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Effect of an external magnetic field on the nematic-isotropic phase transition in mesogenic systems
of uniaxial and biaxial molecules: A Monte Carlo study
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We determine the nematic-isotropic coexistence curve terminating at the critical point in a temperature-external
field phase diagram for nematic liquid crystals with positive diamagnetic anisotropy, where the molecules are
either perfectly uniaxial or biaxial using computer simulation of a lattice model. The coexistence curve is much
steeper than that predicted by the standard Landau–de Gennes and Maier-Saupe mean-field theories. For the
uniaxial system the critical magnetic field is estimated to be one order of magnitude lower than the mean-field
estimate but of the same order of magnitude as the experimental measurement. Our study shows that molecular
biaxiality could reduce the critical field strength significantly.
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I. INTRODUCTION

The effect of an external field on the nematic-isotropic
(N -I ) phase transition has long been an active area of research
because of its fundamental importance [1–11]. An external
field makes the normally weak first-order N -I transition even
weaker, shifts the transition temperature TNI to a higher value,
and induces a weak orientational order in the isotropic phase
resulting in an anisotropic phase known as the paranematic
(pN) phase. With an increase in the field strength, the difference
between the N and I (or pN) phases decreases and finally
vanishes at a critical point, above which the N and I (or
pN) phases are indistinguishable. This critical end point is
analogous to the critical points observed in liquid-vapor and
ferromagnetic systems [12].

Four decades ago Wojtowicz and Sheng [3] extended the
Maier-Saupe (MS) mean-field theory (MFT) to investigate the
effect of an external magnetic field on the N -I transition.
These authors considered nematic liquid crystals composed
of uniaxial molecules with positive diamagnetic anisotropy
and obtained the temperature–magnetic-field phase diagram,
which shows the existence of a critical end point. Similar
investigations have also been carried out within the framework
of Landau–de Gennes (LdG) phenomenological mean-field
theory [13] and these too predict a quadratic variation of TNI

with the external field B. The mean-field estimate of the critical
magnetic field is ∼1000 T [3,4], which is outside the range
attainable in a laboratory.

In similar mean-field calculations using an external electric
field the predicted critical field is ∼108 V/m [3,4] which
is experimentally attainable. The first such determination
of the critical point in a calamitic nematic (4-pentyl-4′-
cyanobiphenyl) was done by Lelidis and Durand [10], who
observed the critical electric field to be 1.41 × 107 V/m (the
equivalent magnetic-field strength is ∼140 T) and the shift in
TNI in similar studies [8,10,14] was a measurable quantity.
Few such observations have been reported where magnetic-
field-induced effects have been studied. Rosenblatt [11] was

*Corresponding author: skroy@phys.jdvu.ac.in

the first to observe a shift in TNI in octylcyanobiphenyl (8CB),
albeit by a few millikelvin, using a magnetic-field of strength
14.8 T. One reason behind such a small change in the transition
temperature is the relatively low value of the diamagnetic
anisotropy of the traditional calamitic mesogenic molecules.

The above features of the N -I transition in the presence of a
magnetic field have also been confirmed by early Monte Carlo
(MC) studies. A series of such important work was done three
decades ago by Luckhurst et al. [15] using a Lebwohl-Lasher
(LL) [16] lattice MC simulation. More recently, Warsono et al.
[17] reported lattice simulation using a Zwanzing model of
discrete orientations [18] and this simple model also has shown
the existence of a magnetic-field-induced N -pN transition and
a critical field.

A recent experimental observation of a magnetic-field-
induced first-order I -N transition by Ostapenko et al. [19] in
a different class of liquid crystals has created fresh excitement
in this area of research. These investigators observed a shift
in TNI as high as ∼0.8 K at B = 23 T, but could not detect
the existence of a critical end point, although a magnetic field
up to 31 T was used. The bent-core compounds exhibit a
number of fascinating phenomena in liquid-crystal science,
for example, the formation of the long-sought biaxial nematic
phase in thermotropic liquid crystals [20,21]. For the purpose
of this paper it is sufficient to note that the bent-core molecules
are highly biaxial. It has also been observed that the N -I
transition in a system composed of such molecules is more
weakly first order than that observed in systems made up of
calamitic molecules [22].

