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Spectra of random graphs with community structure and arbitrary degrees
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Using methods from random matrix theory researchers have recently calculated the full spectra of random
networks with arbitrary degrees and with community structure. Both reveal interesting spectral features, including
deviations from the Wigner semicircle distribution and phase transitions in the spectra of community structured
networks. In this paper we generalize both calculations, giving a prescription for calculating the spectrum of a
network with both community structure and an arbitrary degree distribution. In general the spectrum has two
parts, a continuous spectral band, which can depart strongly from the classic semicircle form, and a set of outlying
eigenvalues that indicate the presence of communities.
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I. INTRODUCTION

Spectral analysis of networks provides a useful complement
to traditional analyses that focus on local network properties
like degree distributions, correlation functions, or subgraph
densities [1,2]. Spectral analysis can return nonlocal informa-
tion about network structure such as optimal partitions [3,4],
community structure [5], and nonlocal centrality measures [6]
and has been widely used in the study of real-world network
data since the 1970s. In additional to the development of
practical algorithms and methods based on network spectra,
such as spectral partitioning schemes and community detection
algorithms, a considerable amount of work has been done
on the analytic calculation of spectra for synthetic networks
generated using random models [7–15]. Study of these model
networks can help us to understand how particular features of
network structure are reflected in spectra and to anticipate the
performance of spectral algorithms.

Recent work on the spectra of networks with community
structure, for instance, has demonstrated the presence of a
“detectability threshold” as a function of the strength of
the embedded structure [14]. When the community structure
becomes sufficiently weak it can be shown that the spectrum
loses all trace of that structure, implying that any method
or algorithm for community detection based on spectral
properties must fail at this transition point. A limitation of
this work, however, is that the synthetic networks studied have
Poisson degree distributions, which makes the calculations
easier but is known to be highly unrealistic; real-world degree
distributions are very far from Poissonian.

In other work a number of authors have studied the spectra
of synthetic networks having broad degree distributions, such
as the power-law distributions observed in many real-world
networks [7–11,15]. Among other results, it is found that
while the spectrum for Poisson degree distributions follows
the classic Wigner semicircle law, in the more general case it
departs from the semicircle, sometimes dramatically.

In this paper, we combine these two previous lines of
investigation and study the spectra of networks that pos-
sess general degree distributions and simultaneously contain
community structure. To do this, we make use of a recently
proposed network model that generalizes the models studied

before. We derive an analytic prescription for calculating
the adjacency matrix spectra of networks generated by this
model, which is exact in the limit of large network size
and large average degree. (The opposite limit, of constant
average degree, is tackled by completely different means and
for a different model in Ref. [16].) In general the spectra
have two components. The first is a continuous spectral
band containing most of the eigenvalues but having a shape
that deviates from the semicircle law seen in networks with
Poisson degree distribution. The second component consists
of outlying eigenvalues, outside the spectral band and normally
equal in number to the number of communities in the network.

II. MODEL

The previous calculations described in the introduction
make use of two classes of model networks. For networks
with community structure, calculations were performed using
the stochastic block model, in which vertices are divided
into groups and edges placed between them independently
at random with probabilities that depend on the group
membership of the vertices involved [14,17–21]. This model
gives community structure of tunable strength but vertices have
a Poisson distribution of degrees within each community.

For networks without community structure but with non-
Poisson degree distributions, most calculations have been
performed using the so-called configuration model, a random
graph conditioned on the actual degrees of the vertices [22,23],
or a variant of the configuration model in which one fixes
only the expected values of the degrees and not their actual
values [24].

The calculations presented in this paper make use of a model
proposed by Ball et al. [25] that simultaneously generalizes
both the stochastic block model and the configuration model,
so that both are special cases of the more general model.
The model of Ball et al. is defined as follows. We assume
an undirected network of n vertices labeled i = 1 . . . n, each
of which is associated with a q-component real vector ki where
q is a parameter we choose. Then the number of edges between
vertices i and j is an independent, Poisson-distributed random
variable with mean ki ·kj /2m, where m is a normalizing
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constant given by

2m =
∣∣∣∣∣

n∑
i=1

ki

∣∣∣∣∣ . (1)

Physically the value of m represents the average total number
of edges in the whole network. Its inclusion is merely
conventional—one could easily omit it and renormalize ki

accordingly, and in fact Ball et al. did omit it in their original
formulation of the model. However, including it will simplify
our notation later, as well as making the connection between
this model and the configuration model clearer.

The expected number of edges between vertices must be
non-negative and Ball et al. ensured this by requiring that
the elements of the vectors ki all be non-negative, but this is
not strictly necessary since one can always rotate the vectors
globally through any angle (thereby potentially introducing
some negative elements) without affecting their products ki ·
kj . In this paper we will only require that all products be
non-negative, which includes all cases studied by Ball et al.
but also allows us to consider some cases they did not.

Note that it is possible in this model for there to be more than
one edge between any pair of vertices (because the number of
edges is Poisson distributed) and this may seem unrealistic,
but in almost all real-world situations we are concerned with
networks that are sparse, in the sense that only a vanishing
fraction of all possible edges is present in the network, which
means that ki · kj /2m will be vanishing as n becomes large.
We will assume this to be the case here, in which case the
chances of having two or more edges between the same pair of
vertices also vanishes and for practical purposes the network
contains only single edges.

