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Interfaces with internal structures in generalized rock-paper-scissors models
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(Received 6 December 2013; published 21 April 2014)

In this work we investigate the development of stable dynamical structures along interfaces separating domains
belonging to enemy partnerships in the context of cyclic predator-prey models with an even number of species
N � 8. We use both stochastic and field theory simulations in one and two spatial dimensions, as well as
analytical arguments, to describe the association at the interfaces of mutually neutral individuals belonging to
enemy partnerships and to probe their role in the development of the dynamical structures at the interfaces. We
identify an interesting behavior associated with the symmetric or asymmetric evolution of the interface profiles
depending on whether N/2 is odd or even, respectively. We also show that the macroscopic evolution of the
interface network is not very sensitive to the internal structure of the interfaces. Although this work focuses on
cyclic predator-prey models with an even number of species, we argue that the results are expected to be quite
generic in the context of spatial stochastic May-Leonard models.
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I. INTRODUCTION

The development of diversity in nature results in multi-
scale dynamics associated with cooperation, mobility, and
competition between a large number of species in many
different scenarios (see, e.g., Refs. [1–4]). The development
of macroscopic complexity seems to arise very naturally even
in the case of very simple cyclic predator-prey models with
a low number of species, as in the case of the classic rock-
paper-scissors (RPS) game [5–9]. The RPS model describes
the evolution of three species in cyclic interaction, and if the
population mobility is small enough, the spatial RPS model
has been shown to allow for the stable coexistence of the three
species with the formation of complex patterns [6–9]. See also
Refs. [10–13,13–25] for other investigations of direct interest
to the current work.

The basic interactions behind the RPS model are motion,
reproduction, and predation, but generalizations incorporating
new interactions and further species have also been proposed
in the literature [13,14,17–21,26]. We learned from these
investigations that the increase in the number of species
generally leads to the development of more complex dynamical
patterns. In particular, in [19,20] it has been shown that the
spatial structure and dynamics of population networks are
extremely dependent both on the predator-prey interaction
rules (leading in many cases to the development of partnerships
between individuals of different species) and on the number
of competing species. These studies inspired Roman et al.
[21] to investigate similar models, focusing on the interplay
between competition and partnership in spatial environments
occupied by a large number of species. They worked to
quantify coarsening behavior and pattern formation, noting
the presence of partnerships among distinct species following
the maxim that “the enemy of my enemy is my friend.” Another
interesting effect may appear in predator-prey models defined
in three spatial dimensions: the generation of string networks,
as recently investigated in [22].

Here, we study the development of peaceful associations
between individuals belonging to enemy partnerships and
its effect on the development of dynamical structures along
the interfaces separating competing domains. We extend
previous work by Szabó et al. [13] which also noted the
development of dynamical structures at the interfaces. Their
model, however, did not included the presence of empty sites,
which is an essential ingredient for the development of the
associations studied in the present paper. Other investigations
on the dynamics of interfaces in a biological framework were
developed in [18] and [21] in the case of cyclic predator-prey
models with four and six species, respectively.

This paper is organized as follows. In Sec. II we investigate
the development of dynamical structures along interfaces sepa-
rating enemy partnerships in cyclic predator-prey models using
two-dimensional stochastic network simulations. In Sec. III
the results of the previous section are confirmed using mean
field theory simulations. In Sec. IV we investigate in more
detail the stability of the dynamical structures at the interfaces,
using a combination of one-dimensional mean field theory
simulations and analytical arguments. In Sec. V we focus on
the macroscopic evolution of interface networks and determine
whether or not it can be affected by the presence of dynamical
structures along the interfaces. Finally, we conclude in Sec. VI.