The first theoretical study of the effect of molecular
biaxiality on the N -I transition in the presence of a magnetic
field was reported by Remler and Haymet [7], who also used
a MFT. It is evident from this work that as the degree of
molecular biaxiality is increased the critical field strength
drops rapidly and for a given field strength the shift in TNI

is higher in uniaxial nematics composed of biaxial molecules.
In a recent study Trojanowski et al. [23] extended an earlier

work by Gramsbergen et al. [6] to investigate the effect of
an external field on uniaxial N -I (pN) as well as biaxial
N–uniaxial N phase transitions. These authors have used the
phenomenological LdG theory and also a MS-type MFT using
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the so-called dispersion model [24] of interaction between
biaxial molecules. A limited amount of MC simulation
using the dispersion model was also performed to check the
consistency of the results. The part of the findings relevant
to the present paper is that in an uniaxial nematic composed
of biaxial molecules having a fixed value of the biaxiality
parameter λ = 0.3 (to be elaborated later) both MFT and MC
simulation predict a N -pN coexistence curve that is linear in
the T -B2 plane and ends at a critical point. The MC study is
only qualitative in predicting the critical point since an estimate
of a rather broad range of the critical magnetic field (for a given
value of the anisotropic molecular susceptibility) is given.

Very recently To et al. [25] performed an elaborate study of
the effect of variation of the molecular biaxiality parameter λ

on the N -pN transition. Although these authors have used
the same dispersion potential as that used in Ref. [23], their
mean-field approach is significantly different. An important
finding in this work is that the difference between TNI and
T− (the supercooling limit of the isotropic phase) depends on
λ and that from a knowledge of the difference between these
temperatures one can estimate the angle between the arms of
a bent-core molecule (and vice versa). They are also of the
opinion that Ostapenko et al. [19] have been rather unlucky in
not observing the critical point in the particular system they
studied with the magnetic field going up to 31 T.

In the present paper we report an extensive Lebwohl-
Lasher-like MC study of the effect of an external magnetic field
on the uniaxial nematic–paranematic transition for systems
composed of both uniaxial (λ = 0) and biaxial (λ = 0.2)
molecules having positive diamagnetic anisotropy. We have
used a lattice model with the same dispersion potential as in
Refs. [24,26] and have used different system sizes to perform
finite-size-scaling analysis [27,28] in order that observables
can be determined in the thermodynamic limit. This approach
also enables us to minimize the errors characteristic in mean-
field predictions resulting from the neglect of fluctuations.
Also, to improve the reliability of our results we have
performed multiple histogram reweighting (MHR) [29] of our
data. Our predictions are the same as those in the MFT results
discussed above with perhaps a little more realistic estimate
of the critical field for the molecular biaxiality we have used.
One of our important observations is that the coexistence curve
(N -pN) in the T -B2 plane is quadratic for both λ = 0 and 0.2
instead of being linear as predicted by all forms of MFT.

II. MODEL

We consider a system of biaxial prolate molecules pos-
sessing D2h symmetry (boardlike), whose centers of mass
are associated with a simple-cubic lattice and subjected to
an external magnetic field. The total energy of the system is
the sum of two terms: (i) a dispersion potential term that takes
into account the interaction between all nearest-neighbor pairs
of molecules and (ii) a field term that represents the interaction
of each molecule with the external field. We use the dispersion
potential [24,26] between two identical neighboring molecules
(say ith and j th molecules)

U
disp
ij = −εij

{
R2

00(�ij ) + 2λ
[
R2

02(�ij ) + R2
20(�ij )

]

+ 4λ2R2
22(�ij )

}
. (1)

Here �ij = {φij ,θij ,ψij } denotes the triplet of Euler angles
defining the relative orientation of the two molecules; we
have used the convention used by Rose [30] in defining the
Euler angles. In addition, εij is the strength parameter, which
is assumed to be a positive constant ε when the particles i

and j are nearest neighbors and zero otherwise, and RL
mn are

combinations of symmetry-adapted (D2h) Wigner functions

R2
00 = 3

2
cos2 θ − 1

2
, (2)

R2
02 =

√
6

4
sin2 θ cos 2ψ, (3)

R2
20 =

√
6

4
sin2 θ cos 2φ, (4)

R2
22 = 1

4
(1 + cos2 θ ) cos 2φ cos 2ψ − 1

2
cos θ sin 2φ sin 2ψ.

