φ′ =
r + pφ + qφ2, and so on [9]. Using the chain rule for the
derivations, the original nonlinear partial differential wave
equation is converted into a set of ordinary differential equa-
tions which can be solved with symbolic computer algebra.
The method furnishes not only qualitative but also quantitative
results [9,10]. The validity of exact solutions found with the
extended tanh-function method should be confirmed by some
numerical integrations of the original equation.

In the GPE, nonlinearities arise from two-body interactions
characterized by the scattering length, and by three-body
collisions among atoms of the cloud. Some recent experiments
have proved that the strength and the sign of the scattering
length can be varied by using the so-called Feshbach resonance
technique [11,12]. This has opened up many opportunities for
the manipulation of matter-wave condensates and nonlinear
excitations in BECs [13]. In most cases, the GPE describes
condensates dominated by only the two-body interactions.
In Ref. [14], the number of three-body interactions has
been increased by using a magnetic field. The three-body
interactions may become important and are used to describe the
dynamics of condensates in the Tonks-Girardeau regime when
the interatomic interactions are strong [15,16]. It has been
shown in Refs. [17,18], that the two-body interactions and the
three-body collisions can be managed separately. Recently,
Mohamadou et al. [9] and Wamba et al. [10] proposed
exact soliton solutions of the GPE with two-and three-body
interactions by using a further extension of the tanh-function
method that takes into account the three-body interactions.
In this work, using the extended tanh-function method, we
propose general exact solutions of the cubic-quintic GPE
with time varying two-and three-body interatomic interactions.
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As we will show below, the time-dependent interatomic
interactions take into account the exchange of atoms between
the BEC and the thermal cloud. The condensate is trapped
in a linear potential that may also mimic the effects of the
gravitational field. In BEC experiments, the linear potential
can be produced by an appropriate magnetic gradient field,
or an exposure of the BEC to an adequate optical laser
field. A complex potential is also added phenomenologically
in order to account for the exchange of atoms with the
vapor background. Solutions presented here are very general
ones with many free parameters that are used to control the
dynamics of the BEC.

The paper is organized as follows. In Sec. II, we present
the model and derived exact families of solutions. Then,
we discuss the characteristics and evolution of matter-wave
patterns. The stability of our exact solutions against small
perturbations is studied in Sec. III. Then, with intensive
numerical simulations, we investigate the dynamical properties
of our exact analytical solutions in Sec. IV. Finally, Sec. V
concludes the paper.

II. MODEL AND EXACT SOLUTIONS

At the mean-field level, the dynamics of one-dimensional
BECs with both two- and three-body nonlinearities can be
described by the following dimensionless GPE [19–23]:

ı�t (x,t) + �xx − g(t)|�(x,t)|2�(x,t)

−χ (t)|�(x,t)|4�(x,t) − (λx + ıγ )�(x,t) = 0, (1)

where the spatial coordinate x and the time coordinate t are
measured in units of ς = 1 μm (the characteristic length unit
in this type of experiment) and mς2/�, respectively, with m

being the mass per particle. The time-dependent scattering
length function g(t) represents the strength of the two-body
interactions. The function χ (t) takes into account the intensity
of the three-body interactions and is in general a complex
quantity; its imaginary part representing inelastic collisions
can be neglected as shown by some recent works [24–30]. The
cubic (quintic) nonlinearity is attractive if g(t) < 0 (χ (t) < 0),
while it is repulsive when g(t) > 0 (χ (t) > 0). The parameter
λ corresponds to the strength of a linear potential (or the
gravitational field). The quantity γ is a parameter related
to the exchange of atoms between the condensate and the
uncondensed fraction of the thermal cloud. Positive values
of γ correspond to the physical situation where atoms are
fed into the condensate from the thermal background or
injected into the condensate from a reservoir by a pumping
mechanism [31,32]. Negative values of γ are related to atoms
escaping out of the condensate due to dipolar relaxation [32].
In this case, the magnetic dipole-dipole interaction between
the magnetic moments of two colliding atoms makes one
or both atoms emerge from the collision in a different spin
state, a process that induces an increase of the temperature
of the BEC resulting in the expulsion of many atoms out of
the trap [32]. Generally speaking, the dissipative mechanism
corresponding to γ negative is spatially dependent [33]. The
specific case where the rate of exchange of atoms is constant
means that the size of the uncondensed fraction of atoms
is larger than that of the condensate. The rate of exchange

of atoms is characterized by a temporal scale ζ which is
the time interval between subsequent events of adding or
removing individual atoms from the atomic ensemble. The
mean-field approximation remains valid if ζ is negligible, i.e.,
ζω⊥ � 1, which is verified for typical configurations where
ω⊥ = 2π × 360 Hz and ζ ∼ 4 μs [34]. This means that |γ |
is small. We prove below that the strengths of both the cubic
nonlinearity g(t) and the quintic nonlinearity χ (t) capture the
exchange of atoms between the BEC and the background.
Although the zero-temperature mean-field picture has been
proven to provide good experimental results, one has to
notice that experiments are carried out at finite temperatures
where the thermal cloud is present. There are some regimes
where the impact of the thermal cloud on the dynamical
behavior of the condensate becomes important; for example,
the problem of condensate growth, the heating of the gas
under strong external perturbations, or the phase fluctuations
exhibited by the condensate in low-dimensional systems. In
such situations, Eq. (1) is coupled to another one describing
the thermal cloud. Many models has been developed in order
to account for effects of the thermal cloud. A tutorial review
of these models with their physical relevance can be found
in [35].