II. STOCHASTIC NETWORK SIMULATIONS

We start by considering a family of spatial stochastic
May-Leonard models. In this family, individuals of N species
and some empty sites (E) are initially distributed on a square
lattice with N sites. The different species are labeled by
i,j = 1, . . . ,N , with the cyclic identification i = i + k N ,
where k is an integer. The number of individuals of species
i (Ii) and the number of empty sites (IE) obey the rela-
tion IE + ∑N

i=1 Ii = N . The possible interactions are clas-
sified as motion, reproduction, and predation, represented by
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FIG. 1. (Color online) Illustration of the cyclic predator-prey rule
in the case with eight species.

i� → �i, i⊗ → ii, and i(i + 1) → i⊗, respectively, where
⊗ represents an empty site and � represents an arbitrary
individual (of any of the N species) or an empty site. For
simplicity, we shall assume that motion (m), predation (p),
and reproduction (r) interaction probabilities are the same for
all species. A random individual (active) is selected to interact
with one of its four nearest neighbors (passive) at each time
step. The unit of time �t = 1 is defined as the time necessary
for N interactions to occur (one generation time).

Let us start by focusing on models with an even number
of species N , following a cyclic predator-prey rule. Unlike
the odd N case, which gives rise to spiral patterns, even
N models produce interface networks without junctions,
separating domains with two different partnerships (see, for
example, [19,20], and references therein). In these models
each individual chases and is hunted by only one different
species. The predator-prey interactions are illustrated in Fig. 1
in the case of a model with eight species.

In this paper we present the results of a large number of
network simulations assuming periodic boundary conditions.
At the initial time, the number density, ni = Ii/N , is assumed
to be the same for all species, while the number density
of empty sites is set to zero, that is, nE = IE/N = 0. All
the stochastic simulations presented in this work have been
obtained with m = 0.50, r = 0.25, and p = 0.5, and the
snapshots were taken after 5000 generations. However, we
verified that the same qualitative results also hold for other
choices of the parameters m, r , and p.

Soon after the simulations start, individuals separate into
two partnerships. The maxim “the enemy of my enemy is my
friend” plays a role as species of a given partnership peacefully
share common regions of space, with the battles with the
enemy partnership taking place at the domain boundaries.
The competition between individuals of different partnerships
creates empty sites along the interfaces separating the various
domains.

Let us first consider the N = 4 model, where mutually
neutral species aggregate in two partnerships, {1,3} and {2,4},
as shown in the top left panel of Fig. 2. Note that the distribution
of individuals of the two species that aggregate in each
partnership is statistically homogeneous inside the respective
domain. Although a nonzero mobility gives rise to intrusions of
individuals into enemy domains, the invasion is rapidly put to
an end by individuals of the competing domains. For example,
individuals of species 1 can predate individuals of species 2,
reproduce, and then cross the interface into the enemy domain.

FIG. 2. (Color online) The 5122 stochastic network simulations
of models with N = 4 (top left), N = 6 (top right), N = 8 (bottom
left), and N = 10 (bottom right). The snapshots were taken after 5000
generations.

They may keep going until they find individuals of species 4,
that are ready to defend the territory by killing the invaders.
The width of the interface depends on the mobility probability
of the species; that is, the higher the mobility is, the farther
the individuals can invade the enemy territory before being
caught, and consequently, the thicker the interface will be.

We now focus on the N = 6 model. There are two
partnerships, {1,3,5} and {2,4,6}, each occupying separate
spatial regions on the lattice. However, species i does not
interact with species i + 3, which belongs to the competing
partnership. This implies that whenever individuals of species
i, present at the battlefront, find individuals of species i + 3,
they can peacefully share common spatial regions even
though they are in a conflict zone and belong to competing
partnerships. However, the top right panel in Fig. 2 shows
that this is not a stable situation. The frequent attacks of
predators from both sides of the interfaces do not allow for long
lasting peaceful interactions at the interfaces. Hence, in this
case the peaceful associations between species of competing
partnerships do not give rise to stable dynamical structures at
the interfaces. The top right panel of Fig. 2 shows a snapshot
of a simulation of the N = 6 model. As in the N = 4 model,
the distribution of the species belonging to a given partnership
is statistically homogeneous inside the domains, while the
individuals fighting at the boundaries give rise to a statistically
homogeneous distribution of empty sites along the interfaces.

In the N = 8 model the partnerships {1,3,5,7} and
{2,4,6,8} are formed. In this case there is a larger number
of possible peaceful interactions at the interfaces, which leads
to the development of stable dynamical structures along the
interfaces, as shown in the snapshot in the bottom left panel of
Fig. 2. The mixing of colors is always changing (in space and
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time) as a result of the constant development and destruction
at the interfaces of the structures made of mutually neutral
individuals belonging to competing partnerships.