(5)

The parameter λ is a measure of the molecular biaxiality and
for the dispersion interactions it can be expressed in terms
of the eigenvalues (ρ1,ρ2,ρ3) of the polarizability tensor ρ

of the biaxial molecule λ = √
3/2(ρ2 − ρ1)/(2ρ3 − ρ2 − ρ1).

The condition for the maximum biaxiality (also known as
the self-dual geometry) is λ = λC = 1/

√
6. Here λ < λC

corresponds to the case of prolate molecules, whereas λ > λC

corresponds to oblate molecules. This dispersion model can
successfully reproduce both the uniaxial and the biaxial
orientational orders and various order-disorder transitions as a
function of temperature and molecular biaxiality [26].

In our simulations we consider two cases: In one case λ = 0
and the pair potential takes the usual LL form [16] for nematic
liquid crystals of perfectly uniaxial molecules, which has been
extensively studied by Zhang et al. [31]; in the other case we
choose λ = 0.2, which represents a biaxial system composed
of prolate biaxial molecules. For the LL model there is a single
weak first-order N -I transition at a dimensionless temperature
(T = kTK/ε, TK being the temperature measured in kelvin
and k the Boltzmann constant) T = 1.1232 ± 0.0001 [31]
(T = 1.1232 ± 0.0006 [32]). From the Monte Carlo results,
as reported in [26,33], the biaxial model (λ = 0.2) is found to
exhibit a second-order biaxial-uniaxial phase transition at low
temperature (T ≈ 0.2) and a uniaxial-isotropic transition at a
higher temperature (T ≈ 1.1).

The interaction of a uniform external magnetic field B
chosen along the laboratory Z axis (unit vector z) with the
ith molecule resulting from its coupling with the longest
molecular symmetry axis wi is taken as

Ufield
i = −εξ

[
3
2 (wi · z)2 − 1

2

]
, (6)

where ξ is a dimensionless quantity that determines the
strength of coupling of the molecular symmetry axis with the
magnetic field and is given by

ξ = (
κ)B2

3μ0ε
. (7)

Here 
κ = κ‖ − κ⊥ is the anisotropy of the molecular mag-
netic polarizability and μ0 is the permeability of the free space.
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In the simulations we take 
κ > 0 and hence ξ to be a positive
quantity so that the molecules tend to get their long axes
aligned along the magnetic field. The total energy E of the
system is therefore given by

E =
∑

〈i,j〉
U

disp
ij +

∑

i

Ufield
i , (8)

where the angular bracket represents the nearest neighbors.

III. COMPUTATIONAL ASPECTS

A series of MC simulations using the conventional
Metropolis algorithm on a periodically repeated simple cubic
lattice for five system sizes L = 18, 22, 26, 30, and 40 has been
performed. An orientational move was attempted following the
Barker-Watts method [34]. For a given set of values of λ, L, and
ξ , the simulation at the lowest temperature studied was started
from the perfectly ordered state with the molecular longest
symmetry axis w parallel to the space-fixed field (chosen
along the laboratory Z axis). The simulations at the other
temperatures for the same set were run in cascade starting from
an equilibrium configuration at the nearest lower temperature.

In each simulation histograms of energy h(E) were accumu-
lated. For this we divided the continuous energy range (from
−3.0L3 to 0) with a sufficiently small bin width (
E = 1.0).
In our simulations 106 sweeps or Monte Carlo steps per site
(MCS) for the equilibration and (4–6) × 106 MCS for the
production run were used for every set of values of λ, ξ , and
T . For the largest lattice size (L = 40), the total run length is
more than 10 000 times the correlation time. The total run was
divided into several (100) blocks by performing independent
simulations so that we could compute the jackknife errors [35].

In order to analyze the orientational order we have calcu-
lated the second-rank order parameters 〈R2

mn〉 following the
procedure described by Vieillard-Baron [36]. According to
this, a Q tensor is defined for the molecular axes associated
with a reference molecule. For an arbitrary unit vector w, the
elements of the Q tensor are defined as Qαβ(w) = 〈(3wαwβ −
δαβ)/2〉, where the average is taken over the configurations and
the subscripts α and β label Cartesian components of w with
respective to an arbitrary laboratory frame. By diagonalizing
the matrix one obtains nine eigenvalues and nine eigenvectors,
which are then recombined to give the four order parameters
〈R2

00〉, 〈R2
02〉, 〈R2

20〉, and 〈R2
22〉 with respect to the director

frame [37]. Out of these four second-rank order parameters the
usual uniaxial order parameter 〈R2

00〉 (or S) that measures the
alignment of the longest molecular symmetry axis with
the primary director n is involved in our study because we
have simulated a very short temperature range (1.110–1.140)
around TNI within which no biaxial phase occurs.

