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Bursting transition in a linear self-exciting point process
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Self-exciting point processes describe the manner in which every event facilitates the occurrence of succeeding
events, as in the case of epidemics or human activity. By increasing excitability, the event occurrences start to
exhibit bursts even in the absence of external stimuli. We revealed that the transition is uniquely determined
by the average number of events added by a single event, 1 − 1/

√
2 ≈ 0.2929, independently of the temporal

excitation profile. We further extended the theory to multidimensional processes, to be able to incite or inhibit
bursting in networks of agents by altering their connections.
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I. INTRODUCTION

Irregular occurrences of events are modeled by the Poisson
process such that point events are independently drawn in
time at a given rate. Event occurrences that are not mutually
independent may be modeled by adding a supplementary
probability for event occurrence after every event [1]. This
simple model called the Hawkes process has been widely
applied to the analysis of earthquakes [2], genome sequences
[3], urban crime [4], human activity [5–7], and neuronal
activity [8,9].

The process is called self-exciting, if each event is associ-
ated with a positive supplementary probability for succeeding
events, which we call “excitability.” Given large excitability,
the system may exhibit unstable bursts of events leading to
nonstationary occurrence rate, even in the absence of external
stimuli (Fig. 1). Contrariwise, under small excitability, the
fluctuation in the occurrence rate may become undetectable
from a single sparse series of irregular events.

We decide the nonstationarity of a single series of events
based on whether principled rate estimators indicate a fluc-
tuating rate or a constant rate [10,11]. Herein we obtain the
critical condition for the excitability at which the estimated
rate changes between constant and fluctuating. Based on the
second order transition, the criticality condition is obtained in
a universal formula applicable to a wide range of self-exciting
processes associated with various temporal excitation profiles.

We then extend our analysis to the multidimensional
Hawkes process, in which multiple agents mutually influence
each other. This process is exemplified by a social system in
which people influence activity through events such as emails
[12,13]. It is known that people may exhibit autonomous
bursts of activity without exogenous stimuli [14–16]. Knowing
the conditions under which bursts occur, we can control the
occurrence of burst activity by reconnecting people or agents.

II. CORRELATION IN THE HAWKES PROCESS

In the self-exciting process (or Hawkes process), the rate of
event occurrence λ(t) is modulated by past events as

λ(t) = ρ + α
∑

k

f (t − tk), (1)
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FIG. 1. (Color online) Self-exciting processes. (a) The rate of
event occurrence λ(t) is modulated according to generated events
ν(t) = ∑

k δ(t − tk). (b) Event sequences depicted in rasters may
exhibit nonstationary bursts or remain stationary, depending on
whether the excitability α is larger or smaller than a critical value
αc, respectively. The bin size of the histogram shown under each
raster was selected using the method of minimizing the mean squared
error between the histogram and the underlying rate.

where ρ is the base rate and tk is the occurrence time of the kth
event. The kernel function f (t), representing the time course
of the supplementary probability, satisfies two conditions:
the causality, f (t) = 0 for t < 0, and the normalization,∫ ∞

0 f (t) dt = 1. Accordingly, the coefficient α represents the
excitability or the supplementary probability added after each
event.

As a step to calculate the condition for the bursting
transition, we estimate the correlation function of the event
occurrence rate according to Hawkes [17], extending the
originally proposed range of validity. By representing a series
of event occurrences as a sum of Dirac delta functions, ν(t) =∑

k δ(t − tk), the Hawkes process (1) may be represented as

λ(t) = ρ + α

∫ ∞

−∞
f (t − u)ν(u) du. (2)
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Because the ensemble average of the event occurrence 〈ν〉
equals that of the rate 〈λ〉, the average rate is obtained as
〈λ〉 = ρ/(1 − α). The excitability α should be less than unity
to avoid explosion of event occurrences, in which λ(t) diverges.

The complete covariance density φ(c)(s) ≡
〈ν(t + s)ν(t)〉 − 〈λ〉2 has a singularity at s = 0 with
〈λ〉δ(s). Because 〈ν(t + s)ν(t)〉 = 〈λ(t + s)ν(t)〉 for s > 0,
the covariance density satisfies the relation,

φ(c)(s) = α

∫ ∞

−∞
f (s − u)φ(c)(u) du, (3)

for s > 0. The correlation function of the rate fluctuation
δλ(t) ≡ λ(t) − 〈λ〉 is given by removing the singularity from
the complete covariance density, or φ(s) ≡ 〈δλ(t + s)δλ(t)〉 =
φ(c)(s) − 〈λ〉δ(s). Inserting this relation into the integral
equation (3), we obtain an integral equation for the correlation
function,

φ(s) = α〈λ〉f (s) + α

∫ ∞

−∞
f (s − u)φ(u) du, (4)

which holds for s > 0. Define a function,

g(s) ≡ α〈λ〉f (s) + α

∫ ∞

−∞
f (s − u)φ(u) du − φ(s), (5)

which satisfies g(s) = 0 for s > 0. Taking the Fourier trans-
formation g̃ω ≡ ∫ ∞

