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We study the robustness properties of multiplex networks consisting of multiple layers of distinct types of
links, focusing on the role of correlations between degrees of a node in different layers. We use generating
function formalism to address various notions of the network robustness relevant to multiplex networks, such
as the resilience of ordinary and mutual connectivity under random or targeted node removals, as well as the
biconnectivity. We found that correlated coupling can affect the structural robustness of multiplex networks in
diverse fashion. For example, for maximally correlated duplex networks, all pairs of nodes in the giant component
are connected via at least two independent paths and network structure is highly resilient to random failure. In
contrast, anticorrelated duplex networks are on one hand robust against targeted attack on high-degree nodes, but
on the other hand they can be vulnerable to random failure.
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I. INTRODUCTION

Complex network theory has successfully accounted for
structural and dynamical problems of complex systems in
terms of their connectivity patterns [1,2]. Most studies on
complex networks, so far, have dealt with isolated network
layers [1,2]. However, many real-world complex systems, such
as physical, social, biological, and infrastructural systems,
consist of multiple layers of networks interacting with each
other [3–11]. Recently, several studies on multiplex networks
in which a node belongs to multiple network layers of distinct
types of links [12–14] have contributed to the progress of
research on multilayer complex systems [15], along with other
approaches like interdependent [10,16–18] and interconnected
networks [11,19]. These studies have shown that the coupling
structure and the interactions among different layers can
significantly affect percolation [11,12], diffusion [14], cascade
of failures [10,20,21], and network evolution [22] in such
networks.

For many real-world multiplex networks, network layers are
correlated with one another rather than combined randomly.
Although there exist various forms of correlations between
network layers, the interlayer degree correlation would be one
of the simplest types, as observed in multiplex online game
social network data [7]. In this case, a positive correlation
indicates that the degree of a node in one layer tends to be
correlated with that in the other layers, such that the hub in
one layer also has many neighbors in the other layers. On the
contrary, the hub in one layer would have few neighbors in
the other layers for negatively correlated multiplex networks.
Recently, the effect of such interlayer degree correlation
was addressed for connectivity of multiplex networks [12].
Furthermore, a few studies demonstrated that interdependent
networks with higher interlayer degree correlation [23,24] or
more assortative layers [25] are more robust under random
damage. However, there is still lack of unified understanding
of various robustness properties of multiplex networks due to
the role of interlayer degree correlations.
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Network robustness refers to the structural resilience of
a network to external perturbations, which has been one
of the most active topics in complex networks theory [2].
The study on the network robustness focuses not only on
theoretical interests [26–30], but also on practical applications
to design more resilient structures against random breakdowns
or intentional attacks [31–33]. The backup pathway between a
pair of nodes is a meaningful concept of network robustness,
captured by the connection between a pair through at least
two paths, termed biconnectivity [34,35]. Since a biconnected
pair in networks can communicate under removal of one
route, biconnectivity can play a significant role in network
robustness.

Another widely used measure of network robustness is
the size of the remaining giant component after removing a
fraction of nodes or links, either chosen randomly or targeted
with respect to their degrees [26–30]. Previous studies found
that network robustness under removal of nodes (or links)
depends on the connectivity patterns of networks [26–29].
In multiplex networks, different types of connectivity can
be meaningful, depending on the context with which the
multiple network layers are coupled. In addition to the
usual connectivity [11,12], for example, the so-called mutual
connectivity can be significant in multiplex networks with
cooperative or interdependent layers, in which case a node
requires simultaneous connectivities through each and every
layer for proper functioning [10]. Here, we study the impact
of the interlayer degree correlation on various robustness
properties of multiplex networks in terms of biconnectivity,
connectivity, and mutual connectivity.

