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High-frequency affine mechanics and nonaffine relaxation in a model cytoskeleton
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The cytoskeleton is a network of crosslinked, semiflexible filaments, and it has been suggested that it has
properties of a glassy state. Here we employ optical-trap-based microrheology to apply forces to a model
cytoskeleton and measure the high-bandwidth response at an anterior point. Simulating the highly nonlinear and
anisotropic stress-strain propagation assuming affinity, we found that theoretical predictions for the quasistatic
response of semiflexible polymers are only realized at high frequencies inaccessible to conventional rheometers.
We give a theoretical basis for determining the frequency when both affinity and quasistaticity are valid, and
we discuss with experimental evidence that the relaxations at lower frequencies can be characterized by the
experimentally obtained nonaffinity parameter.
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I. INTRODUCTION

Most eukaryotic cells have their own mechanical frame-
work or cytoskeleton, which is a composite of protein fila-
ments such as actin, microtubules, and various intermediate
filaments. The cytoskeleton performs a range of mechanical
roles during cell division, migration, and contraction [1,2], by
transmitting and responding to forces generated by molecular
motors [3,4]. Quantitative and analytical mechanical response
models have relied on the assumption of affinity, i.e., a self-
similar strain field on all length scales, while theoretical efforts
have predicted violation of this fundamental assumption for a
range of disordered materials [5], including glasses, gels, and
colloids, not to mention cytoskeletons. Quantifying nonaffinity
is challenging for both theory and experiments, as it is coupled
to the local disordered structure and thus sensitively depends
on microscopic degrees of freedom. While the majority of
investigations have thus far been performed numerically at zero
frequency, predictions are usually not falsifiable with existing
experimental methods.

Cells or cytoskeletons have been theoretically regarded
as (1) networks of semiflexible polymers or (2) glassy
systems, in order to interpret their mechanical behaviors. Each
explains different experimental observations characteristic of
cytoskeletons; i.e., the former explains the highly nonlinear
stiffening under applied stress [6–8] and the latter the slow
relaxations at low frequencies in linear response [9,10].
The experiments mentioned above were performed with
conventional technologies of limited bandwidth and fitted to
models by qualitative scaling. The theoretical prediction for
the affine response of semiflexible networks, however, has
been given in quantitative form as the sum response of the
constituent polymers characterized by their persistence lengths
and cross-linking distances [11].

Here, we carry out high-bandwidth passive microrheol-
ogy [12–16] on vimentin networks reconstituted in vitro and
observe the nonlinear mechanical response due to forces
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propagating from a local source applied by an optical
tweezer. Since the applied force is constant, the gel becomes
equilibrated and the fluctuation-dissipation theorem can be
employed to deduce the viscoelasticity of the local envi-
ronment from the thermal fluctuations of colloidal probes.
Our experiments unequivocally demonstrate the anisotropic
stiffening of the cytoskeletal network behind the applied force,
with greater stiffening in the parallel direction. Quantitative
agreement with the affine model of network of semiflexible
polymer is obtained for the response in both directions, but
only for the response faster than certain critical frequency
ranging ∼10–1000 Hz, which separates the high-frequency
power law and low-frequency elastic behavior of the network.
We therefore argue that the failure of the affine model at lower
frequencies is due to the presence of nonaffinity, which can
be characterized by the ratio of affine and nonaffine elasticity.
We show that this experimentally obtained factor successfully
predicts the theoretically incalculable slow response, in this
study, the zero-frequency changes in particle separation,
without any adjustables.

II. MATERIALS AND METHODS

Vimentin is a member of the intermediate filament (IF)
family of proteins and is mainly expressed in mesenchymal
cells. As in most IF networks, vimentin fibers crosslink by
themselves without crosslinking reagents and show signif-
icant stiffening under uniform shear without network rup-
ture [6,8,17], presenting an ideal system to study cytoskeletal
mechanics. Experiments were carried out using preparations
of vimentin proteins based on a standard protocol [18–21].
Vimentin proteins in subunit buffer were centrifuged at
13 K rpm, 4 ◦C for 30 min and diluted into polymerization
buffer (5 mM PIPES pH 7.0, 1.0 mM DTT, 270 mM NaCl,
0.75 mg/ml vimentin) with a small amount of polystyrene
latex beads (Polysciences Inc., Polybeads, 2.0-μm diameter,
∼1/1200 times diluted from stock solution). Samples were
loaded onto an ice-cooled glass chamber and polymerized
overnight under the optical laser trapping equipment at 30 ◦C.
Complete polymerization took several hours.
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FIG. 1. (Color online) (a) Schematic of the experiment. A