We have calculated the reduced specific heat per particle
C and the ordering susceptibility χ from fluctuations in the
scaled total energy E (E = E/ε) and the order parameter,
respectively. In order to determine the order parameter and
the ordering susceptibility we have determined the constant-
energy averages (corresponding to each energy bin) of the
order parameter and its square from the simulation data [38]
and the reweighting method was employed.
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FIG. 1. Free energy A as a function of energy per molecule with
and without an external magnetic field for the uniaxial system for
L = 40. An eighth-order polynomial fit to the data is also presented.

IV. RESULTS

Monte Carlo simulations were performed for different
values of the external field parameter ξ at five or six different
temperatures within the said temperature range to generate
histograms for both the uniaxial and biaxial models for all
system sizes. For the uniaxial molecules simulations have
been performed for five different values of ξ ranging from 0 to
0.001 25 with an increment of 0.000 312 5 for each lattice size,
while for the biaxial model four different values of ξ from 0 to
0.000 75 with an increment of 0.000 25 have been used. (Such
low values of ξ have been chosen so that the thermodynamic
state remains below the critical end point.) A total of about
200 simulations were thus performed for different values of λ,
L, ξ , and T .

The temperature dependence of the internal energy 〈E〉,
the order parameter 〈R2

00〉, and the corresponding response
functions, i.e., the specific heat C and the order parameter
susceptibility χ , were obtained after performing the MHR
to the data obtained in the simulations. We have derived the
relevant part of the free-energy-like functions A(E) from the
energy distribution functions [27,28] P (E) for both λ = 0
and 0.2 using the relation A(E) = − ln P (E), where the
normalized histogram count P (E) = h(E)/

∑
E h(E). For

the uniaxial molecules an energy barrier separating the two
minima in A is observed for all the lattice sizes except the
smallest one having L = 18. The mesogenic molecules having
biaxiality λ = 0.2, however, does not show any noticeable
energy barrier, even in the absence of the external magnetic
field, up to the system size L = 30. The double-well structure
of the free-energy-like quantity for the biaxial system is
observed only for the largest system size simulated (L = 40).

For the uniaxial case we have shown (Fig. 1) the field
dependence of the free energy A at the transition temperature
for the largest system size (L = 40) for which the free-energy
barrier between the two minima is well pronounced and the
effect of the external field on 
F is clearly visible. Here
the bulk free-energy barrier 
F is given by 
F (ξ,L) =
A(Em; T ,ξ,L) − A(E1; T ,ξ,L), where E1 is the energy at
which the two minima of A of equal depth appear and Em

gives the position of the maximum of the free energy A

[27,28]. The temperatures in all the above cases were adjusted
to obtain two minima of equal depth. We observe that the
double well becomes shallower as ξ increases. The external
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FIG. 2. Free energy A as a function of energy per molecule with
and without an external field for the biaxial system for L = 40.

field thus reduces the strength of the first-order transition and
this suggests that for a particular value of the field ξc(L) the
barrier between the two minima of A(E) is likely to vanish,
which would correspond to the end point where the first-order
phase transition turns into a crossover [39].

In Fig. 2 the free energy for λ = 0.2 and its dependence
on the magnetic field is shown for L = 40. It is found that
at zero field (ξ = 0) the free-energy barrier 
F is much
smaller for the biaxial molecules compared to the uniaxial
molecules and with increasing ξ the barrier 
F reduces to
zero at a faster rate. This therefore indicates that the N -I
transition for the biaxial molecules is more weakly first order
and also the critical magnetic field of this system is smaller
than that of its uniaxial counterpart. For finite systems the
peak height of the order parameter susceptibility χ (or the
specific heat C) increases with increasing system size and
the scaling relation for χmax (or Cmax) in a first-order phase
transition obeys χmax ∼ Ld (or Cmax ∼ Ld ) [27,28], d being
the dimensionality of the system. We have verified that this
scaling relation holds for both the uniaxial and the biaxial
systems. It is observed that with increasing ξ the heights of the
maxima Cmax(L) and χmax(L) are reduced. This observation
is noticeable, particularly for the higher lattice sizes L = 26,
30, and 40, which shows that the presence of a magnetic field
weakens the first-order nature of the N -I transition.