To take account of interlayer degree correlations, we mainly
consider two layers of multiplex (duplex) networks by com-
paring three representative correlated structures: maximally
positive (MP), maximally negative (MN), and uncorrelated
(UC) multiplex structures, following Ref. [12] (Fig. 1). In the
MP case, the node’s degrees in different layers are maximally
correlated in their degree order, whereas they are maximally
anticorrelated in the MN case. Therefore a node that is the
hub in one layer is also the hub in the other layer for the MP
case, but it has the smallest degree in the other layer for the
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FIG. 1. (Color online) Schematic illustration of three kinds of
correlated multiplex networks, maximally positive (MP), uncorre-
lated (UC), and maximally negative (MN). Each layer of the networks
has different types of links, indicated by solid and dashed links,
respectively.

MN case. Real-world multiplex networks, of course, would be
neither the MP nor the MN case, but the understanding based
on these limiting structures with theoretical simplicity can be
illustrative and instructive for building insight towards more
realistic situations.

II. BICONNECTIVITY

First, we examine the biconnectivity. A subset of nodes in a
network connected by at least two disjoint paths is said to form
a biconnected component, or bicomponent for short [34]. The
existence of the giant bicomponent spanning finite fraction of
the entire system is important for stable connectivity of the
network [34,35]. By definition, all nodes in a bicomponent
have at least one alternative way to preserve the connection
in networks. If a typical time scale of the restoration of a
broken node is much shorter than that of successive failures,
every node in the bicomponent can completely endure its
connectivity.

A. Generating function method

Generalizing the generating function method from [11]
to obtain the size of the giant bicomponent for multiplex
networks with n layers, we first define the generating function
for the joint degree distribution of n distinct types of links (n
layers), P (�k), where �k = (k1,k2, . . . ,kn) is used to designate
the degrees of a node in each layer, as

G0(�x) =
∑

�k
P (�k)

n∏
i=1

x
ki

i , (1)

where �x = (x1,x2, . . . ,xn) is used to denote the auxiliary
variables coupled to �k. We also define the generating function
for the remaining degree distribution by following a randomly
chosen i-type link, given by

G
(i)
1 (�x) = 1

zi

∂

∂xi

G0(�x), (2)

where zi is the mean degree of layer i. Then, on locally treelike
networks, the probability ui that a node reached upon following
an i-type edge does not belong to the giant component is given
by the coupled self-consistency equations

ui = G
(i)
1 (�u), (3)

with i = 1,2, . . . ,n. The size of the giant bicomponent B is
equal to the complementary probability that a randomly chosen
node has none or one of its links leading to a node in the giant
component [34]; therefore,

B = 1 − G0(�u) −
∑

i

(1 − ui)ziG
(i)
1 (�u), (4)

where the first two terms give the size of the giant unicompo-
nent, S = 1 − G0(�u) [12], and the last term gives the difference
between S and B.

The condition of existence of the giant bicomponent (B >

0) is that the largest eigenvalue of the Jacobian matrix J of
Eq. (3) at (1, . . . ,1) be larger than unity. For duplex networks,
J can be expressed as

J =
(

κ1 K1

K2 κ2

)
, (5)

where κi = 〈k2
i 〉−zi

zi
and Ki = 〈k1k2〉

zi
. The largest eigenvalue �

of J is given in terms of κ and K as

� = 1
2 [κ1 + κ2 +

√
(κ1 − κ2)2 + 4K1K2]. (6)

B. Results

The analytic predictions based on the above generating
function method as well as numerical simulation results are
obtained for the duplex Erdős-Rényi (ER) networks. The
main results from comparisons of the three correlation types
are as follows. First, the more correlated-coupling there is
in multiplex networks, the lower the percolation threshold
becomes. Furthermore, the size of the giant bicomponent for
the MP case BMP is the same as that of the giant unicomponent
SMP [Figs. 2(a) and 2(b)], meaning that all pairs of nodes in the
giant unicomponent have at least two independently connected
paths. In addition, the giant bicomponent always exists for
any nonzero link density, so that the MP coupling offers a
well-connected structure, even with sparse link density.