strongly trapped bead (right) was pulled away or pushed toward
the probe particle (left). Note that actual network is much denser.
(b) Imaginary part of the response function of a particle embedded
in vimentin. Triangles and circles show parallel and perpendicular
directions to the applied force, respectively. Filled symbols are under
prestress and open symbols corresponds to zero force. The solid
curve corresponds to the fit with Eq. (S9) in the Supplemental
Materials [21].

Using dual-beam optical trapping microrheology,
2 polystyrene latex particles in the vimentin solution were
weakly (∼0.75 mW) laser trapped at distances of R ∼
8.5 μm in the same focal plane (15 ∼ 20 μm above the
chamber bottom) immediately after sample preparation. After
polymerization, one of the embedded beads was strongly
trapped with a high-power NIR laser (NdYVO4, 4W, λ =
1064 nm, COMPASS, Coherent). By moving the piezo stage
parallel to the line between the particles, a point force F

up to 350 pN was locally applied to the vimentin network,
generating an axisymmetric stress field [Fig. 1(a)]. Laser
interferometry using quadrant photodiode detection [14]
allows us to precisely measure the displacement of colloidal
particles from the center position of the trapping laser [22,23].
Note that beads are much larger than the network mesh
size and thus stably trapped. The other probe particle was
weakly optically trapped by a semiconductor laser (CW
150 mW, λ = 830 nm, IQ1C150, Power Technology). The
position fluctuations in orthogonal directions �x‖(t) and
�x⊥(t) of this probe particle [Fig. 1(a)] were tracked by using
another quadrant photodiode, and the output was sampled
at 100 kHz by a 24-bit data acquisition board (PCI-4472,
National Instruments). The response functions in parallel
and perpendicular directions, α‖ and α⊥, respectively, were
extracted from the spectra of the corresponding displacement
spectra. Although the exact shear modulus is determined as
4-rank tensor [24], for convenience, we introduce “apparent”
shear moduli based on the Stokes relation,

G‖(⊥)(ω) = 1/6πα‖(⊥)a, (1)

where a is the particle radius. Details are given in Supplemental
Material S1 [21].

III. RESULTS AND DISCUSSIONS

First, we directly observed the fluctuation of the probe
particle by taking microscope images (30 Hz sampling
for 60 s, n = 5) and calculated the van Hove correlation
function P (�x),�x(�t) = x(t0 + �t) − x(t0) to obtain the
distribution of the probe particle displacements for �t = 1 s

FIG. 2. (Color online) Van Hove distributions of the probe parti-
cle displacement for �t = 1 s for (a) no force applied to the other bead
R ∼ 8.5 μm away, and (b) the strongly trapped bead pulled away from
the probe particle with an average force F = 137 pN. Displacements
parallel (open circles) and perpendicular (closed circles) to the applied
force, and their Gaussian fit (solid or broken line respectively), are
shown. The widths ε of the Gaussian are 13.4 nm (parallel) and
19.7 nm (perpendicular).

(Fig. 2). Results were fitted to a Gauss function f (�x) =
B exp[−(�x/ε)2]. As shown in Fig. 2(a), the thermal fluctua-
tions of the probe particle are evidently isotropic if the force is
not applied. When the strongly trapped particle (∼90 mW laser
power, and kt ∼ 1.4 × 10−4 N/m trap stiffness) was pulled
away from the probe particle, the fluctuations of the probe par-
ticle in the parallel direction were clearly suppressed relative
to the perpendicular direction as shown in Fig. 2(b). To pre-
cisely investigate this anisotropy, we measured the frequency-
dependent response functions of the probe particle embedded
in the uniaxially stressed vimentin network with laser inter-
ferometry and analyzed the data as explained above. Im[α‖]
was clearly smaller than that for zero force at low frequencies;
see Fig. 1(b). Im[α⊥] was also reduced, but by a markedly
smaller degree than Im[α‖]. As a control, we repeated the
experiments in PAAm gel, a crosslinked network consisting of
synthetic, flexible polymers. As demonstrated in Fig. S1 [21],
no significant stiffening or anisotropy was detected.