The average degree c of a vertex in the network is

c = 2m

n
=

∣∣∣∣∣1

n

n∑
i=1

ki

∣∣∣∣∣ , (2)

and hence increases in proportion to the average of ki . In
this paper we will consider networks where the vectors ki

can have a completely general distribution, which gives us a
good deal of flexibility about the structure of our network,
but consider for example a network in which the vectors have
arbitrary lengths, but each one points toward one of the corners
of a regular q simplex in a (hyper)plane perpendicular to the
direction (1,1,1, . . .). For such a choice the vectors have the
form ki = kivr , where ki is the magnitude of the vector and vr

is one of q unit vectors that will denote the group r that vertex
i belongs to. Then

ki ·kj = kikj vr ·vs = kikj [δrs + (1 − δrs) cos φ], (3)

where φ is the angle between unit vectors vr and vs (all vectors
being separated by the same angle in a regular simplex). Thus
for this choice of parametrization we can increase the expected
number of edges from i to all other vertices by increasing the
magnitude ki of the vector ki , hence increasing the vertex’s
degree. At the same time we can independently control the
relative probability of connections within groups (when r = s)
and between them (r �= s) by varying the angle φ.

If we set φ = 0 [so that all vr point in the (1,1,1, . . .)
direction] then this model becomes equivalent to the variant of

the configuration model in which the expected vertex degrees
are fixed and there is probability kikj /2m of connection
between each pair of vertices, regardless of community
membership. (Alternatively, if we set the number of groups
q to 1, so that the vectors ki become scalars ki then we
also recover the configuration model.) If we allow φ to be
nonzero but make all ki equal to the same constant value a,
then the model becomes equivalent to the standard stochastic
block model, having a probability pin = a2/2m of connection
between vertices in the same community and a smaller
probability pout = (a2/2m) cos φ between vertices in different
communities. For all other choices, the model generalizes
both the configuration model and the stochastic block model,
allowing us to have nontrivial degrees and community structure
in the same network, as well as other more complex types of
structure (such as overlapping groups—see Ref. [25]).

III. CALCULATION OF THE SPECTRUM

In this section we calculate the average spectrum of the
adjacency matrix A for networks generated from the model
above, in the limit of large system size. The adjacency matrix
is the symmetric matrix with elements Aij equal to the number
of edges between vertices i and j . The elements are Poisson
independent random integers for our model, although crucially
they are not identically distributed. The spectra of matrices
with Poisson elements of this kind can be calculated using
methods of random matrix theory. Our strategy will be first to
calculate the spectrum of the matrix

X = A − 〈A〉, (4)

where 〈A〉 is the average value of the adjacency matrix within
the model, which has elements 〈Aij 〉 = ki ·kj /2m. Since ki is
a q-element vector, this implies that 〈A〉 has rank q and hence
its eigenvector decomposition has the form

〈A〉 =
q∑

r=1

αruruT
r , (5)

where u are normalized eigenvectors and αr are the corre-
sponding eigenvalues.

The matrix X is a “centered” random matrix, having
independent random elements with zero mean, which makes
the calculation of its spectrum particularly straightforward.
Once we have calculated the spectrum of this centered matrix
we will then add the rank-q term 〈A〉 back in as a perturbation:

A = X + 〈A〉. (6)

As we will see, the only property of the centered matrix needed
to compute its spectrum is the variance of its elements, and
since the variance of a Poisson distribution is equal to its mean,
we can immediately deduce that the variance of the ij element
of X is ki ·kj /2m.

A. Spectrum of the centered matrix

In this section we calculate the spectral density ρ(z) of the
centered matrix X, Eq. (4). The spectral density is defined by

ρ(z) = 1

n

n∑
i=1

δ(z − λi), (7)
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where λi is the ith eigenvalue of X and δ(z) is the Dirac
delta. The starting point for our calculation is the well-known
Stieltjes-Perron formula, which gives the spectral density
directly in terms of the matrix as

ρ(z) = − 1

nπ
Im Tr〈(z − X)−1〉, (8)

where z − X is shorthand for zI − X with I being the identity.
To calculate the trace, we follow the approach of Bai and

Silverstein [26], making use of the result that the ith diagonal
component of the inverse of a symmetric matrix B is [15]

[B−1]ii = 1

Bii − bT
i B−1

i bi

, (9)

where Bii is the ith diagonal element of B, bi is the ith column
of the matrix, and Bi is the matrix with the ith row and column
removed. In the limit of large system size, and provided that
the degrees of vertices become large as the network does,
the distribution of values of [B−1]ii becomes narrowly peaked
about its mean, and one can write the mean value as

〈[B−1]ii〉 = 1

〈Bii〉 − 〈
bT

i B−1
i bi

〉 . (10)

If, as in our case, the elements of B are independent random
variables with mean zero, then〈

bT
i B−1

i bi

〉 =
∑
jk

〈[
B−1

i

]
jk

〉〈[bi]j [bi]k〉

=
∑

j

〈[
B−1

i

]
jj

〉〈
[bi]

2
j

〉
, (11)

where we have made use of 〈[bi]j [bi]k〉 = 〈[bi]j 〉〈[bi]k〉 = 0
when j �= k.