In order to obtain exact solutions of Eq. (1), we assume that
the solution can be written as

�(x,t) = h(t)φ(ξ ) exp [ıθ (x,t)] , (2)

where h(t) is a real function of time t , and ξ = k(t)x + η(t) is
the traveling wave variable, with k(t) controlling the width
of the condensate. The overall phase is θ = �(t)x + �(t).
The function �(t) is the spatial frequency shift and �(t)
is the homogeneous phase shift. Functions h(t), k(t), η(t),
�(t), �(t), φ(ξ ), g(t), and χ (t) are unknown functions to be
determined later. Following Refs. [10,36], we also assume that
the unknown function φ(ξ ) is the solution of the following
auxiliary equation that considers the quintic nonlinearity

(
dφ

dξ

)2

= b0 + b2φ
2 + b4φ

4 + b6φ
6. (3)

When one uses an auxiliary equation that is a polynomial in
order to solve nonlinear partial differential equations where the
the degree of the highest nonlinearity is “p” similar to Eq. (1),
the order of the auxiliary equation should be “p + 1” in order
to have nontrivial solutions. The coefficient of the highest non-
linear term of the underlying equation to solve [here Eq. (1)] is
proportional to the coefficient of the highest monomial of the
auxiliary equation, as one can see in Eq. (9) below. Inserting
Eq. (2) into Eq. (1) and collecting coefficients of powers xnφl

(n = 0,1, l = 0,1,2,3,4,5) and
√

b0 + b2φ2 + b4φ4 + b6φ6,
then setting each of the coefficients to zero yields the
following set of overdetermined partial differential equations
where the “dot” denotes the derivative with respect to
time t :

ḣ − γ h = 0,

h(η̇ + 2�k) = 0,

hk̇ = 0,

h(−�̇ + k2b2 − �(t)2) = 0,
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h(�̇ + λ) = 0,

h[2b4k
2 − g(t)h2] = 0,

h[3k2b6 − χ (t)h4] = 0. (4)

Solving the set of equations (4) with MAPLE we obtain

h(t) = C5 exp(γ t), (5)

�(t) = −λt + C4, (6)

k(t) = C3, (7)

g(t) = 2b4k
2(t)

h2(t)
, (8)

χ (t) = 3b6k
2(t)

h4(t)
, (9)

η(t) = −2C3

(−λt2

2
+ C4t

)
+ C2, (10)

�(t) = −
(

λ2t3

3
− C4λt2

)
+ (

b2C
2
3 − C2

4

)
t + C3

4

3λ
+ C1.

(11)

Coefficients C1,C2,C3,C4,C5 are free real constant parameters
related to the initial condition of the wave, such as initial
coordinate, velocity, shape, amplitude, and overall phase. More
importantly, in this work, we will try to find explicit ways to
control the dynamical evolution of waves. From relations (6)
and (11), one infers that the overall phase θ that is essential
for reliable solutions does not depend on the rate of exchange
of atoms between the condensed and uncondensed fractions.
Adding or removing atoms from the condensate does not affect
the direction of propagation of solutions. On the contrary,
the linear potential deeply affects the overall phase θ of the
condensate. Once the strength of the linear potential is fixed,
as time evolves, the deviation of the linear frequency shift
from its initial value C4 is proportional to λ [see Eq. (6)],
meanwhile the variation of the homogenous phase clearly
depends on λ [see Eq. (8)]. The parameter b2 is related to
the solution pattern (see the Appendix). If the solution pattern
is chosen, we can evaluate analytically the overall phase at
each time from the initial condition. Hence, Eqs. (6) and (8)
tell us how to adjust the strength of the linear potential in order
to obtain a desired phase of the solution during evolution.
Equations (5), (8), and (9) imply that the two- and three-body
interactions are time dependent and also depend on the rate
of exchange of atoms process with the thermal cloud. During
evolution, the interplay between the BEC and the uncondensed
fraction modulates the intensity of both two- and three-body
interatomic interactions in the condensate. Furthermore, from
Eqs. (8) and (9), one realizes that our solutions apply only for
specific time-dependent behavior of the two- and three-body
nonlinearities given by Eqs. (8) and (9), respectively. The
expression of the two-body nonlinearity strength suggests
the management of the two-body collisions, which can
be controlled externally in BEC experiments by using the