Determining the finite-size transition temperature TNI (L)
from the location of the maximum of the specific heat and
the susceptibility curves we have used the scaling relation
TNI (L) − TNI ∼ L−d and performed a linear extrapolation
for L → ∞ to obtain the transition temperature TNI in the
thermodynamic limit for both values of λ. These are listed in
Table I, where we find the expected increase in TNI with an
increase in ξ for both λ = 0 and 0.2.

The shift δTNI [= TNI (ξ ) − TNI (0)] in transition temper-
ature is plotted against ξ (∝B2) in Fig. 3. We obtain good
quadratic fits to the data in both cases, unlike the linear
behavior predicted by the LdG theory. The quadratic functions
used for the fits are f (ξ ) = −5.7 × 10−6 + 0.64ξ + 1097.1ξ 2

for λ = 0 and g(ξ ) = −2.0 × 10−6 + 0.93ξ + 1520.0ξ 2 for
λ = 0.2. The results therefore show that the rise in TNI over its
zero-field value with increasing field is steeper for the biaxial
molecules than that for the uniaxial ones.

The finite-size stability limit T−(L) of the isotropic phase
for the uniaxial molecules is estimated as the temperature

TABLE I. Nematic-isotropic transition temperatures (at the ther-
modynamic limit) for different values of the external field strength
parameter ξ for the uniaxial and the biaxial systems. Estimates of
supercooling limits T− (at the thermodynamic limit) are also listed
for the uniaxial system. The estimated (jackknife) error in each
temperature is within ±0.0001.

λ ξ TNI (from CV ) TNI (from χ ) T−

0 0 1.1231 1.1231 1.1221
0 0.0003125 1.1234 1.1234 1.1227
0 0.0006250 1.1239 1.1239 1.1234
0 0.0009375 1.1246 1.1247 1.1244
0 0.0012500 1.1256 1.1257

0.2 0 1.1165 1.1165
0.2 0.00025 1.1168 1.1168
0.2 0.00050 1.1173 1.1174
0.2 0.00075 1.1180 1.1181

where the second local minimum (at higher energy) of A

just vanishes as T is gradually lowered below TNI . From
extrapolation to the thermodynamic limit we estimate T− for
different field strengths. We observe in Fig. 4 that the width
of the stability limit of the I phase for the uniaxial molecules
TNI (ξ ) − T−(ξ ) decreases with an increase in magnetic field
(Fig. 4). From the fit to the data (as shown in Fig. 4) we find
that this temperature difference is linear in ξ (i.e., quadratic in
B). It is therefore possible to obtain an estimate of the critical
magnetic field by performing a linear extrapolation (Fig. 4)
up to the field strength ξC at which TNI (ξ ) − T−(ξ ) becomes
zero. For the uniaxial case we get ξC = 0.001 32. The N -I
transition for the case of biaxial molecules is so weak that the
determination of T−(ξ ) at the thermodynamic limit and hence
the critical field following the above approach is beyond our
scope as it is likely to involve simulations in much bigger
systems.

However, a finite-size estimate of ξC(L) from the field
dependence of 
F is possible [39] for both the uniaxial
and the biaxial molecules as shown in Fig. 5. In the case
of the uniaxial molecules we observe that as the field strength

 0

 0.001

 0.002

 0.003

 0  0.0005  0.001  0.0015

δ TNI

ξ

λ=0
λ=0.2

FIG. 3. Increase in the N -I phase transition temperature δT

(over zero field) vs ξ for both the uniaxial (λ = 0) and biaxial
(λ = 0.2) models. The extrapolation of the fitted curve for λ = 0
gives δTNI = 0.0027 for the critical parameter ξC = 0.001 32 and
the asterisk represents the critical end point. For λ = 0.2 the critical
estimates are δTNI = 0.0017 and ξC = 0.0008.
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FIG. 4. Plot of TNI (ξ ) − T−(ξ ) vs ξ . The solid line is the best
linear fit. The estimated value of ξC is 0.001 32.

parameter ξ is increased beyond 0.000 625 the free-energy
barrier decreases at a faster rate. For this case we may estimate
the value of ξC by performing a linear extrapolation using the
results of the barrier height 
F for three higher values of ξ ,
i.e., 0.000 625, 0.000 937 5, and 0.001 25. This extrapolation
yields the critical field parameter ξC = 0.001 31, which is very
close to the estimate obtained above at the thermodynamic
limit. The corresponding critical value of the temperature can
be estimated from the extrapolation of the fitted curve for
λ = 0 in Fig. 3, which is TC = 1.1258, δTC being 0.0027.
For the biaxial case a linear extrapolation to the data obtained
for 
F for ξ = 0.0005, 0.000 625, and ξ = 0.000 75 gives an
estimate of ξC that is 0.0008 and the corresponding critical
temperature TC = 1.1182 (δTC = 0.0017). Hence the critical
field parameter ξ for the biaxial molecules (λ = 0.2) is only
about 60% of the critical value for the uniaxial molecules.