In our particular example we have B = z − X, which
means that

[bi]j = −Xij (12)

(since i �= j by definition, the ith row having been removed
from the matrix), so〈

bT
i B−1

i bi

〉 =
∑

j

〈[
B−1

i

]
jj

〉〈
X2

ij

〉

=
∑

j

〈[
B−1

i

]
jj

〉 ki ·kj

2m

= 1

2m
ki ·

∑
j

kj 〈[(z − X)−1]jj 〉, (13)

where the last equality applies in the limit of large system
size (for which it makes a vanishing difference whether we
drop the ith row and column from the matrix or not, so
Bi can be replaced with z − X for all i). Then, noting that
〈Bii〉 = z − 〈Xii〉 = z, Eq. (10) becomes

〈[(z − X)−1]ii〉 = 1

z − ki ·
∑

j kj 〈[(z − X)−1]jj 〉/2m
. (14)

Summing this expression over i we then get the trace we
were looking for, which we will write in terms of a new

function

g(z) = 1

n
Tr〈(z − X)−1〉

= 1

n

n∑
i=1

〈[(z − X)−1]ii〉

= 1

n

n∑
i=1

1

z − ki ·h(z)
, (15)

where we have for convenience defined the vector function

h(z) = 1

2m

∑
i

ki〈[(z − X)−1]ii〉. (16)

The quantity g(z) (which is just the trace divided by n) is
called the Stieltjes transform of the matrix X, and it will play
a substantial role in the remainder of our calculation.

It remains to calculate the function h(z), which is now
straightforward. Multiplying Eq. (14) by ki and substituting
into (16), we get

h(z) = 1

2m

∑
i

ki

z − ki ·h(z)
. (17)

The solution for the spectral density involves solving this
equation for h(z), then substituting the answer into Eq. (15) to
get the Stieltjes transform g(z). Then the spectral density itself
can be calculated from Eq. (8):

ρ(z) = − 1

π
Im g(z). (18)

Alternatively, we can simplify the calculation somewhat by
rewriting Eq. (14) as

z〈[(z − X)−1]ii〉 − 〈[(z − X)−1]ii〉 ki ·h(z) = 1, (19)

then summing over i and dividing by n to get zg(z) −
c‖h(z)‖2 = 1, or

g(z) = 1 + c‖h(z)‖2

z
, (20)

where c = 2m/n as previously, which is the average degree of
the network, and ‖h(z)‖ denotes the vector magnitude of h(z),
i.e., h · h (not the complex absolute value). Then the spectral
density itself, from Eq. (18), is

ρ(z) = − c

πz
Im ‖h(z)‖2. (21)

If we further suppose that the parameter vectors ki are
drawn independently from some probability distribution p(k),
which plays roughly the role played by the degree distribution
in other network models, then in the limit of large network size
Eq. (17) can be written as

h(z) = 1

c

∫
k p(k) dqk

z − k·h(z)
. (22)

Equations (21) and (22) between them give us our solution
for the spectral density. These equations can be regarded as
generalizations of the equations for the configuration model
given in Ref. [15] and similar equations have also appeared
in applications of random matrix methods to other problems
[27–31].
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B. Examples

As an example of the methods of the previous section,
consider a network of n vertices with two communities of 1

2n

vertices each. Let the first group consist of vertices 1 . . . 1
2n and

the second of vertices 1
2n + 1 . . . n. Vertices in the first group

will have parameter vector ki = (κi,θ ) and those in the second
group will have ki = (κi−n/2, − θ ), where the quantities κi and
θ are positive constants that we choose and κi � θ for all i,
to ensure that the expected values 〈Aij 〉 = ki ·kj /2m of the
adjacency matrix elements are non-negative.

This particular parametrization is attractive for a number
of reasons. First, it already takes the form of the rank-2
eigenvector decomposition of Eq. (5), which simplifies our
calculations—the two (unnormalized) eigenvectors are the
n-element vectors (κ,κ) and (1,1, . . . ,−1,−1, . . . ) where κ

is the ( 1
2n)-element vector with elements κ1, . . . ,κn/2. Also the

expected degrees take a particularly simple form. The expected
degree of vertex i for i � 1

2n is

1

2m

n∑
j=1

ki ·kj = 1

2m

⎡
⎣ n/2∑

j=1

(κiκj + θ2)

+
n∑

j=n/2+1

(κiκj−n/2 − θ2)

⎤
⎦ = κi

m

n/2∑
j=1

κj .

(23)

But, applying Eq. (1), we have m = ∑n/2
j=1 κj and hence

the expected degree of vertex i is simply κi . By a similar
calculation it can easily be shown that for i > 1

2n the expected
degree is κi−n/2, and the average degree in the whole network
is

c = 1

n/2

n/2∑
i=1

κi. (24)

The parameter θ also has a simple interpretation in this
model: it controls the strength of the community structure.
For instance, when θ = 0 vertices in the two communities are
equivalent and there is no community structure at all.