On the contrary, the emergence of the giant bicomponent
for the MN coupling is much delayed. After passing the
percolation threshold, zMN

c = 0.838 . . . , the size of the bicom-
ponent BMN increases slower than SMN [Figs. 2 (a) and 2(b)].
Near the critical point zMN

c , BMN ∼ (z − zc)βB , where βB = 2
[Fig. 2(c)], which is twice the mean-field critical exponent
for S, in agreement with the general critical behavior of the
bicomponent [35]. Therefore BUC,MN increases from zero in
a convex manner near zc, in contrast to the behavior of S

displaying a concave increase above zc with βS = 1 for all
three cases [12]. When z > z∗ = 1.146 . . . , the entire network
is connected into a single component for the MN coupling
and the disparity between BMN and SMN disappears, too. The
maximum value of (S − B) for the MN coupling is located at
zMN
m = 0.965 . . . , which is larger than that for the UC coupling

zUC
m = 0.791 . . . . The MN coupling hinders the emergence of
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FIG. 2. (Color online) (a) The size of the giant bicomponent, B

(filled symbols), and the unicomponent, S (open symbols), for the MP
(�), the UC (◦), and the MN (�) couplings of duplex ER networks.
(b) The gap between S and B as a function of z. Note that BMP

is the same with SMP . For the MN coupling, the entire network is
connected into a single bicomponent when z > 1.146 . . . . Theoretical
curves (lines) and numerical results (points) obtained with N = 104

nodes, averaged over 103 runs, are shown together. (c) Data collapse
of the scaled bicomponent size for the MN coupling, BMNNβ/ν , vs
the finite-size scaling variable, (z − zc)N 1/ν , with β = 2 and ν = 3.

the giant bicomponent for low density, yet it can establish the
biconnected structure over the whole network with a finite link
density.

III. ERROR AND ATTACK TOLERANCE

The error and attack tolerance of a network under structural
disturbance has been one of the major problems in network
theory [26–28], which has also been addressed in the context
of interdependent networks [10,21,36,37] in recent years. In
this section, we consider this problem for multiplex networks
with interlayer degree correlations.

A. Generating function method

For the analytic calculation of the giant component size after
removing a fraction of nodes, we extend the generating func-
tion method for single networks [27] to multiplex networks.
First, let φ(�k) be the probability that a node with degrees �k
is removed from the initial network, which encodes the node
removal strategy. For example, when f fraction of nodes is
removed uniformly by chance, φ(�k) = f . For the intentional
attack in which one removes targeted nodes in order of the
total degree K ≡ ∑n

i=1 ki , one has φ(�k) = �(K − Kc), where
�(x) is the Heaviside step function and Kc is the cutoff total
degree for the attack. With φ(�k), we can define the joint degree

generating function after the node removal as

H0(�x) =
∑

�k
P (�k)[1 − φ(�k)]

n∏
i=1

x
ki

i . (7)

Similarly, the generating function for the remaining degrees
upon following a randomly chosen i-type link is given by

H
(i)
1 (�x) = 1

zi

∂

∂xi

H0(�x). (8)

Then, on locally treelike networks, the probability that a node
reached by following an i-type link does not belong to the
giant component vi is given by the coupled self-consistency
equations,

vi = 1 − H
(i)
1 (1) + H

(i)
1 (�v). (9)

We finally obtain the giant component size S after the node
removal as

S = H0(1) − H0(�v), (10)

with the appropriately chosen φ(�k) for, e.g., the random
breakdown or the intentional attack based on the total degree.
In what follows we present the main results from the analytic
calculations together with the numerical simulations on vari-
ous node removal scenarios and multiplex network couplings.
In the first two following subsections, we will demonstrate
our analyses on duplex ER networks with layers of equal link
density (denoted as z), after which the results on other graph
ensembles and coupling types are briefly outlined.