We hypothesize that both the nonlinearity and anisotropy
are primarily due to the stiffening of vimentin filaments
under tension. The nonlinear force-extension relation of
individual filaments has also been evoked to explain the
macroscopic, uniform response of cytoskeletal gels [6,7].
Filaments aligned parallel to the line of force will be placed
in a state of greater tension and thus become stiffer than those
orthogonally aligned, resulting in the observed anisotropic
response. Quantitative estimates for networks of fibers obeying
the wormlike chain model can be made once two key
assumptions are adopted: that the network response can be
treated as affine, and that geometrical nonlinearities such
as filament rotation are negligible. Then the static prestress
and strain distribution around the applied point force and the
differential responses α‖(⊥) are numerically calculated if three
material parameters are given: persistence length �p, length
density of filaments ρ, and crosslinking distance �c. Details of
the calculation are described in full elsewhere [24]. Before we
present results of this procedure, we first examine the validity
for the assumption of affinity for vimentin networks.
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Many theoretical studies have suggested that the static
response of semiflexible networks frequently exhibits non-
affinity when they are crosslinked with filaments less than
Maxwell’s isostatic connectivity per each node [25,26]. Due
to the static situation, all these studies do not take the solvent
response into account. For the dynamic response at high
frequencies, however, the motion of network and solvent is
strongly coupled so that the gel behaves as a single incompress-
ible continuum, ensuring the affinity. We therefore believe that
semiflexible polymer networks often deform nonaffinely to a
degree that depends on frequency: High-frequency perturba-
tions invoke an affine response, which becomes increasingly
nonaffine as the frequency is lowered [28]. When affinity
can be assumed, the network response is proportional to
that of a single-filament, which is the sum over modes with
characteristic relaxation frequency ∝λ−4 for wavelengths λ not
exceeding �c [11]. This leads to a high-frequency power law
G(ω) ∝ (−iω)3/4 [so G′(ω) < G′′(ω)] above ω1 ∝ κ/(ζ�4

c)
with κ = �pkBT the filament bending modulus and ζ the
drag coefficient [11], where ω1 is the relaxation frequency
for the longest wavelength fluctuations between crosslinks.
This power-law behavior has been observed for crosslinked
cytoskeletons when the effects of inertia and solvent viscosity
can be neglected or corrected [14,21,23,29]. The prefac-
tor for this power law is insensitive to the crosslinking
distance �c and depends only on the known parameters
ρ, ζ , the bead radius a, and the unknown persistence
length �p. The solid curve in Fig. 1(b) shows the fit car-
ried out by assuming G(ω) = A + B(−iω)a + C(−iω)0.75 −
iωη0, where η0 = 0.00089 Pa s is the viscosity of the solvent;
see Supplemental Materials S4 for details [21]. The fit
clearly supports the 3/4 power law for the high-frequency
response. We therefore obtain �p ≈ 0.8 μm for our vimentin
networks.

Let us suppose that the network continues to deform
affinely below ω1. Then fluctuation modes with wavelengths
larger than �c do not exist, and the network exhibits an
elastic plateau G′(ω) ≈ G0 > G′′(ω) [11]; see solid curves
in Fig. 3(a). The crossover frequency ω1 can then be extracted
from experimental data as the point where G′(ω1) ≈ G′′(ω1).
As shown in Figs. 3(a) and 3(b), the expected ∼ω3/4 scaling
at high frequencies is observed for G′′(ω). Slight deviation is
due to the inertia and the effect of the solvent viscosity. G′(ω)
should also follow the similar power law, but only at higher
frequencies than those shown, where the effects of inertia are
not negligible and significant errors arising from the finite-
bandwidth sampling hinder its correction [21]. The broken
curves in Fig. 3(a) are the estimates not influenced by the error
since they are calculated based on the fit shown in Fig. 1(b).
It can be seen that the crossover frequency ω1, which is no
more than a kHz for all samples, is well-defined, and the data
around the frequency is hardly affected by the error due to the
finite bandwidth. It does not herald the onset of the predicted
plateau, though; rather a slow decay is observed to much lower
frequencies.