Feshbach resonance technique [11,12]. Equation (8) is similar
to the expression of the scattering length obtained in Ref. [37]
[g(t) = a0 exp(λt), a0 being a constant] that was derived from
the BEC experiments of Bradley et al. [2,38] where bright
solitons were produced. Moreover, the two-body nonlinearity
has also been tuned from repulsive to attractive in recent
condensate experiments [39,40]. It has been shown in Ref. [41]
that bright and dark solitons may be produced in the latter
experiments ([39,40]) provided that the two-body nonlinearity
takes a mathematical form close to that of Eq. (8). Apart from
the fact that the two-body collisions can be time dependent,
the three-body interactions can also be tuned via the Feshbach
resonance technique [14]. Anticipating the experiments, some
authors have proposed a periodic modulation of the coefficient
of the three-body nonlinearity. In Ref. [42], such a time
periodic variation of the three-body interatomic collisions has
been used to analyze the stability of condensates with both two-
and three-body interactions. Recently, a space modulation of
the three-body nonlinearities has been used to stabilize one-
dimensional condensates against critical collapse in quintic
nonlinear lattices [43]. In this work, the three-body interatomic
interactions strength χ (t) presents a similar behavior as the
two-body nonlinearity g(t). When the condensate is in the
feeding regime (γ > 0), setting the parameters b4 and b6

to convenient values allows one to increase the intensity
of the three-body interactions, allowing one to mimic the
Tonks-Girardeau regime, where the three-body interactions
dominate over the two-body collisions [14,15]. By inducing a
time modulation, the exchange of atoms process considerably
alters the cubic and quintic nonlinearities. After selecting
the values of b4 and b6 which are related to the solution
pattern needed (see the Appendix), the experimenter knows
how to manage both the two- and three-body interatomic
interactions in the BEC. Therefore, we can know how to
adjust the related operations to control the evolution of the
solutions’ overall phase as well as the two- and three-body
interatomic nonlinearities. It is clear that the linear potential
does not play any role in the interaction among particles in
the condensate. We deduce from Eq. (7) that the width of a
solution, 1/C3, remains constant during evolution leading to
the compression of the condensate when atoms are added in
the system, while an amplitude dissipation will be observed
if atoms are ejected out of the system. On the other hand,
the choice of the free parameters b4 and b6 (b4 and b6 may
take a wide range of values) and that of γ can be done in
order to bring the BEC in the range of parameters used in
current BEC experiments. In addition, one has to keep in
mind the fact that in most recent works, the condensate was
confined in an external parabolic potential [2,38–43], where
the time management of the cubic nonlinearity was related
to the strength of the parabolic potential, which was set to
be a factor of the rate of the exchange of atoms with the
thermal background. In this work, the quintic nonlinearity
which is an exponential function of time, may be controlled
by adjusting the feeding or loss of atoms process parameter
γ , in a BEC dominated by a linear potential. We believe that
such an exponential time-dependent quintic nonlinearity may
motivate its realization in BEC experiments in the future.
Moreover, in previous works, the expressions of the cubic
and quintic nonlinearities are fixed, and then exact solutions
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of the GPE are found [5,22,23,37,42–45]. In this work, we
adopt a rather different approach by constructing both exact
solutions of the GPE, and their corresponding expressions
of the cubic and quintic nonlinearities. For the case at hand,
the physical relevance of the expressions of the cubic and
quintic nonlinearities as discussed above may be implemented
in condensate experiments. Our approach may be used to find
exact solutions of the GPE with different trap geometries, and
may also be generalized to higher dimensions. An approach
similar to the one presented in this work, but employing the
Hirota bilinear method, has been used to derive exact solutions
of a class of complex Ginzburg-Landau equations with time
variable coefficients [46]. As in Eq. (1), the cubic nonlinearity
is only prescribed to be time dependent in Ref. [46]; then its
explicit expression as well as exact solutions are derived at
the end of the calculations. In addition, when b4 < 0 (b6 < 0)
the two-body (three-body) interactions are attractive, but for
b4 > 0 (b6 > 0), the two-body (three-body) interactions are
repulsive. Considering the solutions of the Lenard equation
[Eq. (3)] given in the Appendix, we obtain a series of 22
families of exact solutions of Eq. (1) as

�jp(x,t) = h(t)φjp(ξ ) exp {ı [�(t)x + �(t)]} . (12)

The integer j corresponds to a family of solutions of Eq. (3) and
varies from 1 to 11, while the integer p accounts for a particular
solution of a specific family and may take the values 1, 2, and
3 [see solutions of Eq. (3) above]. A classification of different
exact solutions and their characteristics (attractive or repulsive
two- or three-body interactions) of Eq. (3) constructed in this
work are regrouped in Table I.

The function h(t) captures the strength of the interactions
among atoms of the condensate. In the case where the BEC
gains atoms (γ > 0), h(t) increases meaning that the density
of the matter wave increases too. On the contrary, h(t)
decreases and the density of the condensate reduces when
the BEC loses atoms (γ < 0). Similar behaviors, which are
in agreement with the physical reality, have been reported
in Refs. [37,47]. Hence, a proper choice of the parameter γ

may help to obtain an assumed peak without explosion of
the condensate. The interplay between the condensate and
the thermal background can be externally controlled and also
modifies the amplitude of the solutions. Furthermore, large
values of |C5| induce an increase of the condensate’s density.
Thus, it is possible to master the density of the condensate by

adjusting the free parameter C5. The selection of C5 and that
of the experimental parameter γ provide two powerful tools
to control the amplitude of the solutions. Families of exact
solutions also present many other interesting characteristics.

Setting the traveling variable to zero, ξ = 0, enables one to
derive the position, velocity, and the acceleration of the center
of mass of the matter wave as

x = −λt2 + 2C4t − C2/C3,

ẋ = −2λt + 2C4, (13)

ẍ = −2λ.