To calculate the spectrum for this model, we substitute
the values of ki into Eq. (22) to get equations for the two
components of the vector function h(z) thus:

h1(z) = 1

c

∫
κp(κ)

[
1

z − κh1(z) − θh2(z)

+ 1

z − κh1(z) + θh2(z)

]
dκ, (25)

h2(z) = θ

c

∫
p(κ)

[
1

z − κh1(z) − θh2(z)

− 1

z − κh1(z) + θh2(z)

]
dκ, (26)

where p(κ) is the probability distribution of the quantities κi .
Equation (26) has the trivial solution h2(z) = 0, so the two
equations simplify to a single one:

h1(z) = 1

c

∫
κp(κ) dκ

z − κh1(z)
, (27)

and then

ρ(z) = − c

πz
Im h2

1(z), (28)

which is independent of the parameter θ . These results are
identical to those for the corresponding quantities in the
ordinary configuration model with no community structure
and expected degree distribution p(κ), as derived in Ref. [15],
and hence we expect the spectrum of the centered adjacency
matrix to be the same for the current model as it is for the
configuration model with the same distribution of expected
degrees.

To give a simple example application, suppose that there
are only two different values of κ . Half the vertices in each
community have a value κ1 and the other half κ2. Then p(κ) =
1
2 [δ(κ − κ1) + δ(κ − κ2)], where δ(x) is the Dirac delta, and
c = 1

2 (κ1 + κ2). With this choice

h1(z) = 1

κ1 + κ2

[
κ1

z − κ1h1(z)
+ κ2

z − κ2h1(z)

]
, (29)

which can be rearranged to give the cubic equation:

κ1κ2h
3
1 − (κ1 + κ2)zh2

1 +
[

2κ1κ2

κ1 + κ2
+ z2

]
h1 − z = 0, (30)

which can be solved exactly for h1(z) and hence we can
derive an exact expression for the spectral density. The
expression itself is cumbersome (like the solutions of most
cubic equations), but Fig. 1 shows an example for the choice
κ1 = 60, κ2 = 120, along with numerical results for the
spectrum of a single random realization of the model. As
the figure shows, the two agree well. (The histogram in the
left-hand part of the figure represents the spectrum of the
centered matrix. The two outlying eigenvalues that appear to
the right belong to the full, noncentered adjacency matrix and
are calculated in the following section.)

Note also that in the special case where κ1 = κ2 = c, so
that κ is constant over all vertices, Eq. (29) simplifies further
to

h1(z) = 1

z − ch1(z)
, (31)

which is a quadratic equation with solutions

h1(z) = z ± √
z2 − 4c

2c
, (32)

and hence the spectral density is

ρ(z) =
√

4c − z2

2πc
, (33)

where we take the negative square root in Eq. (32) to get
a positive density. Equation (33) has the form of the classic
semicircle distribution for random matrices. This model is
equivalent to the standard stochastic block model and (33)
agrees with the expression for the spectral density derived for
that model by other means in Ref. [14].

C. Spectrum of the adjacency matrix

So far we have derived the spectral density of the centered
adjacency matrix X = A − 〈A〉. We can use the results of these
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FIG. 1. (Color online) The spectrum of the adjacency matrix for the case of a network with two groups of equal size and ki = (κi, ± θ ),
where θ = 50, κi+n/2 = κi , and κi , is either 60 or 120 with equal probability. Blue represents the analytic solution, Eqs. (29) and (39). Red is
the numerical diagonalization of the adjacency matrix of a single network with n = 10 000 vertices generated from the model with the same
parameters. The numerically evaluated positions of the two outlying eigenvalues (the red spikes) agree so well with the analytic values (blue
spikes) that the red is mostly obscured behind the blue.

calculations to compute the spectrum of the full adjacency
matrix by generalizing the method used in Ref. [15], as follows.

Using Eq. (5) we can write the adjacency matrix as

A = X + 〈A〉 = X +
q∑

r=1

αruruT
r . (34)

Let us first consider the effect of adding just one of the terms in
the sum to the centered matrix X, calculating the spectrum of
the matrix X + α1u1uT

1 . Let v be an eigenvector of this matrix
with eigenvalue z: (

X + α1u1uT
1

)
v = zv. (35)

Rearranging this equation we have α1u1uT
1 v = (z − X)v and,

multiplying by uT
1 (z − X)−1, we find

uT
1 (z − X)−1u1 = 1

α1
. (36)

Note that the vector v has canceled out of the equation, leaving
us with an equation in z alone. The solutions for z of this
equation give us the eigenvalues of the matrix X + α1u1uT