−∞ g(t) exp (−iωt) dt is given as

g̃ω = α〈λ〉f̃ω + αf̃ωφ̃ω − φ̃ω. (6)

Considering the time reversal symmetry of the correlation
function, φ(s) = φ(−s) or φ̃ω = φ̃−ω, we obtain

α〈λ〉f̃ω − g̃ω

1 − αf̃ω

= α〈λ〉f̃−ω − g̃−ω

1 − αf̃−ω

, (7)

or equivalently,

α〈λ〉f̃ω + (1 − αf̃ω)g̃−ω = α〈λ〉f̃−ω + (1 − αf̃−ω)g̃ω. (8)

Because f (t) = 0 for t < 0 and g(t) = 0 for t > 0, their
Fourier images f̃ω and g̃ω converge to 0 in the limit
of |ω| → ∞ in half planes of Im(ω) < 0 and Im(ω) > 0,
respectively. Because the left-hand side and right-hand side
of Eq. (8) are regular in the lower and upper half imaginary
planes, they vanish in respective half planes. While Hawkes
derived the relation assuming an exponentially decaying kernel
function, we may permit long-tailed kernels, such as power law
functions f (t) ∝ (1 + t)−b (b > 1), by trimming the range
of the functional regularity to the adjoining half planes of
Im(ω) � 0 and Im(ω) � 0.

Inserting the identity relation into Eq. (6), we obtain the
relation

φ̃ω = αf̃ω + αf̃−ω − α2f̃ωf̃−ω

(1 − αf̃ω)(1 − αf̃−ω)
〈λ〉, (9)

by which the correlation function φ(t) is obtained for a given
excitation kernel f (t).

III. DETECTABILITY OF THE RATE FLUCTUATION

Though the self-exciting process is a stationary process
whose statistical properties are invariant with time as an
ensemble, individual processes may significantly fluctuate in

time, causing bursts of events. The nonstationarity of a single
series of event occurrences can be determined by whether
principled rate estimators indicate fluctuating rate or constant
rate. Herein we construct an optimal histogram in which the
bin size is selected to minimize the mean integrated squared
error (MISE) between the histogram and the underlying rate,
and derive the condition under which the optimal bin size di-
verges, or equivalently an optimal histogram indicates constant
rate [10].

The bin size 	 is selected to minimize MISE between the
underlying rate λ(t) and the histogram λ̂	(t). The MISE is a
function of the bin size

S(	) = lim
T →∞

1

T

∫ T

0
〈(λ(t) − λ̂	(t))2〉dt, (10)

where T is the entire observation interval. Replacing the long
time average with the average over the bin size, λ̂	(t) can be
treated as a single rectangle whose height is the number of
events K divided by the bin size 	. Thus the MISE is given as

S(	) =
〈

1

	

∫ 	

0

[
λ2(t) − 2K

	
λ(t)

]
dt + K2

	2

〉
. (11)

The expected number of events in each interval is given
by integrating the underlying rate: E[K] = ∫ 	

0 λ(t) dt . Be-
cause events are independently drawn, the Poisson relation
holds: E[K2] = E[K]2 + E[K]. Inserting these relations into
Eq. (11), we have

S(	) = φ(0) + 〈λ〉
	

− 1

	2

∫ 	

0
dt

∫ t

−t

φ(s) ds, (12)

where φ(s) = 〈λ(t + s)λ(t)〉 − 〈λ〉2 = 〈δλ(t + s)δλ(t)〉.
If a series of events is derived from a constant rate

process, the MISE is a monotonically decreasing function, and
therefore, the optimal bin size diverges. By contrast, the MISE
of inhomogeneous point processes may have a minimum at
some finite 	, provided that

dS

d(1/	)

∣∣∣∣
	=∞

< 0. (13)

This can be summed up as

1

〈λ〉
∫ ∞

−∞
〈δλ(t + s)δλ(t)〉ds > 1, (14)

on condition that
∫ ∞

0 sφ(s) ds is finite. Note that this insta-
bility condition derived from the histogram optimization is
identical to the instability condition derived from the marginal
likelihood maximization of the Bayesian rate estimator [11].

IV. TRANSITION IN THE SELF-EXCITING PROCESS

Applying the above-mentioned consideration to the
self-exciting process, we obtain the condition for the
detectable-undetectable criticality. The integral of the cor-
relation function is given by the Fourier zero mode, or,∫ ∞
−∞ 〈δλ(t + s)δλ(t)〉 ds = ∫ ∞

−∞ φ(s) ds = φ̃0. For the self-
exciting point process, the critical condition is obtained from
Eq. (9) and f̃0 = ∫ ∞

−∞ f (t) dt = 1 as

1

〈λ〉
∫ ∞

−∞
〈δλ(t + s)δλ(t)〉 ds = 2α − α2

(α − 1)2
= 1. (15)
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FIG. 2. (Color online) Transitions in self-exciting processes of
different kernels. Inverse optimal bin size 1/	∗ is plotted with
the excitability α. Event sequences were generated with the expo-
nential kernel, f (t) = 0.1 exp(−0.1t) (a), the alpha kernel, f (t) =
0.01t exp(−0.1t) (b), and the power law kernel, f (t) = 2(1 + t)−3

(c). The bin size 	∗ was selected by applying the method of
optimizing a histogram [18] to every sequence of 500 000 events
generated by the Hawkes process. The ranges of critical excitabilities
αc are 95% confidence intervals estimated with regression analysis.