Equation (13) teaches us important things about the evolution
at mean from the initial condition of three main properties of
the solutions. First, the motion is characterized by the width
and the strength of the linear potential λ. The center of mass
of the condensate describes a parabola in the plane (t,x) with
a constant acceleration, 2|λ|, which is twice the strength of the
linear potential λ. The relevant physical parameters that affect
the motion and velocity of the solution are the strength of the
linear potential λ and the solution’s width. Secondly, we can
compute the velocity and the acceleration of the center of mass
of the solutions analytically. Thirdly, according to Newton’s
second law, the last equation of (13) formally corresponds
to the classical equation of motion of a particle moving in
the effective potential 2λx with total energy (1/2)ẋ2 + 2λx,
its only equilibrium point being zero. Hence, the presence of
the linear potential induces an acceleration of the condensate.
This feature may be used in some BEC applications such
as the realization of the atomic laser where the velocity of
atoms can be tuned by selecting the strength of the linear
potential. Another potential application is the transport of the
condensate in experiments driven by the parameter λ. The
linear potential profoundly affects the motion of the center of
mass of the condensate. At mean, our solutions are set into
motion by the external potential which also induces a gradient
on the condensate and finally modifies the trajectory of the
condensate. In the absence of the linear potential (λ = 0),
the center of mass of the BEC describes a straight line in
the plane (t,x) and moves at a constant velocity that depends
on the value of the free parameter C4. The initial velocity of
the wave is equal to 2 | C4 |. In addition, Eq. (12) presents
many kinds of solutions with rather different shapes. Let us
examine some of them in detail.

TABLE I. Classification of different solutions.

Type j p Two-body interactions Three-body interactions δ

Trigonometric functions 2 1, 2 Repulsive Attractive Positive
7 Attractive or repulsive Attractive or repulsive Positive
9 1, 2 Attractive or repulsive Repulsive

Hyperbolic functions 1 1, 2 Attractive Attractive Positive
3 1, 2 Attractive Repulsive
4 1, 2 Attractive or repulsive Attractive or repulsive
5 Attractive or repulsive Attractive or repulsive Positive
8 1, 2 Attractive or repulsive Repulsive

11 Attractive Repulsive
Exponential functions 4 3 Attractive or repulsive Attractive or repulsive

10 Absence Attractive or repulsive
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FIG. 1. (Color online) Temporal evolutions of repulsive cubic nonlinearity [panel (a)] and the attractive quintic nonlinearity [panel (b)].
Parameters are fixed as γ = −0.001, C3 = 0.1, b4 = 3, and b6 = −2.

A. Periodic solutions

It is possible to generate a periodic solution by setting
j = 2 and p = 1 in Eq. (12) with the following coefficients:
b2 = −1, b4 = 3, b6 = −2, γ = −0.001, and λ = 0.001. The
other parameters are C5 = 1, C4 = 0, C2 = 0, and C1 = 0.
The condensate is repulsive since b4 > 0, and is in the
regime of loss of atoms. We display in Fig. 1 the temporal
variations of the cubic nonlinearity [Fig. 1(a)], and the quintic
nonlinearity [Fig. 1(b)]. One observes that the intensity of
the cubic nonlinearity decreases, while the intensity of the
quintic nonlinearity increases slightly faster. Figure 1 provides
a way to understand how to modulate the cubic and the quintic
nonlinearities in order to obtain localized solutions. Hence,
using the Feshbach resonance management, the experimenter
tunes the strengths of the cubic and the quintic nonlinearities
by acting on the rate of exchange of atoms γ . In Fig. 2(a), the
spatiotemporal evolution of the condensate’s density shows a
spatial periodic localized wave packet. The number of solitons,
n, with the width, Ws , available on the cigar axis of length, L,

can be determined with the formula

n =
(

L

Ws

)
α, (14)

where α is a real parameter used to scale the value of n. In
Fig. 2(b) where C3 = 0.008, the number of solitons is twice
that in Fig. 2(a), in full agreement with the prediction of
Eq. (14). It is possible to tune the periodicity of the solution
to the desired value. We recall that such periodic solutions,
moving at a constant acceleration presented in Fig. 2, are
likely to be observed for condensates loaded in optical lattices.
Nowadays, BECs can be produced in optical lattices which
allow the management of many BEC properties such as the
cubic and the quintic nonlinearities [48]. In BEC applications,
the solutions presented in Fig. 2 can be used to insert atoms
onto optical devices, such as atom chips, waveguides, and
mirrors [48,49].

FIG. 2. (Color online) Periodic solution of Eq. (12) for j = 2, p = 1, λ = 0.001, C3 = 0.004, b2 = −1, C5 = 1, and C1 = C2 = C4 = 0.
(a) Spatiotemporal dynamics of the wave function in the regime of atoms loss, γ = −0.001. (b) Control of the number of solitons, W = 0.008.
The other parameters correspond to those in Fig. 1.
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FIG. 3. (Color online) Dark profile solutions of Eq. (12), with j = 11, b0 = −4, b2 = −4, b4 = 4, b6 = 4, γ = 0.001, and C3 = 0.1.
(a) λ = 0.01; (b) λ = −0.01. The linear potential affects the direction of propagation of the soliton. (c) Small amplitudes oscillation induced
by the linear potential, W = 2. (d) λ = 0, W = 2, absence of amplitude modulations when the linear potential is turned off.