In general, an individual of an arbitrary species i can peace-
fully coexist at the interfaces with species i ± k belonging
to the enemy partnership, where k is an odd integer such
that 3 � k � N − 5. In other words, the number of species
belonging to the enemy partnership with which species i can
peacefully coexist is (N − 4)/2. Therefore the larger N is, the
more complex the behavior of the dynamical structures formed
at the interfaces will be.

This can be seen in the snapshot obtained for N = 10 in the
bottom left panel of Fig. 2. The larger number of peaceful
associations between individuals of species belonging to
enemy partnerships ({1,3,5,7,9} and {2,4,6,8,10}) compared
to the N = 8 case results in more complex interface profiles,
which we will investigate in more detail in the forthcoming
sections.

III. MEAN FIELD THEORY SIMULATIONS

Let us now investigate cyclic predator-prey models using
mean field theory simulations. Consider N + 1 scalar fields
(φ0,φ1,φ2, . . . ,φN ) representing the fraction of space around
a given point occupied by empty sites (φ0) and by individuals
of the species i (φi), satisfying the constraint φ0 + φ1 + · · · +
φN = 1. The mean field equations of motion,

φ̇0 = D∇2φ0 − rφ0

N∑

i=1

φi + p

N∑

i=1

φiφi+1, (1)

φ̇i = D∇2φi + rφ0φi − p φiφi−1, (2)

describe the average dynamics of the models studied in the
previous section. In the above equations, a dot stands for the
time derivative, ∇2 is the Laplacian, and D is the diffusion
rate.

We performed a set of two-dimensional mean field theory
simulations starting with initial conditions satisfying φi = 1
if i = j and φi = 0 if i �= j , where a species j was randomly
selected with uniform probability at every grid point (φ0

was initially set to zero at every grid point). Snapshots
of two-dimensional 5122 numerical mean field simulations
(using D = 0.5, r = 0.25, and p = 0.5) taken after 5000
generations for N = 4,6,8, and 10 are shown in Fig. 3. The
results provided by the mean field simulations are consistent
with those obtained from the stochastic network simulations
discussed in the previous section. While for N = 4 and N = 6
(top left and right panels, respectively) no stable dynamical
structures develop along the interfaces, it is clear that they do
form in the N = 8 and N = 10 cases (bottom left and right
panels, respectively). As expected, the field theory simulations
also show that for N = 10 the internal structures are more
complex than in the N = 8 case.

IV. STABILITY OF THE DYNAMICAL STRUCTURES
AT THE INTERFACES

In order to better resolve the evolution of the dynamical
structures at the interfaces, we perform one-dimensional mean

FIG. 3. (Color online) The 5122 mean field theory simulations
of models with N = 4 (top left), N = 6 (top right), N = 8 (bottom
left), and N = 10 (bottom right). The snapshots were taken after 5000
generations.

field theory simulations for the models described above. Here,
we set initial conditions, where the left (right) domains of
the grid are homogeneously populated with φi = 2/N , for
odd (even) i [with φi = 0 for even (odd) i and φ0 = 0],
respectively. At the interface, the site located at the position
N /2 was initially populated with φ1 = 1 (and φ0 = φi = 0
for all i �= 1), while the site located at the position N /2 + 1
was populated with φ2 = 1 (and φ0 = φi = 0 for all i �= 2).
We verified that our main results are not strongly dependent
on the particular choice of initial conditions at the interface. In
these simulations we consider r = 0.25 and p = 0.5, as before.
Given that the thickness of the interfaces is proportional to
D1/2, here we choose a larger value of D (D = 250) in order
to better resolve the dynamics of the interfaces.

We start investigating the model with N = 4, even though
it does not support stable dynamics structures at the interfaces.
Figure 4 shows the time evolution of φ0 (solid black line)
and φi (colored lines) at the interface for the model with four
species. We observe no prominent dynamical structures in this
case, with the values of φi and φ0 rapidly approaching their
constant asymptotic values.