B. Error tolerance: Random node removals

For the random deletion of nodes, that is, with φ(k1,k2) = f

for duplex networks, the MP (MN) coupling is more resilient
(vulnerable) than the others. The percolation threshold for the
MP, f MP

c , is always larger than that for the UC and the MN
couplings, so that more removal of nodes is needed to destroy
the connection at a given z [Figs. 3(a) and 3(b)]. The curve
for MN coupling exhibits several kinks, which were found to
occur when the minimum total degree of the network changes.
The rescaled size of the giant component, S/S(0), where S(0)
is the size of the giant component with f = 0, for the MP
coupling is also larger than that for the other cases for any f .
The main reason for the high robustness of the MP coupling
might be the skewness of its total degree distribution. For the
opposite reason, the MN coupling is more vulnerable under
random breakdowns of nodes compared to the UC and MP
cases. Generically, the interlayer degree correlation increases
the network robustness to random damage, but the effect of
correlated multiplexity becomes less significant as the network
becomes dense [Fig. 3(c)].

C. Attack vulnerability: Targeted node removals

For the intentional attack on nodes in the descending
order of total degrees, i.e., φ(k1,k2) = �[k1 + k2 − Kc(f )]
for duplex networks, the structural robustness of correlated
multiplex networks depends on both the coupling types and
link densities, as illustrated by the behaviors of the critical
attack fraction [Fig. 4(a)]. When the network is sparse, i.e.,
z < zα = 1.460 . . . , the MP case is more robust against the
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FIG. 3. (Color online) The critical failure fraction (a) and the
size of the giant component of the correlated duplex ER networks
with z = 1 (b) and 2 (c) under random damage. The MP coupling
produces more robust structure than the others against random failure.
Theoretical curves (lines) and numerical results (points) obtained with
N = 104 nodes, averaged over 103 runs, are shown together.

attack than the UC case [Fig. 4(b)]. On the contrary, when
z > zα , the percolation threshold for the MP coupling is larger
than the UC case, meaning that the MP is more vulnerable to
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FIG. 4. (Color online) The critical attack fraction (a) and the size
of the giant component of the correlated duplex ER networks with
z = 1 (b) and 2 (c) under the intentional attack based on total degrees.
The MN case is more robust for the dense networks but vulnerable for
the sparse networks. Theoretical curves (lines) and numerical results
(points) obtained with N = 104 nodes, averaged over 103 runs, are
shown together.

the attack in this regime [Fig. 4(c)]. The MN coupling results
in the opposite effect to the MP coupling against the attack.
The MN case is more robust for dense networks but vulnerable
for sparse networks than the UC case. Besides these general
trends, the critical attack fraction versus the mean degree in
duplex ER networks exhibits a much more complicated pattern
compared to that of random failures, including the anomalous
decrease of fc with respect to z, albeit in some narrow
windows. More detailed investigation would be necessary to
examine the structural origin of such anomalies. Meanwhile,
it is well known from single-network studies [27,29] that
networks with more skewed degree distribution are more
vulnerable under degree-based attacks in general. In this
perspective, it is interesting to note that MP coupling can
produce a more robust multiplex network system against the
attack for sufficiently sparse link density, despite skewness.

D. Other multiplex coupling factors

To take a more comprehensive overview of the effect of
various multiplex coupling factors, we consider additional
layer coupling scenarios: (i) duplex ER networks of layers with
different mean degrees, (ii) duplex ER networks with nonmax-
imal correlated couplings, and (iii) triplex ER networks.

First, we examine the duplex ER networks with layers
of different mean degree, z1 
= z2. As a specific example,
we study the case for z1 = 3z2 against the random failure
[Fig. 5(a)] and the attack [Fig. 5(b)]. The results are qualita-
tively the same as the equal mean degree case with the same
total mean degree: For random failure, the MP coupling is
most robust and the MN coupling is least robust [Fig. 5(a),
to be compared with Fig. 3(b)]. The opposite behaviors are
obtained for the targeted attack with z1 = 3z2 = 3 [Fig. 5(b),
to be compared with Fig. 4(c)]. For z1 = 3z2, the MP case
becomes more vulnerable than the UC case against attack when
the total mean degree exceeds (z1 + z2)α = 2.522 . . . , which
is less than that for the identical mean degree case, suggesting
that the layer degree disparity can shrink the regime where the
MP coupling is most robust to the attack.