B. Dark profile solutions

Equation (12) has a dark profile solution for j = 11,
with b0 = −4, b2 = −4, b4 = 4 (repulsive BEC), b6 = 4,
γ = 0.001, and C3 = 0.1. We display in Fig. 3 the dynamics
of dark profile patterns for two different values of the linear
potential’s strength λ [see panels (a) and (b)]. The BEC is
drifted towards the −x direction when λ is positive [see
Fig. 3(a) with λ = 0.01], while the BEC evolves towards
the +x direction for a negative value of λ [see Fig. 3(b)
with λ = −0.01], in conformity with Eq. (13). The linear
potential may be used to control the direction of propagation of
solitons. A similar effect has been reported in Refs. [36,50]. In
addition, the dark soliton exhibits small amplitude modulations
as time increases. The amplitude modulations appear earlier
with smaller widths of the solitons. This feature is presented
in Fig. 3(c) where W = 2. These amplitude modulations are
completely absent when the linear potential is turned out as
depicted in Fig. 3(d), where the same parameters as in Fig. 3(c)
are used except λ = 0. Thus, the linear potential also induces
a breathing mode behavior for which occurrence is sensitive
to the width of the soliton.

The free parameters C4 and C2 also influence the dynamical
behavior of the condensate. We turn the linear potential out
in order to facilitate interpretations, and fix γ and C3 as in

Fig. 3(d). A positive value of C4 drifts the BEC towards the
+x direction as confirmed by Fig. 4(a) where C4 = 0.035,
while a negative value of C4 pushes the BEC towards the
−x direction as one can see in Fig. 4(b) where C4 = −0.035.
The condensate moves at a constant velocity ẋ = 0.07. One
also notices in Figs. 4(a) and 4(b) that C4 also induces small
amplitude modulations. In order to check the impact of the
parameter C2, we set C4 = 0. The condensate stands at position
x = −C2

C3
= −2C2, a characteristic illustrated in Fig. 4(c)

(C2 = 5) and in Fig. 4(d) (C2 = −5). Results presented above
prove that the free parameters C4, C3, and C2 can be used
to manipulate the position, the velocity (C4 only), and the
width (C3) of the BEC. Combining values of C4, C3, C2, and
that of λ will allow one to manipulate many features of the
condensate. We plot in Fig. 4(e) the spatiotemporal evolution
of the condensate’s density (as an example) with λ = 0.001,
C4 = −0.3, C3 = 0.5, and C2 = 0.5. The direction, velocity,
and acceleration of the condensate are tuned by an adequate
selection of the parameters C4, C3, C2, and λ.

C. Bright profile solutions

Bright pattern solutions are formed and displayed in Fig. 5.
In Fig. 5(a) [as in Eq. (12)] we set j = 1 and p = 1, with
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FIG. 4. (Color online) Panel (a) with C4 = 0.035, and panel (b) C4 = −0.035 prove that the free parameter C4 deeply affects the direction
of propagation of the wave function, and also induces a breathing mode behavior (C2 = 0). Panel (c) with C2 = 5, and panel (d) C2 = −5
illustrate the influence that C2 has on the direction of propagation of the wave function (C4 = 0). (e) λ = 0.001, C4 = −0.3, and C2 = C1 = 0.5.
The other parameters are the same as in Fig. 3(d).

b2 = 2, b4 = −3 (attractive condensate), b6 = −2, with
the other parameters the same as in Fig. 1. A bright
structure describing a parabola in the plane (t,x) is
formed, and evolves at the constant acceleration ẍ =
0.002. In addition, Fig. 5(b) portrays another bright matter-
wave condensate obtained by setting j = 10, b2 = 2, b4 =
0 [as in Eq. (12)], with the other parameters corre-
sponding to those in Fig. 1. The cubic nonlinearity is

defocusing (repulsive), while the quintic nonlinearity is fo-
cusing (attractive).

D. Anti-kink-like and kinklike profile solutions

Another interesting solution is the anti-kink-like solution
[see Fig. 6(a)] obtained for j = 3, p = 1 in Eq. (12), with
b2 = 2, b4 = −4, b6 = b2

4/4b2, and γ = 0.001; the other
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FIG. 5. (Color online) Spatiotemporal evolution of the density |�(x,t)|2 of bright solitons. (a) In Eq. (12), j = p = 1, b2 = 2, b4 = −3,
and b6 = −2. (b) In Eq. (12), j = 10, b2 = 2, b4 = 0, and the other parameters are fixed as in Fig. 1, with λ = 0.001.

parameters are as in Fig. 3(c). The argument of the tanh
function is −√

b2ξ . The kinklike [see Fig. 6(b)] structure is
obtained with the same parameters as in Fig. 6(a) except that
the argument of the tanh function is +√

b2ξ . These solutions
are displaced at the constant acceleration ẍ = 0.002.