1 .
Expanding the vector u1 as a linear combination of the

eigenvectors xi of the matrix X, the equation can also be written
in the form

n∑
i=1

(
xT

i u1
)2

z − λi

= 1

α1
, (37)

where λi are the eigenvalues of X. Figure 2 shows a
graphical representation of the solution of this equation for the
eigenvalues z. The left-hand side of the equation, represented
by the solid curves, has simple poles at z = λi for all i. The
right-hand side, represented by the horizontal dashed line, is
constant. Where the two intersect, represented by the dots,
are the solutions for z. From the geometry of the figure we
can see that the values of z must fall between consecutive
values of λi—we say that the z’s and λ’s are interlaced. If we
number the eigenvalues λi in order from largest to smallest so
that λ1 � λ2 � · · · � λn, and similarly for the n solutions zi

to Eq. (37), then z1 � λ1 � z2 � λ2 � · · · � zn � λn. In the
limit of large system size, as the λi become more and more
closely spaced in the spectrum of the matrix, this interlacing

places tighter and tighter bounds on the values of zi , and
asymptotically we have zi = λi and the spectral density of
X + α1u1uT

1 is the same as that of X alone.
There is one exception, however, in the highest-lying

eigenvalue z1, which is bounded below by λ1 but unbounded
above, meaning it need not be equal to λ1 and may lie outside
the band of values occupied by the spectrum of the matrix X.
To calculate this eigenvalue we observe that the matrix X being
random, its eigenvectors xi are also random and hence xT

i u1

is a zero-mean random variable with variance 1/n. Taking
the average of Eq. (37) over the ensemble of networks, the
numerator on the left-hand side gives simply a factor of 1/n

and we have

1

α1
= 1

n

〈
n∑

i=1

1

z − λi

〉
= 1

n
〈Tr(z − X)−1〉 = g(z). (38)

The solution to this equation gives us the value of z1.
This then gives us the complete spectrum for the matrix

X + α1u1uT
1 . It consists of a continuous spectral band with

spectral density equal to that of the matrix X alone, which is
calculated from Eq. (21), plus a single eigenvalue outside the
band whose value is the solution for z of g(z) = 1/α1.

λ1λ2λ3λn

z1z2z3zn

z

FIG. 2. (Color online) A plot of the left-hand side of Eq. (37) as
a function of z has simple poles at z = λi for all i. The solutions of
the equation fall at the points where the curve crosses the horizontal
dashed line representing the value of 1/α1. From the geometry of the
figure we can see that the solutions must lie in between the values of
the λi , interlacing with them, so that z1 � λ1 � z2 � · · · � zn � λn.
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We could have made the same argument about any single
term αruruT

r appearing in Eq. (34) and derived the correspond-
ing result that the continuous spectral band is unchanged from
the centered matrix but there can be an outlying eigenvalue zr

given by

g(zr ) = 1

αr

. (39)

The calculation of the spectrum of the full adjacency matrix
requires that we consider all terms in Eq. (34) simultaneously,
but in practice it turns out that it is enough to consider them
one by one using Eq. (39). The argument for this is in two
parts as follows.

(1) We have shown that the spectral density of the
continuous band in the spectrum of the matrix X + α1u1uT

1
is the same as that for the matrix X alone, and there is one
additional outlying eigenvalue, which we denote z1. Now we
can add another term α2u2uT

2 and repeat our argument for
the matrix X + α1u1uT

1 + α2u2uT
2 , finding the equivalent of

Eq. (37) to be

n∑
i=2

(
xT

i u2
)2

z′ − zi

+
(
xT

1 u2
)2

z′ − z1
= 1

α2
, (40)

where z′ is the eigenvalue of the new matrix and zi are the
solutions of (37). As before, this implies there is an interlacing
condition and that the spectral density of the perturbed matrix
is the same within the spectral band as that for the unperturbed
matrix. We can repeat this argument as often as we like and
thus demonstrate that the shape of the spectral band never
changes, so long as the number of perturbations (which is also
the rank of 〈A〉) is small compared to the size of the network,
i.e., q � n.

(2) This argument pins down all but the top two eigenvalues
of X + α1u1uT

1 + α2u2uT
2 . These two we can calculate by a

variant of our previous argument. We average Eq. (40) over
the ensemble, noting again that 〈(xT

i u2)2〉 = 1/n and find that

1

n

n∑
i=2

1

z′ − zi

+ 1/n

z′ − z1
= 1

α2
. (41)

For large n the first sum is once again equal to the Stieltjes
transform g(z′) and hence the top two eigenvalues are solutions
for z′ of

g(z′) + 1/n

z′ − z1
= 1

α2
. (42)

But g(z′) and α2 are of order 1, while the term n−1/(z′ − z1) is
of order 1/n and hence can in most circumstances be neglected,
giving g(z′) = 1/α2, which recovers Eq. (39). The only time
this term cannot be neglected is when z′ is within a distance
of order 1/n from z1, in which case we have a simple pole in
the left-hand side of the equation as z′ approaches z1. Thus the
left-hand side has the form sketched in Fig. 3, following g(z)
closely for most values of z, but diverging suddenly when very
close to z1. Equation (42) then has two solutions, as indicated
by the dots in the figure, one given by g(z) = 1/α2 and one
that is asymptotically equal to z1, which is the solution of
g(z) = 1/α1.