In order to get an estimate of ξ in real units we may use
Eq. (7). The energy unit ε can be estimated by using the
experimental and simulated nematic-isotropic transition tem-
peratures, i.e., ε = kBTK (B = 0)/TNI (B = 0). For a common
nematic, say, 8CB, the N -I transition temperature TK (B =
0) = 314 K and the anisotropy of the molecular magnetic
polarizability 
κ ≈ 0.16 × 10−32 m3 [40]. Using these values
and the simulated value of TNI (B = 0) = 1.1231 for λ = 0 we
obtain BC ≈ 3040

√
ξC T, which is about ∼110 T for common

nematics. This is one order of magnitude smaller than the
mean-field estimate [3,4] and is of the same order as mentioned
in [10]; for λ = 0.2 using the same 
κ we estimate BC ∼ 86 T.

 0
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 0  0.0005  0.001  0.0015

ΔF
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FIG. 5. Free-energy barrier height 
F (L) vs ξ for the uniaxial
model and for the lattice size L = 40. Linear extrapolations of three
nearest points are used to estimate ξC , which is 0.001 31 for λ = 0
and 0.0008 for λ = 0.2.

V. CONCLUSION

Using MC simulation we have determined the entire N -I
coexistence curve terminating at a field-induced critical point
for two nematic systems composed of uniaxial and biaxial
molecules. In disagreement with the mean-field prediction
of the linear coexistence curves in the T -B2 plane, we have
obtained quadratic behavior for both λ = 0 and 0.2. The rate
of change of the transition temperature with a magnetic field
(or dTNI /dB2) is steeper for the system composed of biaxial
molecules and the critical point occurs in such a system at
a magnetic field much lower than what is necessary for a
uniaxial molecular system. A comparison of our simulation
results with the recent experimental findings of Ostapenko
et al. [19] shows that the significant molecular biaxiality of
the bent-core molecules has possibly played an important role
in the experimental realization of the magnetic-field-induced
I -N phase transition.

Our study is limited to the value of the biaxiality parameter
λ = 0.2, which is smaller than the value λ = 0.25 of the bent-
core molecules used in the study of Ostapenko et al. [19].
From the work of To et al. [25] it is evident that dTNI /dλ

is a rapidly increasing function of λ in the neighborhood of
λ ∼ 0.25 and consequently the expected value of the critical
field for λ = 0.25 is likely to be much lower than what we have
estimated for the λ = 0.2 system. However, we are not in a
position to judge whether Ostapenko et al. [19] have narrowly
missed the critical field as is the opinion of To et al. [25].
For this purpose a more elaborate MC study where a range of
different values of λ has been considered is necessary.

Comparing our work with the recent work of Trojanowski
et al. [23], we point out that we have performed a more
extensive and quantitatively more accurate MC study using
MHR and finite-size-scaling analysis to determine the N -I
coexistence curves and the critical points in the presence of an
external magnetic field. The dispersion potentials in the two
works are the same, but differ in the value of the biaxiality
parameter λ.

We conclude by noting that in spite of what we have said,
ours is a simple model system as a dispersion interaction with
a lattice model has been used; we have not considered the
translational degrees of freedom or the molecular flexibility.
The former can be included in a MC simulation by considering
an off-lattice model along with a biaxial Gay-Berne potential
[41] using an isobaric-isothermal (NPT ) ensemble [42],
whereas the inclusion of molecular flexibility is a more
formidable task [43]. Nevertheless, consideration of these
features along with the variation of the molecular biaxiality
would be an ideal task that would take us much closer to a real
nematic. In that case, however, to make the job computationally
feasible, one may have to consider fewer molecules, which in
turn will make the use of finite-size scaling and determination
of thermodynamic limits rather difficult.
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