Second, the duplex ER networks with nonmaximal corre-
lated coupling are considered. We construct a nonmaximal
correlated coupling in the following way [12]. A fraction q of
nodes is maximally correlated-coupled (either MP or MN)
while the other 1 − q fraction is randomly coupled (UC).
The parameter q sets the strength of correlated coupling
between multiplex layers. In this scheme, the joint degree
distribution of the duplex network is obtained by Pq(k1,k2) =
qPMAX(k1,k2) + (1 − q)PUC(k1,k2), where MAX is either
MP or MN, which can be readily adopted for theoretical
calculation. The results for q = 1/2 show that the nonmaximal
correlation can still affect the robustness of networks, but the
magnitude of the effect is smaller than that of the maximally
correlated couplings [Figs. 5(c) and 5(d); to be compared with
Figs. 3(d) and 4(c), respectively].

Finally, we briefly address the robustness of the correlated
triplex ER networks with equal layer densities. As there can
be two independent interlayer couplings for triplex networks,
there exists a total of six different combinations of layer
couplings. Here we show the results for three representa-
tive coupling combinations: MP-MP, UC-UC, and MN-MP
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FIG. 5. (Color online) The rescaled size of the giant component
on the correlated duplex ER networks for the random failure with
z1 = 1.5 and z2 = 0.5 (a) and the attacks with z1 = 3 and z2 = 1 (b),
on partially correlated duplex ER networks for the failure with z = 1
(c) and the attack with z = 2 (d), and on triplex ER networks under
the failure with z = 1 (e) and the attack with z = 2 (f).

couplings. For example, the MN-MP coupling may represent
the case where the first layer is coupled with the second layer
by the MN coupling, whereas it is coupled with the third layer
by the MP coupling. We found that among these three cases,
the MP-MP coupling is most robust to random node failure
but can be fragile to targeted attack, whereas the MN-MP
coupling exhibits the opposite behaviors [Figs. 5(e) and 5(f)].
The MN-MN coupling gives same results with the MN-MP
coupling in this case. We also observed that the MP-UC
(MN-UC) coupling yields intermediate behaviors between
MP-MP (MN-MP) and UC-UC couplings: fc as well as S/S(0)
for MP-UC (MN-UC) lies between those of MP-MP (MN-MP)
and UC-UC couplings.

E. Multiplex scale-free networks

We also study the same problem for multiplex scale-free
(SF) networks numerically. To build the SF network layers
with a tunable degree exponent γ and mean degree, we use
the static model [38], where each node s (s = 1,2, . . . ,N ) has
an endogenous weight ωs given by ωs = s−μ/

∑N
t=1 t−μ, with

μ being a constant, 0 < μ < 1. For each step to construct a
network, a pair of nodes, say s and t , are chosen indepen-
dently following the probability ωs and ωt , respectively, and
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FIG. 6. (Color online) The size of the giant component on the
duplex static SF networks with degree exponent γ = 2.5 to the
random failure for z = 1 (a) and the intentional attack based on
the total degree for z = 1 and 4 (b), obtained with N = 104 nodes,
averaged over 103 runs.

connected unless they are already linked. One repeats this step
until the layer has the desired mean degree z. For typical cases
with z = O(1), the degree distribution of the resulting layer is
asymptotically scale free, decaying as ∼k−γ with the degree
exponent γ = (μ + 1)/μ.

We use SF layers with an identical degree exponent γ =
5/2, which is in the range γ � 3. In this regime, each layer
itself is extremely resilient against the random failures due
to a high degree of heterogeneity, as is well known from the
single-network studies [28]. Therefore all three coupling types
show high robustness, with only a small difference among them
that the MP coupling is most robust and the MN coupling
is least robust, similar to duplex ER cases [Fig. 6(a)]. For
the attack, the MN case is more resilient for dense networks
but more vulnerable for sparse networks, again in qualitative
similarity to duplex ER cases, as illustrated by the comparisons
of duplex SF networks of equal mean degrees z = 1 and 4,
respectively [Fig. 6(b)].