Thus the rate fluctuation in the self-exciting point process is
detectable or undetectable, respectively, if the excitability is
larger or smaller than the critical value of

αc = 1 − 1/
√

2 ≈ 0.2929. (16)

Note that this bursting transition occurs with the excitability
much smaller than α = 1, at which the explosion of events
occurs. Sample series of events generated with the excitability
larger and smaller than the critical value are demonstrated in
Fig. 1, from which we may observe burst of event occurrences
and the apparent absence of rate fluctuation, respectively.

The detectability of rate fluctuation can be quantitatively
examined using principled rate estimation methods. We first
generated event sequences of self-exciting processes with three
kinds of kernels; the exponential function f (t) = τ−1e−t/τ ,
the alpha function τ−2te−t/τ , and the power law function
2(1 + t)−3. For each series of events obtained under given
excitability α, we determined the optimal bin size 	∗ by using
a method that enables to minimize the expected MISE even

without knowing the underlying rate [18]. Figure 2 shows how
the inverse of the optimal bin size varies with the excitability.
We observe that 1/	∗ begins to deviate from 0 when the
excitability α exceeds some critical value. The departure
from 0 can be approximated as linear in α − αc, because
the bifurcation is transcritical [19]. The critical excitabilities
αc estimated by the linear regression analysis applied to an
interval α ∈ [0.31,0.36] are consistent with the theoretical
value.

V. MULTIDIMENSIONAL HAWKES PROCESS

Finally, we extend the theory to multidimensional self-
exciting processes to discuss the criticality in networks of
agents, such as people communicating with emails. Let λi(t)
and νi(t) represent the occurrence rate and a series of events of
the ith agent (i = 1,2, . . . ,N ). The multidimensional process
is given by

λi(t) = ρi +
N∑

j=1

αij

∫ ∞

−∞
fij (t − s)νj (s) ds, (17)

where ρi is the base rate and αij and fij represent the
interagent excitability or the supplementary probability and
the kernel function for ith agent caused by an event of j th
agent, respectively.

Given an excitability matrix α = {αij }, the average firing
rate 〈λ〉 = {〈λ〉i} is obtained from ρ = {ρi} as

〈λ〉 = C · ρ, (18)

where C represents effective connections [9]:

C ≡
∞∑

n=0

αn = (I − α)−1. (19)

Thus all eigenvalues of α should be smaller than 1 to avoid
explosion of event occurrences.

We represent the correlation functions of the rate fluctuation
of agents or event sources by a matrix φ(s). Similarly to
the one-dimensional process (9), we may obtain the Fourier
image of the correlation matrix φ̃ω [17]. In particular, we
may obtain the Fourier zero mode as φ̃0 = C�CT − �, where
� = diag(〈λ〉). From this, we can obtain the condition under
which a network of agents exhibits fluctuating rate. That is

max
i

(C�CT �−1)ii > 2. (20)
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FIG. 3. (Color online) Multidimensional self-exciting processes. Networks of N = 6 agents linked with 10 connections of the excitability
αij = 0.4 with the kernel f (t) = 0.2 exp(−0.2t). (a) A network exhibits bursts of event occurrences. (b) Bursting is inhibited by reconnecting
agents (from dashed lines to solid lines).
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Note that this is the condition that at least one agent exhibits
bursting.

It is possible to incite or inhibit the bursting by changing
the connections among agents by taking account of the above
condition. We demonstrated this by simulating a network of
N = 6 agents linked with 10 connections. The network satis-
fying the condition (20) exhibits bursts of event occurrences,
whereas we are able to eliminate the bursting by reconnecting
the agents (Fig. 3).

VI. DISCUSSION

In this study, we have shown that a linear self-exciting point
process undergoes a transition at which the rate fluctuation
changes from “invisible” to “visible”. It should be noted that
this transition does not belong to typical critical phenomena:
Because the event generation process is linear, the correlation
function varies smoothly with the excitability. The criticality is
derived from observers in such a way that the rate fluctuation

becomes “visible” in the sense of L2 measure or maximizing
the marginal likelihood. In deriving this criticality condition,
we assumed a second-order phase transition in which 1/	∗
continuously deviates from 0. It is possible that the occurrence
rate destabilizes from a finite time scale under the smaller
excitability, but in practice this occurs only if the kernel
possesses a very strong oscillation component of a finite time
scale. We further extended the analysis to multi-dimensional
processes and derived the necessary condition for bursting.
Knowing the criticality condition, Eq. (20), we can control
bursts of events in agent networks by reorganizing the
connectivity among the agents.
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