A slightly different behavior can be observed for N = 6,
as we show in Fig. 5. For N = 6 there are three couples of
mutually neutral individuals belonging to enemy partnerships
({1,4},{2,5},{3,6}). This is responsible for the transient dy-
namical structures appearing in Fig. 5, which nevertheless are
rapidly damped. Similar to the N = 4 case, at late times the
values of φi and φ0 approach their constant asymptotic values,
and no prominent dynamical structures survive at the interface.

On the other hand, Fig. 6 shows that for N = 8 stable
dynamical structures develop at the interface. It is possible
to observe in Fig. 6 the periodic process of creation and
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FIG. 4. (Color online) Time evolution of φ0 (solid black line) and
φi (colored lines) at the interface for the model with four species. No
prominent dynamical structures are formed at the interfaces in this
case.

annihilation of couples of mutually neutral individuals be-
longing to enemy partnerships. The values of φi change in
time, evolving to become periodic, with constant amplitude,
leading to stable dynamical structures at the interface. In
this model there are eight possible couples of mutually
neutral individuals belonging to enemy partnerships (i,i ± 3).
These pairs are continuously created and destroyed, result-
ing in a specific sequence of minimums and maximums
({. . . ,1,4,7,2,5,8,3,6,1, . . . }) in Fig. 6. Note that, in general,
there is always one dominant species belonging to one of the
partnerships which is associated with an asymmetric evolution
of the interface profile.

Finally, Fig. 7 shows the time evolution of φ0 and φi for the
model with ten species. In this model there are 15 possible pairs
of mutually neutral species belonging to enemy partnerships,
(i,i ± 3) and (i,i ± 5) (each species can form a couple with
three different species from the enemy partnership). This is
responsible for the double sequence of minimums and maxi-
mums ({. . . ; (1,6); (8,3); (5,10); (2,7); (4,9); . . . }) observed in
Fig. 7. In this case there is never a dominant partnership,
which is responsible for a symmetric evolution of the interface
profile. This happens whenever N/2 is odd since in the case
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FIG. 5. (Color online) Time evolution of φ0 (solid black line) and
φi (colored lines) at the interface for the model with six species.
Transient dynamical structures are formed at the interfaces, but they
are rapidly damped.
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FIG. 6. (Color online) Time evolution of φ0 (solid black line) and
φi (colored lines) at the interface for the model with eight species. The
oscillation amplitudes of φi increase until they reach a constant value,
indicating the stability of the dynamical structures at the interface.

for N �= 2, species i and i + N/2 are mutually neutral and
belong to enemy partnerships. For both N = 8 and N = 10
the values of φi oscillate periodically, ensuring stability of the
dynamical structures formed at the interface. Note also that
the oscillatory behavior of φ0 is much more pronounced for
N = 10 than for N = 8.

Figure 8 shows the evolution of the interface profiles φ0(x)
for different values of the time t . They show a symmetric
or asymmetric evolution, depending on whether N/2 is
odd [second (N = 10) and fourth (N = 14) panels] or even
[first (N = 8) and third (N = 12) panels], respectively, thus
confirming the behavior discussed above. The movies in
Refs. [27,28] illustrate the dynamical behavior of the different
species at the interface for N = 8 [asymmetric evolution of
φ0(x)] and N = 10 [symmetric evolution of φ0(x)].

V. MACROSCOPIC BEHAVIOR OF
INTERFACE NETWORKS

Let us now focus on the macroscopic evolution of the
interface networks in order to determine whether or not the
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FIG. 7. (Color online) Time evolution of φ0 (solid black line) and
φi (colored lines) for the model with ten species. Similar to the N = 8
case, the results indicate the stability of the dynamical structures at
the interface. However, the oscillatory behavior of φ0 is much more
pronounced for N = 10 than for N = 8.
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FIG. 8. Interface profiles φ0(x) for different values of the time t ,
showing a symmetric or asymmetric evolution, depending on whether
N/2 is odd [second (N = 10) and fourth (N = 14) panels] or even
[first (N = 8) and third (N = 12) panels], respectively.