III. LINEAR STABILITY ANALYSIS

In the previous section, we have constructed exact solutions
of Eq. (1). However, real physical systems present some
perturbations. One has to analyze the stability of exact
solutions found with a mathematical treatment. We analyze the
stability of our solutions by linearizing the exact solution of
Eq. (1) around a small perturbation. Let us consider a perturbed
solution of Eq. (1) written as

�(x,t) = [�1(x,t) + �2(x,t)] exp [ıθ (x,t)] , (15)

where �1(x,t) exp [ıθ (x,t)] is the exact solution of Eq. (1), and
�2(x,t) = R(x,t) + ıI (x,t) represents a small perturbation,
i.e., |�2(x,t)|2 � |�1(x,t)|2. Inserting Eq. (15) into Eq. (1)

and linearizing around the perturbation, we derive the follow-
ing system of equations:

Rt = −Ixx + [
θt + θ2

x + g(t)�1(x,t)2

+χ (t)�1(x,t)4 + λx
]
I + (θxx + γ )R − 2θxxIx,

It = Rxx−
[
θt + θ2

x + 3g(t)�1(x,t)2 + 5χ (t)�1(x,t)4 + λx
]

×R − (θxx − γ )I − 2θxxIx. (16)

The analysis of the linear problem (16) is a nontrivial task,
so we only focus on solutions with zero spatial frequency
shift, i.e., �(t) = 0. This implies that λ = 0, C4 = 0, ẍ = ẋ =
0, η = C2, ξ (x,t) ≡ ξ (x) = C3x + C2, θt = 2b2C

2
3 , and θx =

θxx = 0. As in all solutions plotted above, we set C1 = 0; the
homogenous phase becomes �(t) = 2b2C

2
3 t . Following the

work in Ref. [51], we rewrite the system (16) in this form:

(
Rt

It

)
= J

(
L+ −S

S L−

) (
R

I

)
. (17)

FIG. 6. (Color online) Spatiotemporal evolution of the density |�(x,t)|2 of anti-kink-like and kinklike pattern solutions of Eq. (12).
(a) Anti-kink-like solution. (b) Kinklike solution. The parameters are j = 3, p = 1, b2 = 2, b4 = −4, b6 = b2

4/4b2, γ = 0.001, λ = 0.001,
and the other parameters taken as in Fig. 3(c).
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In Eq. (17) J = ( 0 1
−1 0) and

L− = − ∂2

∂x2
+ 2b2C

2
3 + g(t)�1(x,t)2 + χ (t)�1(x,t)4 + λx,

L+ = − ∂2

∂x2
+2b2C

2
3+3g(t)�1(x,t)2+5χ (t)�1(x,t)4 + λx,

S = γ. (18)

We assume that the perturbation takes the form

R(x,t) = r1(x) exp(βt),
(19)

I (x,t) = r2(x) exp(βt).

Substituting Eq. (19) into Eq. (17) yields an eigenvalue
problem given by

J

(
L+ −γ

γ L−

) (
r1

r2

)
= β

(
r1

r2

)
. (20)

This linear stability procedure can be applied to all solutions
of Eq. (1) given by Eq. (12). However, one has to check the
stability of each solution step by step since the functions
φ(ξ ) are different. We consider as examples, the cases of
the periodic, antikink, kink, and dark solitons presented
above. Exploiting theorems presented in [51] and applied in
[10,51–54], we arrive at the following conclusions:

(i) Since in Eq. (12), for j = 2, p = 1 the function
h(t)φ(ξ ) > 0, the homogeneous phase periodic solution is
linearly stable in a repulsive BEC.

(ii) The homogeneous anti-kink-like and kinklike solitons
are linearly stable in a repulsive BEC.

(iii) The homogeneous dark soliton is linearly unstable in
the attractive BEC.

IV. NUMERICAL SIMULATIONS

The main subject of this part is to test the validity
of the exact solutions found above. For solutions derived
with approximate methods such as the one adopted here,
comparisons with direct numerical integrations of the original
equation are usually necessary. The reason is that an exact
analytical solution may lead to wrong results if the initial
condition is not close to the exact numerical solution. For
instance, exact analytical solutions obtained via the standard
variational approximation widely used to study properties of
solitons in BECs are always compared with their numerical
counterparts [55]. In this part of the work, we emphasize that
our exact analytical solutions do not deviate from the numerical
ones by showing at particular times the agreement between
both solutions. Due to the presence of the complex potential,
Eq. (1) is a dissipative GPE. Hence, the localized matter-
wave structures found above are the well-known dissipative
solitons, where gain, loss, dispersion, and nonlinearities are
balanced during numerical simulations. The extended period
of time numerical behavior of our dissipative soliton solutions
definitely implies that they may be used for convenient
comparison with current or future experiments. Starting from
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FIG. 7. (Color online) (a)–(c) Spatial comparison between the numerical (solid line) and the analytical (dotted line) periodical solutions of
(12) for j = 2, p = 1. (d) Stable density profile of the periodic solution. In all panels, parameters are the same as in Fig. 2(a), except W = 400.
Both numerical and analytical solutions agree with a very high accuracy.
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FIG. 8. (Color online) (a)–(c) Spatial comparison between the numerical (solid line) and the analytical (dotted line) dark solutions of (12)
for j = 11. (d) Stable propagation of the dark soliton. In all panels, parameters are the same as in Fig. 3(a), except W = 400. (e) Spatiotemporal
evolution of the trivial phase dark profile solution with only very small amplitude oscillations at the top.

the same initial conditions, we show that the analytic and
numerical solutions agree well. The numerical procedure used
is the fourth-order Runge-Kutta in the interaction picture
method [56,57]. The spatial grid is sufficiently large in order
to prevent problems with the boundaries [56,57]. Solutions are
initially perturbed with a small amount of random white noise.