It is to be noted that the probe particle under ≈pN force
application does not flow in our experimental time window; the
dissociation of crosslinks, for instance, can be neglected. We
therefore propose this is primarily due to nonaffine modes. At
frequencies below ω1, with the emergence of collective modes
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FIG. 3. (Color online) (a) Affine viscoelastic response of a
crosslinked semiflexible network (solid curves) [11]. The high-
frequency scaling ∼ω3/4 is shown as a solid line segment. Open circles
and triangles are the scaled data without prestress. Broken curves are
the expected behavior when the error due to the finite sampling is
removed [21]. (b) Applied force dependence of G′(ω) [calculated
using Eq. (1)] in parallel (closed symbols) and perpendicular (open
symbols). The line segment at high frequencies show the power law
[∝ (−iω)3/4]. Filled squares with error bars show slow static response
obtained with video microscopy without prestress. The gray dots and
the broken line show G′′(ω) under force application (F = 317 pN).
The solid curve shows G′′(ω) without prestress (averaged for both
directions). The intersections with G′(ω) as shown by the arrows give
G′(ω1). (c) Dependence of G′(ω1) (circles) and G′(0.2 Hz) (triangles)
with the force applied to the trapped bead (n = 12). Open and
closed symbols correspond to parallel and perpendicular directions,
respectively. Forces ranging from −150 to 350 pN were binned
every 100 pN, with the median and standard deviation plotted (more
negative forces gave irreproducible data). The smooth curves are the
theoretical fit from Ref. [24] with �p = 0.8 μm, �c = 0.6 μm, and
ρ = 16.25 μm−2. (d) Ratio of G′ at ω1 and 0.2 Hz for parallel (closed
circles) and perpendicular (open circles) directions. (e) Change in
probe separation induced by the force (circles) and the corresponding
affine prediction for the same parameters as (c) (dashed line). The
solid line gives the scaled prediction for nonaffine response.

with wavelengths longer than �c, the network can redistribute
the deformations (thus energy cost) of each filaments in order
to lower the total strain energy; i.e., it will be nonaffine.
Here it is to be noted that the crossover frequency for the
coupling-decoupling behavior between solvent and network is
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length-scale r dependent as ωc ∼ G0l
2
c /ηr2 [14], where η is

the solvent viscosity and G0 is the static network elasticity
when affinity assumed. Since ω1 ∼ ωc for the length scale of
the filaments r ∼ �c, these slow modes are decoupled from
the solvent: the slower the frequency is, the larger the region
of the nearby network that must reconfigure to give a mutu-
ally optimal configuration, independently of the surrounding
solvent. This can be regarded as a collective problem in that
there is only one optimal configuration for the local network, as
expected for a disordered system such as this. As the frequency
is lowered, the size of the mutually relaxing region increases.
The region of configuration space that must be explored to
find the optimum also expands, correspondingly increasing
the time to reach equilibrium. This collective process explains
the slow decay of viscoelasticity below ω1 as observed. It
is therefore at this crossover frequency ω1, which lies near
the high-frequency limit of the elastic, nonaffine regime, and
the low-frequency limit of the viscous, affine regime, that
we can compare the data to the affine mechanical model
(which, by its nature, can only be used to predict the plateau
modulus [24]).

The microrheology protocol employed here permits the
extraction of three independent quantities for each applied
force: the frequency-dependent shear moduli in parallel G′

‖(ω)
and perpendicular G′

⊥(ω) directions measured at the probe,
and the change in the particle separation. For G′

‖ and G′
⊥,

we find good agreement with the theory of [24] at the
crossover frequency ω1 extracted from the curves, as shown in
Fig. 3(c). Here we estimated ρ ≈ 16.25 μm−2 from [30] and
�p ≈ 0.8 μm from the high-frequency data without prestress,
leaving the single fitting parameter �c. We extract �c ≈ 0.6 μm
from the fit, consistent with previous estimates of vimentin
networks formed following the same protocol [17]. It is to be
noted that not any value of �c could fit the stiffening behavior of
G′

‖(0.2 Hz) and G′
⊥(0.2 Hz) as partially shown in Fig. S2 [21].

For the affine theory, the static shear modulus without prestress
is given as G0 = 6ρkBT l2

p/�3
c [11]. If nonaffine relaxations

were not assumed, �c estimated from static elasticity G0 ∼
G′(0.2 Hz) would be smaller than that estimated from G′(ω1).
The affine model predicts that the prestress stiffening behavior
is collapsed to a single universal curve using the force scaled
as F l2

c /ρ�pR2kBT [24]. Larger �c therefore means more
pronounced stiffening than experimentally observed, as shown
in Fig. S2 [21].