We can repeat this argument as many times as we like
to demonstrate that the outlying eigenvalues are just the q

z

Sp
ec

tra
l b

an
d

1/α2

FIG. 3. (Color online) A graphical representation of the solution
of Eq. (42). The left-hand side of the equation, represented by the solid
blue curve, follows closely the form of the Stieltjes transform g(z),
except within a distance of order 1/n from z1, where it diverges. The
horizontal dashed line represents the value 1/α2 and the solutions
to (42), of which there are two, fall at the intersection of this line
with the solid curve, as indicated by the dots. One of these solutions
coincides closely with z1, the other is the solution of g(z) = 1/α2.

solutions of Eq. (39) for each value r = 1 . . . q. Thus our final
solution for the complete spectrum of the adjacency matrix
has two parts: a continuous spectral band, given by Eqs. (21)
and (22), and q outlying eigenvalues, given by the solutions of
Eq. (39), with g(z) given by Eq. (20).

D. Examples

Let us return to the examples of Sec. III B and apply the
methods above to the calculation of their outlying eigenvalues.
Recall that we looked at networks with two communities and
chose parameter vectors ki = (κi,θ ) for vertices in the first
community and ki = (κi−n/2, − θ ) for those in the second.
For such networks the vector function h(z) reduces to a single
scalar function h1(z) that satisfies Eq. (27). At the same time,
Eq. (20) tells us that for this model zg(z) = 1 + ch2

1(z) and
hence from Eq. (39) the positions of the outlying eigenvalues
are solutions of

1 + ch2
1(z) − z

αr

= 0, (43)

for r = 1 . . . q. Locating the outliers is thus a matter of
solving (27) for h1, substituting the result into (43), and then
solving for z.

Consider, for instance, the choice we made in Sec. III B,
where there were just two values of κ , denoted κ1 and κ2, with
half the vertices in each community taking each value. Then
h1 obeys the cubic equation (30), which can be solved exactly,
and hence we can calculate the position of the outliers. Figure 1
shows the results for the choice κ1 = 60, κ2 = 120, θ = 50,
along with numerical results for the same parameter values.
As the figure shows, analytic and numerical calculations again
agree well—so well, in fact, that the difference between them
is quite difficult to make out on the plot.

We also looked in Sec. III B at the simple case where κ = c

for all vertices, so that they all have the same expected degree,
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in which case the model becomes equivalent to the standard
stochastic block model and the continuous spectral band takes
the classic semicircle form of Eq. (33). For this model we
have α1 = c and α2 = θ2/c. Using Eq. (32) for h1(z) and
solving (43) for z, we then find the top two eigenvalues of the
adjacency matrix to be

z1 = c + 1, z2 = θ2

c
+ c2

θ2
, (44)

which agrees with the results given previously for the stochas-
tic block model in Ref. [14].

E. Detectability of communities

One of the primary uses of network spectra is for the
detection of community structure [5,14]. As we have seen, the
number of eigenvalues above the edge of the spectral band is
equal to the number of communities in the network, and hence
the observation of these eigenvalues can be taken as evidence
of the presence of communities and their number as an
empirical measure of the number of communities. The identity
of the communities themselves—which vertices belong to
which community—can be deduced, at least approximately,
by looking at the elements of the eigenvectors [5].

However, as shown previously in Ref. [14] for the simplest
two-community block model, the position of the leading
eigenvalues varies as one varies the strength of community
structure, and for sufficiently low (but still nonzero) strength an
eigenvalue may meet the edge of the spectral band and hence
become invisible in the spectrum, meaning it can no longer
be used as evidence of the presence of community structure.
Moreover, as also shown in Ref. [14], the elements of the
corresponding eigenvector become uncorrelated with group
membership at this point, so that any algorithm which identifies
communities by examining the eigenvector elements will fail.
The point where this happens, at least in the simple two-
community model, coincides with the known “detectability
threshold” for community structure, at which it is believed all
algorithms for community detection must fail [19–21].

We expect qualitatively similar behavior in the present
model as well. Consider the Stieltjes transform g(z) defined
in Eq. (15). Inside the spectral band the transform is complex
by definition—see Eq. (18). Above the band it is real and
monotonically decreasing in z, as we can see by evaluating the
trace in the basis in which X is diagonal:

g(z) = 1

n

n∑
i=1

1

z − λi

, (45)

where λi are the eigenvalues of X as previously. Above
the band, where z > λi for all i, every term in this sum is
monotonically decreasing, and hence so is g(z). This implies
via Eq. (39) that larger values of αr give larger eigenvalues and
that the largest real value gmax of the Stieltjes transform occurs
exactly at the band edge. Moreover, as shown in Ref. [15],
the edge of the band is marked generically by a square-root
singularity in the spectral density, which implies that gmax is
finite—see Fig. 3 for a sketch of the function. Thus when
we make the community structure in the network weaker,
meaning we decrease the values of the αr , we also decrease the
outlying eigenvalues of the adjacency matrix and eventually

the lowest of those eigenvalues will meet the edge of the band
and disappear at the point where 1/αr = gmax. If we continue
to weaken the structure, more eigenvalues will disappear, in
order—smallest first, then second smallest, and so forth.