IV. MUTUAL CONNECTIVITY

A. Mutual percolation

In multiplex network systems, layers may be interdepen-
dent [10] in the sense that nodes in one layer may require
supports from corresponding nodes in the other layers and
vice versa, demanding simultaneous connectivities in each
and every layer of the network for proper function. For such
systems, one can address the network robustness in terms of
a mutually connected component [10], also called a mutual
component for short, whose size can be obtained by the
generating function method due to Ref. [18] as follows. On
locally treelike networks, the probability that a node reached
by following an i-type link does not belong to the giant
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mutual component wi is given by the following coupled
self-consistency equations:

wi = 1 −
∑

�k

kiP (�k)

zi

(
1 − w

ki−1
i

) n∏
j=1,j 
=i

(
1 − w

kj

j

)
. (11)

Then the size of the giant mutual component M for multiplex
networks is obtained by

M =
∑

�k
P (�k)

n∏
j=1

(
1 − w

kj

j

)
. (12)

The main results of analytic predictions from the above
theory as well as the numerical simulations for the duplex ER
networks are as follows [Fig. 7(a)]. As is well known [10,18],
the giant mutual component emerges discontinuously, in
contrast with the ordinary percolation transition that exhibits
a continuous phase transition. Similarly to the ordinary
connectivity [12], the percolation threshold of the mutual
percolation for the MP coupling is lower, whereas the MN
coupling requires a denser network for the emergence of the
giant mutual component than the other cases. We performed
additional analyses on multiplex ER networks, shown in
Fig. 7, for the cases of nonmaximal correlated couplings
[Fig. 7(a)], unequal layer densities [Fig. 7(b)], and triplex
layers [Fig. 7(c)].

B. Mutual connectivity under node removals

Following a similar procedure to the preceding section, one
can calculate the giant mutual component size under removal
of randomly chosen nodes or targeted nodes with the highest
degrees on locally treelike networks. Combining the theory
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FIG. 8. (Color online) The rescaled size of the giant mutual
component on the correlated ER networks for random failure with
z = 4 (a), and for the attacks based on the degree with z = 3.2 (b),
4 (c), and 8 (d). Theoretical curves (lines) and numerical results
(points) obtained with N = 104 nodes, averaged over 103 runs, are
shown together.

for the mutual percolation and the node removals [18,27] (see
also [37] for an alternative approach), the probability yi that
a node reached by following an i-type link does not belong
to the giant mutual component after deletion of nodes can be
obtained by the following coupled self-consistency equations:

yi = 1 −
∑

�k

kiP (�k)

zi

[1 − φ(�k)]
(
1 − y

ki−1
i

) n∏
j=1,j 
=i

(
1 − y

kj

j

)
.

(13)

Then the size of the giant mutual component M after node
removals can be computed as

M =
∑

�k
P (�k)[1 − φ(�k)]

n∏
j=1

(
1 − y

kj

j

)
. (14)

For the duplex ER networks with equal layer densities, we
found that the MP (MN) coupling is more robust (vulnerable)
than the other cases against the random node removals.
The result for the MP case was also obtained earlier in
Refs. [23] and [24]. The rescaled size of the giant mutual
component M/M(0), where M(0) is the size of the giant
mutual component with f = 0, for the MP (MN) coupling
is larger (smaller) than those for the others for any removal
fraction f [Fig. 8(a)]. For the targeted attack based on the
total degree, however, the effect of correlated multiplexity is
more complicated. For sufficiently low density, e.g., z ≈ 3.2
[Fig. 8(b)], the MP (MN) coupling is more robust (vulnerable)
than the others against the attack. With intermediate density,
say z ≈ 4 [Fig. 8(c)], the MN coupling is most robust and the
UC is most vulnerable. For high enough density, e.g., z ≈ 8
[Fig. 8(d)], the MN (MP) case is most robust (vulnerable)
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FIG. 9. (Color online) (a) Rescaled size of functional interdepen-
dent nodes against random node failure and targeted attack, simulated
for the real-world network data from the Italian Internet-power
transmission multiplex network [6]. (b) The same plots for targeted
attack on the rewired networks. Symbols are numerical simulation
results, connected by guidelines for visibility.