The validity of the affine assumption at ω1 must still
be examined, since the prestress is realized under nonaffine
network deformations. Interestingly, the ratio of G′(ω1) to
the plateau value appears to be independent of the applied
force, as shown in Fig. 3(d). This insensitivity of strength of
nonaffine relaxation G′(ω1)/G′(0.2 Hz) to the stiffening of the
filaments has not, to the best of our knowledge, been predicted
in any model, to which we give qualitative speculation here.
The elastic energy of the network composed of semiflexible
polymers involves the contributions from bending and entropic
stretching deformations of constituent filaments and it is
known that �p is the parameter for determining both [7,11].
The network condition �c ∼ �p of our vimentin sample is,
however, out of the scope of previous theoretical studies on
nonaffinity, where �c 	 �p or �c 
 �p is assumed [25–27].
For �c ∼ �p, since there exists sufficient thermal bending

fluctuations between crosslinks, the total bending energy is
not sensitive to deformation modes longer than �c, which
is nonaffine; only the energy cost originating from the
entropic stretch of each filament matters for the nonaffine
relaxations. In such cases, quantities less dependent on �p , such
as the geometry of network connections and/or topological
constraints due to the steric hindrance for the overlapping of
filaments, play a more important role [31] for determining
the strength of nonaffine relaxations; G′(ω1)/G′(0.2 Hz) is
therefore independent of �p or the prestress stiffening of
the network. Regardless of the theoretical interpretation, this
experimental finding G′(ω1)/G′(0.2 Hz) ≈ 2.6 indicates that
affine estimations valid at ω1 can be directly extended to
the zero-frequency for prestress distributions, by the simple
application of a constant scaling factor of ≈2.6 for prestrain
distributions.

The affine model is not expected to fit the particle separation
data, as this was measured at zero-frequency for which non-
affinity is present, and indeed the afffine model underestimates
the separations as shown in Fig. 3(e). However, applying the
constant factor G′(ω1)/G′(0.2 Hz) ≈ 2.6 allows us to estimate
the prestrain distributions, including nonaffinity as explained
in the previous paragraph and that leads to agreement with
experiments as shown in the figure. We conclude that all of
our experimental data is consistent with nonlinear filament
stiffening in a network that deforms increasingly nonaffinely
as the frequency is decreased, and expect future experimental
or theoretical studies to directly quantify this phenomenon
will confirm our hypothesis. Note that the deviation for large
pushing forces in Fig. 3(e) is due to the close approach
of the beads, violating the point-particle assumption of
the model.

In typical cell situations, the function of many receptors or
protein catalysts can be modulated by the action of the forces
transmitted via the cytoskeleton. This in turn influences signal
transduction, biochemical reactions, and cell behavior. Our
findings present a unique possibility to quantify the stresses
spontaneously generated in the cell, by analyzing the affine
response at frequency ω1. Such frequencies are only accessible
to high-bandwidth techniques such as microrheology, since
2πω1 ∼ 100–1000 Hz for typical cross-linked cytoskeletons.
Indeed, the nonaffine elasticity measured at low frequencies
with macrorheometry may tend to slightly underestimate
filament bending stiffness [17,32], compared to the direct
estimates from single filaments [33,34].

IV. CONCLUSION

We have demonstrated that the static strain exhibited in
the model cytoskeleton can be quantitatively and consistently
interpreted as a consequence of relaxation from the high-
frequency affine response to the low-frequency nonaffine
behavior. The frequency separating these two response regimes
lies close to the crossover frequency ω1 predicted from affine
network theory, and it is around this frequency that our affine,
mechanical model applies. Many soft condensed materials
such as gels, glasses, and colloids also show high-frequency
power-law behavior and slow relaxation. The theoretical basis
for determining the critical frequency ω1 and relating each
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frequency range for affine and nonaffine response may also
be applicable for these materials. The combination of high-
bandwidth microrheology with a theoretical affine response
model is uniquely placed to experimentally characterize the
exotic slow nonaffine response, which remains elusive despite
its ubiquitous importance for a vast range of materials.
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