Thus we expect there to be a succession of detectability
transitions in the network, q − 1 of them in all, where q again is
the number of communities. At the first of these transitions the
qth largest eigenvalue will meet the band edge and disappear,
meaning there will only be q − 1 outlying eigenvalues left
and hence there will be observational evidence of only q − 1
communities in the network, even if in fact we know there to
be q. At the next transition the number will decrease further
to q − 2, and so forth. One thus loses the ability to detect
community structure in stages, one community at a time. Final
evidence of any structure at all disappears at the point where
the second largest eigenvalue meets the band edge.

Consider, for instance, the example network from Sec. III B
again, in which there are two groups with parameter vectors
of the form (κi, ± θ ), where the parameters κi control the
expected degrees and θ controls the strength of the community
structure. As before, let us study the case where the κi take just
two different values with equal probability, so that h1 satisfies
the cubic equation (30) (and h2 = 0). Then we can calculate
the maximal real value of g(z) as follows.

Like g(z), the function h1(z) is real outside the continuous
spectral band but complex inside it, as one can see from
Eq. (28). The band edge is thus the point at which the solution
of the cubic equation becomes complex, which is given by the
zero of the discriminant of the cubic. Take, for example, the
case where κ1 = κ and κ2 = 2κ for some constant κ . Then,
employing the standard formula, the discriminant of (30) is

κ5

27

[
27

(
z2

κ

)3

− 216

(
z2

κ

)2

+ 252

(
z2

κ

)
− 512

]
. (46)

This is zero when, and hence the band edge falls at, z = √
xκ ,

where x 	 7.058 is the sole real solution of the cubic equation
27x3 − 216x2 + 252x − 512 = 0. Substituting into Eq. (30),
we then find that the value of h1 at the band edge is y/

√
κ where

y = 0.723 is the smallest real solution of the cubic equation
2y3 − 3

√
xy2 + (x + 4

3 )y − √
x = 0. Then, using Eq. (20)

and the fact that the average degree is c = 3
2κ , the value of

g(z) at the band edge is

gmax = 2 + 3y2

2
√

xκ
. (47)

In this case there is only one parameter αr with r � 2,
which is α2 = θ2/c. Hence there is a single threshold at which
we lose the ability to detect communities, falling at

c

θ2
= 2 + 3y2

2
√

xκ
, (48)

or

θ =
√

3
√

xκ3

2 + 3y2
	 1.494κ3/4. (49)

If θ is smaller than this value then spectral methods will fail to
detect the communities in the network. We have checked this
behavior numerically and find indeed that spectral community
detection fails at approximately this point.
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IV. CONCLUSIONS

In this paper we have given a prescription for calculating
the spectrum of the adjacency matrix of an undirected
random network containing both community structure and
a nontrivial degree distribution, generated using the model
of Ball et al. [25]. In the limit of large network size the
spectrum consists in general of two parts: (1) a continuous
spectral band containing the bulk of the eigenvalues and
(2) q outlying eigenvalues above the spectral band, where
q is the number of communities in the network. We give
expressions for both the shape of the band and the positions
of the outlying eigenvalues that are exact in the limit of
a large network and large vertex degrees, although their
evaluation involves integrals that may not be analytically
tractable in practice, in which case we must resort to numerical
evaluation. We have compared the spectra calculated using
our method with direct numerical diagonalizations and find
the agreement to be excellent. Based on our results we also
argue that there should be a series of q − 1 “detectability
transitions” as the community structure gets weaker, at which
one’s ability to detect communities becomes successively
impaired. The positions of these transitions correspond to

the points at which the outlying eigenvalues meet the edge
of the spectral band and disappear. With the disappearance
of the second-largest eigenvalue in this manner, all trace of
the community structure vanishes from the spectrum and the
network is indistinguishable from an unstructured random
graph.
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[7] I. J. Farkas, I. Derényi, A.-L. Barabási, and T. Vicsek, Phys. Rev.

E 64, 026704 (2001).
[8] K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. E 64, 051903

(2001).
[9] F. Chung, L. Lu, and V. Vu, Proc. Natl. Acad. Sci. USA 100,

6313 (2003).
[10] S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, and A. N.

Samukhin, Phys. Rev. E 68, 046109 (2003).
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Rev. Lett. 107, 065701 (2011).

[21] D. Hu, P. Ronhovde, and Z. Nussinov, Philos. Mag. 92, 406
(2012).

[22] M. Molloy and B. Reed, Random Struct. Algorithms 6, 161
(1995).

[23] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E
64, 026118 (2001).

[24] F. Chung and L. Lu, Proc. Natl. Acad. Sci. USA 99, 15879
(2002).

[25] B. Ball, B. Karrer, and M. E. J. Newman, Phys. Rev. E 84,
036103 (2011).

[26] Z. Bai and J. W. Silverstein, Spectral Analysis of Large
Dimensional Random Matrices, 2nd ed. (Springer, Berlin,
2010).

[27] S. Molchanov, L. Pastur, and A. Khorunzhii, Theor. Math. Phys.
90, 108 (1992).

[28] D. Shlyakhtenko, Int. Math. Res. Not. 1996, 1013
(1996).