We insert the exact nontrivial phase (or zero spatial
frequency shift) solution of Fig. 2(a) through Eq. (1), at time
t = 0. The width of the solution is set to W = 400, for clarity.
Figures 7(a)–7(c) depict the spatial variation of the density at
different times. One observes that the exact numerical solution
also leads to a periodic solution with the same width and the

same spatial period. The agreement between the numerical
result and the analytical one, as presented in Figs. 7(a)–7(d),
is very good, though with the addition of a small initial
random white noise. The periodic nontrivial phase solution,
as one can realize in Fig. 7(d), is not only linearly stable
but also dynamically stable. In Figs. 8(a)–8(c), we display the
comparison between the analytical nontrivial phase solution of
Fig. 3(a), and the exact numerical solution at different times.
For the sake of clarity, we have changed the value of the width
which is now W = 400. As time increases, the agreement
between the analytical and the numerical exact solutions is
quite good. The nontrivial phase dark profile solution is also
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linearly and dynamically stable. We also investigate the linear
and dynamical stability of the dark trivial phase solution.
Following the analytical study carried out above, we find
the linear potential, i.e., λ = 0, and set the free parameters
as in Fig. 8(a). Then, the dark profile trivial phase solution
is injected through the system. We display in Fig. 8(e) the
spatiotemporal evolution of the density of the wave function.
One realizes that the dark trivial phase solution preserves its
shape as time increases. However, at the top of the dark trivial
phase solution, we observe benign random oscillations. This
is a signature of the presence of small instabilities which are
consistent with the linear stability analysis carried out above.
However, these instabilities do not drastically develop such that
the dark trivial phase solution is numerically robust. Moreover,
the bright nontrivial phase profile solution of Fig. 5(a)
with W = 400 is also numerically stable. We exhibit in
Figs. 9(a)– 9(c) a parallel between the analytical prediction and
the numerical exact solutions [of solution of Fig. 5(a)], which
correctly match each other. In addition, we also perform full
numerical simulations of the bright profile solution displayed
in Fig. 5(b) with W = 400, then compare the results with their
analytical counterparts in Figs. 9(e)–9(h), and observe very
good agreements. As in the case of the periodic solution,
the small perturbation introduced at the initial time does
not alter the integrity of the nontrivial phase bright soliton
solutions. Considering the nontrivial phase anti-kink-like and
the kinklike solutions presented in Fig. 6, except for the width
fixed as W = 400, panels (a)–(d) for the anti-kink solution
and panels (e)–(h) for the kink solution show good agreement
between the numerical and the analytical predictions (see
Fig. 10). There are very small amplitude instabilities that
set in the system. However, the impact of these instabilities
is not drastic since the shapes of the anti-kink-like and
the kinklike solutions persist at longer times. Thus, both
the anti-kink-like and the kinklike solutions are dynamically
stable. In the cases of the trivial phase dark solution as well
as the nontrivial phase anti-kink-like and kinklike solutions,
we recall the existence of very small instabilities, such that
in the point of view of mathematics, the latter solutions are
unstable. Since the instabilities develop very slowly over
time, one can say that these solutions can be physically
stable.

V. CONCLUSION

In this work, we have studied the cubic-quintic GPE with
time-dependent two- and three-body nonlinearities, trapped in
a linear potential and exchanging atoms with the thermal cloud.
Using the Lenard equation [Eq. (3)] with the extended tanh-
function method, we have derived 22 exact solutions of Eq. (1),
which include periodic solutions, dark profile solutions, bright
profile solutions, anti-kink-like and kinklike profile solutions,
and many others. Solutions presented in the present work apply
only for special time-dependent behaviors of the two- and
three-body nonlinearities provided by Eqs. (5), (8), and (9).
These solutions have many free parameters which can be

used to manage many features of matter-wave condensates
such as the position, width, velocity, acceleration, and density.
Furthermore, adjusting the strength of the linear potential is
useful to control the position, the acceleration of the wave,
and in certain cases induces small amplitude modulations of
the localized solutions. In addition, the parameter related to the
feeding (or loss) of atoms affects the height of the condensate’s
density by modulating the two- and the three-body interatomic
interactions. Exact numerical integrations of Eq. (1) confirm
the analytical predictions with a good accuracy. Furthermore,
all solutions presented in this work appear to be dynamically
stable. These solutions provide a way to create, manipulate,
and have a better understanding of many dynamical properties
of matter-wave condensates with time varying cubic-quintic
nonlinearities.