presence of stable dynamical structures along the interfaces
might leave an imprint on the macroscopic dynamics of the
network. The characteristic length of the network can be
defined as L ≡ A/LT , where A is the (constant) area of the
simulation box (proportional to the total number of sites of

the grid N ) and LT is the total length of the interfaces. Taking
into account that the average width and profile of the interfaces
remains fixed throughout the simulations, the number of
empty sites per unit length is approximately constant, and
consequently, LT is roughly proportional to the total number
of empty sites IE . This implies that the length scale L is
inversely proportional to the number of empty sites, that is,

L ∝ 1/IE , (3)

which follows from [19,20].
The average evolution of L ∝ I−1

E with time t was cal-
culated by carrying out sets of 25 distinct two-dimensional
stochastic network and mean field theory simulations with
distinct random initial conditions. We found that the scaling
law L ∝ tλ describes well the late time evolution of the
interface networks investigated in the present paper.

The top panel of Fig. 9 shows the results for the evolution of
the characteristic scale L with time t obtained with stochastic
network simulations for different values of N . We found that
λ = 0.49 ± 0.03, λ = 0.46 ± 0.04, λ = 0.46 ± 0.03, and λ =
0.51 ± 0.04 for N = 4, 6, 8, and 10, respectively. In Fig. 9,
the bottom panel shows analogous results, using mean field
theory simulations. The results of the stochastic and mean field
network simulations agree well, indicating that the evolution
of the characteristic scale L of the network is not significantly
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FIG. 9. (Color online) Late time behavior of the length scale L,
computed from ensembles of twenty 10242 (top) stochastic network
and (bottom) mean field theory simulations, for models with N = 4,
6, 8, and 10 species.
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affected by the presence of dynamical structures along the
interfaces. In all the cases we find a result consistent with the
scaling coefficient expected in the case of curvature driven
dynamics (λ = 1/2).

VI. ENDING COMMENTS

In this work we described the development of dynamical
structures along the interfaces separating domains belonging
to enemy partnerships. This was done in the context of cyclic
predator-prey models with an even number of species, which
naturally leads to the partition of the N species into two
distinct partnerships. We have shown that as the number of
species N increases, the number of peaceful associations at
the interfaces of mutually neutral individuals also increases,
inducing the generation of stable dynamical structures at
the interfaces whose complexity also increases with N . This
behavior was confirmed using both stochastic and field theory
simulations in one and two spatial dimensions. We have
also shown that the evolution of the interface profiles can
be symmetric or asymmetric depending on whether N/2 is
odd or even, respectively. We have illustrated this behavior in
several figures throughout the paper as well as in the movies
in Refs. [27,28]. Finally, we have shown that the internal
structure details at the interfaces do not appear to produce any
significant changes with respect to the standard macroscopic
dynamical evolution of curvature driven interface networks,
with the scaling exponent λ being consistent with the standard
value λ = 1/2 in all cases studied in this paper.

The dynamics of boundary layers is also discussed in detail
in [13]. However, their numerical results are significantly
different from ours since in their model no empty site is created
when prey is hunted. The authors stressed the formation of
constellations of species in the boundary layers between the
alliances. However, these patterns arise for a narrow range of

mobility rate, and the species organize themselves such that
predators and prey compose adjacent domains. In contrast, in
our model the structures are generated at the interfaces for any
choice of the diffusion parameter, and they are formed by pairs
of mutually neutral species.

Although the present work focused on cyclic predator-prey
models with an even number of species, many of the results
are expected to be quite generic in the context of spatial
stochastic May-Leonard models. Once we consider more
general classes of models, the presence of structures at the
interfaces is no longer restricted to models with even N .
In fact, if one considers a model with N species where the
predation [i (i + α) → i ⊗] probabilities p are nonzero for
α = 1, . . . ,n − 1 (and zero for other values of α), the species
separate themselves in n alliances of N/n species. In this
case the domains are separated by interfaces with stable
dynamical structures if N/n � 4. For example, for N = 12
if the species are separated in two or three alliances, stable
dynamical structures may develop at the interfaces. Although
many of these models lead to more complex network patterns
with Y-type and higher order junctions [19,20], the dynamics
of the structures at the interfaces is essentially analogous to that
studied in the present paper in the context of simpler models.
The generalization of the analysis to models whose food webs
are more complex and involve less mutually neutral pairs as in
[18–20,23–26] is left for future work.
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