[29] G. Anderson and O. Zeitouni, Probab. Theor. Relat. Fields 134,
283 (2006), proposition 3.4.

[30] G. Casati and V. Girko, Random Oper. Stoch. Eqs. 1, 279
(1993).

[31] Z. Bai and L. Zhang, J. Multivariate Anal. 101, 1927 (2010).

042816-8

http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1103/PhysRevE.74.036104
http://dx.doi.org/10.1086/228631
http://dx.doi.org/10.1086/228631
http://dx.doi.org/10.1086/228631
http://dx.doi.org/10.1086/228631
http://dx.doi.org/10.1103/PhysRevE.64.026704
http://dx.doi.org/10.1103/PhysRevE.64.026704
http://dx.doi.org/10.1103/PhysRevE.64.026704
http://dx.doi.org/10.1103/PhysRevE.64.026704
http://dx.doi.org/10.1103/PhysRevE.64.051903
http://dx.doi.org/10.1103/PhysRevE.64.051903
http://dx.doi.org/10.1103/PhysRevE.64.051903
http://dx.doi.org/10.1103/PhysRevE.64.051903
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1103/PhysRevE.68.046109
http://dx.doi.org/10.1103/PhysRevE.68.046109
http://dx.doi.org/10.1103/PhysRevE.68.046109
http://dx.doi.org/10.1103/PhysRevE.68.046109
http://dx.doi.org/10.1088/1751-8113/41/29/295002
http://dx.doi.org/10.1088/1751-8113/41/29/295002
http://dx.doi.org/10.1088/1751-8113/41/29/295002
http://dx.doi.org/10.1088/1751-8113/41/29/295002
http://dx.doi.org/10.1103/PhysRevE.80.056114
http://dx.doi.org/10.1103/PhysRevE.80.056114
http://dx.doi.org/10.1103/PhysRevE.80.056114
http://dx.doi.org/10.1103/PhysRevE.80.056114
http://dx.doi.org/10.1088/1751-8113/43/19/195002
http://dx.doi.org/10.1088/1751-8113/43/19/195002
http://dx.doi.org/10.1088/1751-8113/43/19/195002
http://dx.doi.org/10.1088/1751-8113/43/19/195002
http://dx.doi.org/10.1103/PhysRevLett.108.188701
http://dx.doi.org/10.1103/PhysRevLett.108.188701
http://dx.doi.org/10.1103/PhysRevLett.108.188701
http://dx.doi.org/10.1103/PhysRevLett.108.188701
http://dx.doi.org/10.1103/PhysRevE.87.012803
http://dx.doi.org/10.1103/PhysRevE.87.012803
http://dx.doi.org/10.1103/PhysRevE.87.012803
http://dx.doi.org/10.1103/PhysRevE.87.012803
http://dx.doi.org/10.1088/1751-8113/44/16/165205
http://dx.doi.org/10.1088/1751-8113/44/16/165205
http://dx.doi.org/10.1088/1751-8113/44/16/165205
http://dx.doi.org/10.1088/1751-8113/44/16/165205
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1016/0378-8733(83)90021-7
http://dx.doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2
http://dx.doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2
http://dx.doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2
http://dx.doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2
http://dx.doi.org/10.1103/PhysRevLett.101.078701
http://dx.doi.org/10.1103/PhysRevLett.101.078701
http://dx.doi.org/10.1103/PhysRevLett.101.078701
http://dx.doi.org/10.1103/PhysRevLett.101.078701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1103/PhysRevLett.107.065701
http://dx.doi.org/10.1080/14786435.2011.616547
http://dx.doi.org/10.1080/14786435.2011.616547
http://dx.doi.org/10.1080/14786435.2011.616547
http://dx.doi.org/10.1080/14786435.2011.616547
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1073/pnas.252631999
http://dx.doi.org/10.1073/pnas.252631999
http://dx.doi.org/10.1073/pnas.252631999
http://dx.doi.org/10.1073/pnas.252631999
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1007/BF01028434
http://dx.doi.org/10.1007/BF01028434
http://dx.doi.org/10.1007/BF01028434
http://dx.doi.org/10.1007/BF01028434
http://dx.doi.org/10.1155/S1073792896000633
http://dx.doi.org/10.1155/S1073792896000633
http://dx.doi.org/10.1155/S1073792896000633
http://dx.doi.org/10.1155/S1073792896000633
http://dx.doi.org/10.1007/s00440-004-0422-3
http://dx.doi.org/10.1007/s00440-004-0422-3
http://dx.doi.org/10.1007/s00440-004-0422-3
http://dx.doi.org/10.1007/s00440-004-0422-3
http://dx.doi.org/10.1515/rose.1993.1.3.279
http://dx.doi.org/10.1515/rose.1993.1.3.279
http://dx.doi.org/10.1515/rose.1993.1.3.279
http://dx.doi.org/10.1515/rose.1993.1.3.279
http://dx.doi.org/10.1016/j.jmva.2010.05.002
http://dx.doi.org/10.1016/j.jmva.2010.05.002
http://dx.doi.org/10.1016/j.jmva.2010.05.002
http://dx.doi.org/10.1016/j.jmva.2010.05.002