against the attack, opposite to the low-density case. This shows
that the effect of correlated multiplexity on the robustness
of mutual connectivity is not monotonic and could depend
strongly on the details of interdependency.

V. A REAL-WORLD EXAMPLE

Finally, we examine the robustness property of a real-
world multiplex network under node removals. The real-world
network data we consider consists of two layers, the Internet
backbone network and the high-voltage electrical transmission
network in Italy [6]. These two network layers can be regarded
as interdependent in such a way that a failure in one layer (say, a
power station in the power grid) would lead to that on the other
layer (say, a power control station communicating through the
Internet), and vice versa. Thus this system can be modeled
as a multiplex network. Following the rationale of [10,23],
we have established the interdependency between two layers
based on the geographical distance so that each node in the
Internet network is interdependent on the closest node in the
power transmission network. Nodes with no interdependent
partner are thought to be functional autonomously.

We first calculate numerically the fraction of functional
interdependent nodes � of the Internet-power transmission
multiplex network following the interdependent cascade
model of Ref. [16] upon the random failure and the degree-
based targeted attack on the interdependent nodes [Fig. 9(a)].
The numerical results show that the rescaled fraction of
functional nodes �/�(0), where �(0) is the fraction of
functional nodes with f = 0, is relatively robust against
random failure, as it can endure up to around 80% of
interdependent-node removals, whereas it rapidly disintegrates
upon a targeted attack on as small as 20% of highest-
degree interdependent nodes. We also examine the effect of
correlated couplings in this system to attack vulnerability by

using artificial multiplex networks with rewired interde-
pendency into the MP or the MN types [Fig. 9(b)]. The
results for the rewired multiplex networks show that the MN
coupling is more robust to targeted attack on high-degree
nodes than the MP coupling. It is interesting to note that
the behavior of the real-world network data lies close to that
of the MN coupling, despite significant differences in actual
interdependency patterns.

VI. SUMMARY

In this paper, we have studied various network robustness
properties of multiplex networks, focusing on the role of the
correlation between degrees of a node across different layers.
We have analyzed specifically the biconnectivity and the error
and attack tolerance of ordinary as well as mutual connectivity,
covering a wide spectrum of network robustness relevant to
multiplex networks. We found that the correlated coupling of
multiplex layers can significantly alter the robustness proper-
ties of multiplex networks in diverse ways. For example, posi-
tively correlated multiplex networks are more robust, whereas
anticorrelated multiplex networks are less robust, in the context
of biconnectivity and ordinary as well as mutual connectivity
upon random node failure. To the targeted attack based on
node degrees, on the contrary, positively correlated multiplex
networks with sufficiently high link density can be highly vul-
nerable, whereas the anticorrelated networks can become more
resilient. We also examined the effects of various additional
multiplex-coupling factors and a real-world example of the
Italian Internet-power transmission multiplex system.

Our analyses reveal that the notion of network robustness
can exhibit more diversified aspects in multiplex networks
compared to single-network situations, dependent on specific
context and interplay between the network layers. We expect
that our initial analyses could prompt attention and provide
basic insight into further research endeavors on understanding
the robustness of correlated multiplex systems. Interesting
topics of future work in this regard would include the extension
to account for higher-order correlation properties beyond the
interlayer degree correlation considered in this work, such as
clustering [39] in multiplex networks.
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Vicente, Y. Moreno, and A. Arenas, Phys. Rev. Lett. 110, 028701
(2013).
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