Since the pioneer work on nonautonomous solitons in
nonlinear Schrödinger equation types [58], many works have
been devoted to the construction of new soliton solutions
of nonlinear Schrödinger equation types with versatile time,
space, or space-time nonlinearities [59]. In the context of
BECs, a similarity transformation method has been used
to construct exact soliton solutions of condensates with
space-time cubic-quintic nonlinearities [59]. Additionally, in
Ref. [59], the external potential that characterizes the geometry
of the medium in which the condensate is trapped is a real
space-time potential, which is quadratic and linear in space.
This kind of potential implies a conservation of the number
of atoms in the BEC. Additionally, in the work [59], soliton
solutions and the shape of the trapping potential are derived
for an assumed form of the cubic-quintic nonlinearities. On
the contrary, in the method presented in this work, the cubic
and the quintic nonlinearities are constructed meanwhile with
the exact soliton solutions. Furthermore, the external potential
only consists of a linear potential, with a gain or loss. Hence,
the interaction between the condensed fraction of atoms and
the uncondensed thermal background is taken into account
in the present work. The latter interaction between the BEC
and the substrate can be controlled by selecting the rate
of exchange of atoms γ . Exact soliton solutions presented
here are constructed with a relatively simpler method, in
comparison to the similarity transformation method in [59].
The experimental realization of results obtained in this work
can be easily implemented since the key parameters needed
are only γ and λ. Condensates with a linear potential
and with atom loss or gain have already been realized.
The management of the nonlinearities may be realized in
optical lattices [59], or in magnetic fields as previously
mentioned.
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FIG. 9. (Color online) (a)–(c) and (e)–(g) Spatial comparison between the numerical (solid line) and the analytical (dotted line) bright
solutions of (12). (d) and (h) Stable propagation of bright solitons. Parameters in panels (a)–(d) correspond to those in Fig. 5(a), while
parameters in panels (e)–(h) correspond to Fig. 5(b), except W = 400. These nontrivial phase bright profile solutions remain stable during
propagation.
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FIG. 10. (Color online) (a)–(c) and (e)–(g) Spatial comparison between the numerical (solid line) and the analytical (dotted line) anti-
kink-like and kinklike solutions of Fig. 6. (d) and (h) Stable propagation of anti-kink-like and kinklike solitons, respectively. The parameters
in (a)–(d) correspond to those in Fig. 6(a), while the parameters in panels (e)–(h) correspond to Fig. 6(b), except W = 400. Although some
very small instabilities exist that appear at the top of the density profiles, both the anti-kink-like and kinklike solutions are robust and can be
observed in real physical experiments.
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APPENDIX: SOLUTIONS OF THE LENARD EQUATION

Given below are some solutions of the Lenard equation [Eq. (3)].

(1) b0 = 0, b2 > 0, b4 < 0, b6 < 0, δ = b2
4 − 4b2b6 > 0: φ11 =

√
2b2sech2(

√
b2ξ )

2
√

δ−(
√

δ+b4)sech2(
√

b2ξ )
, φ12 =

√
2b2csch2(±√

b2ξ )
2
√

δ+(
√

δ−b4)csch2(±√
b2ξ )

;

(2) b0 = 0, b2 < 0, b4 � 0, b6 < 0, δ > 0: φ21 =
√

−2b2sec2(
√−b2ξ )

2
√

δ−(
√

δ−b4) sec2(
√−b2ξ )

, φ22 =
√

2b2 csc2(±√−b2ξ )
2
√

δ+(
√

δ+b4) csc2(±√−b2ξ )
;

(3) b0 = 0, b6 = b2
4

4b2
, b2 > 0, b4 < 0: φ31 =

√
−b2
b4

[1 + tanh(±√
b2ξ )], φ32 =

√
−b2
b4

[1 + coth(
√

b2ξ )];

(4) b0 = 0, b2 > 0: φ41 =
√

−b2b4sech2(
√

b2ξ )
b2

4−b2b6[1+tanh2(
√

b2ξ )] , φ42 =
√

b2b4csch2(
√

b2ξ )
b2

4−b2b6[1+coth2(
√

b2ξ )] , φ43 = 4
√

b2 exp(2
√

b2ξ )
exp(4

√
b2ξ−4C4)−64b2b6

;

(5) b0 = 0, b2 > 0, δ > 0: φ5 =
√

2b2√
δ cosh(2

√
b2ξ )−b4

;

(6) b0 = 0, b2 > 0, δ < 0: φ6 =
√

2b2√−δ sinh(2
√

b2ξ )−b4
;

(7) b0 = 0, b2 < 0, δ > 0: φ7 =
√

2b2√
δ sin(2

√−b2ξ )−b4
;

(8) b0 = 0, b2 > 0, b6 > 0: φ81 =
√

−b2sech2(
√

b2ξ )
b4+2

√
b2b6 tanh(

√
b2ξ )

, φ82 =
√

b2csch2(
√

b2ξ )
b4+2

√
b2b6 coth(

√
b2ξ )

;

(9) b0 = 0, b2 < 0, b6 > 0: φ91 =
√

−b2 sec2(
√−b2ξ )

b4+2
√−b2b6 tan(

√−b2ξ )
, φ92 =

√
−b2 csc2(

√−b2ξ )
b4+2

√−b2b6 cot(
√−b2ξ )

;

(10) b0 = 0, b2 > 0, b4 = 0: φ10 = 4
√

±b2 exp(2
√

b2ξ )
1−64b2b6 exp(4

√
b2ξ )

;

(11) b0 = −4, b4 = −4, b6 = 4: φ11 = ±ı
tanh(2

√
2ξ+1)√

2−tanh2(2
√

2ξ )+1
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