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Density functional theory of electrowetting
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The phenomenon of electrowetting, i.e., the dependence of the macroscopic contact angle of a fluid on the
electrostatic potential of the substrate, is analyzed in terms of the density functional theory of wetting. It is
shown that electrowetting is not an electrocapillarity effect, i.e., it cannot be consistently understood in terms of
the variation of the substrate-fluid interfacial tension with the electrostatic substrate potential, but it is related
to the depth of the effective interface potential. The key feature, which has been overlooked so far and which
occurs naturally in the density functional approach, is the structural change of a fluid if it is brought into
contact with another fluid. These structural changes occur in the present context as the formation of finite films
of one fluid phase in between the substrate and the bulk of the other fluid phase. The nonvanishing Donnan
potentials (Galvani potential differences) across such film-bulk fluid interfaces, which generically occur due to
an unequal partitioning of ions as a result of differences of solubility contrasts, lead to correction terms in the
electrowetting equation, which become relevant for sufficiently small substrate potentials. Whereas the present
density functional approach confirms the commonly used electrocapillarity-based electrowetting equation as a
good approximation for the cases of metallic electrodes or electrodes coated with a hydrophobic dielectric in
contact with an electrolyte solution and an ion-free oil, a significantly reduced tendency for electrowetting is
predicted for electrodes coated with a dielectric which is hydrophilic or which is in contact with two immiscible
electrolyte solutions.
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I. INTRODUCTION

Since the pioneering work of Lippmann [1] and Pellat [2,3]
on the influence of electrostatic potentials on the wetting of
substrates by fluids, electrowetting has been simultaneously
studied to address fundamental issues of surface science, e.g.,
electrocapillarity [4], the structure of solid-fluid interfaces
[5], or the characterization of surface states [6], as well
as to develop novel applications, e.g., driving, mixing, or
shaping of droplets in lab-on-a-chip devices, optical appli-
cations, or microelectromechanical systems [7]. In the past
electrowetting at low voltages was commonly interpreted as
an electrocapillarity effect; i.e., it is assumed to hinge on the
voltage dependence of the substrate-fluid interfacial tension
[2,3,5,7–19]. A justification for this approach is frequently
given in terms of the vast experimental evidence for systems
of uncoated and hydrophobically coated electrodes.

The present work reports on an effort to understand
electrowetting in the context of general wetting phenomena
[20]. Within classical microscopic density functional theory
one has access to the interfacial structure of fluids in terms
of nonuniform number density profiles. For example, the
contact angle between a fluid-fluid interface and a substrate
surface can be calculated from the number density profiles
in the two coexisting fluid phases which form the fluid-fluid
interface. Hence electrowetting, i.e., the dependence of the
contact angle on the electrostatic substrate potential, monitors
the voltage dependence of the number density profiles, i.e., of
the interfacial structure, in both fluid phases. However, it turned
out that the commonly given derivations of the electrowetting
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equation [7] are incorrect in that they express the contact
angle in terms of fluid-substrate interfacial tensions, which are
descriptors of the interfacial structure of a single fluid phase
in thermodynamic contact with a substrate.

It has been overlooked that the interfacial structure, and
thus interfacial quantities, of a fluid can change upon bringing
it into contact with another fluid. Although the interfacial
structure of fluids close to substrates has been deeply examined
in the surface science literature [21–27], its properties seem
to be largely ignored in the context of electrowetting so far.
By ignoring structural differences which occur at substrate-
fluid interfaces upon bringing two fluids in simultaneous
contact with a substrate, one can interpret electrowetting
as a consequence of voltage-dependent interfacial tensions,
which is referred to as the electrocapillarity approach to
electrowetting in the following. It is shown in this work
that electrowetting cannot be consistently understood as an
electrocapillarity effect. Alternative approaches to interpret
electrowetting as a line tension effect have been proposed
[28] but some of the predictions were in disagreement with
experimental data [29].

The present approach is to study electrowetting in terms of
the the effective interface potential [20], which is related to the
macroscopic contact angle. The effective interface potential
has been analyzed recently for simple models of electrolyte
solutions [30–32], showing the general feature of ions inducing
wetting transitions of first order. Whereas wetting transitions
are concerned with the thickness of wetting films, the contact
angle is related to the depth of the effective interface potential,
which always vanishes continuously at wetting transitions
[20]. In the following the effective interface potential for
Pellat’s classical setup of a vertical parallel plate capacitor [2,3]
is determined and used to derive an electrowetting equation
(Sec. II) based on the density functional theory of wetting.
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This setup has been chosen because its geometry is precisely
defined, an issue which has been recently raised in a critical
discussion of the more common setup of a droplet on a
substrate with the counterelectrode being a thin wire [17]. The
misconception underlying the classical derivation of the elec-
trowetting equation within the electrocapillarity approach is
discussed (Sec. III). Interestingly, the electrocapillarity-based
electrowetting equation seems to be a good approximation for
systems investigated up to now, i.e., uncoated or hydrophobi-
cally coated electrodes (Sec. III). However, it is argued that the
difference in the predicted electrowetting numbers between
the electrocapillarity approach and the present one based
on the density function theory of wetting can be expected
to occur, e.g., for hydrophilically coated electrodes or for two
immiscible electrolyte solutions as fluids (Sec. III). In view of
the conceptional problems of the electrocapillarity approach it
is suggested to rather interpret electrowetting in terms of the
density functional theory of wetting (Sec. IV). Moreover, the
possibility to obtain microscopic information about solid-fluid
interfaces by analyzing electrowetting measurements in terms
of the density functional theory of wetting deserves further
consideration.

II. THEORETICAL CONSIDERATIONS

A. Setting

Consider Pellat’s classical setup [2,3] depicted in Fig. 1. A
vertical parallel plate capacitor of width L is in contact with
two immiscible fluids F1 and F2 of mass densities �m1 and �m2,
respectively. At least one of the fluids F1 and F2 is assumed to
be an electrolyte solution. It is further assumed that �m1 > �m2

so that both fluids are separated in the gravitational field with
F1 being the lower and F2 being the upper phase (see Fig. 1).
Provided the capacitor width L is smaller than the capillary

U
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h

L
g

ϑ+ ϑ−

FIG. 1. (Color online) Pellat’s setup [2,3] of electrocapillary rise
of a fluid F1 in a vertical parallel plate capacitor of width L initially
filled with a fluid F2. The meniscus height h is related to the
contact angles ϑ+ and ϑ− by Eq. (2). Electrowetting corresponds
to a dependence of ϑ+ and ϑ−, and hence of h, on the voltage U

between the plate electrodes. A closeup of the three-phase contact
region marked by the dashed box is depicted in Fig. 2.

length [33–35]

λ =
√

γ12

(�m1 − �m2)g
(1)

with the F1-F2 interfacial tension γ12 and the acceleration due
to gravity g, the contact angles ϑ+ and ϑ− of phase F1 are
related to the meniscus height h by [33–35]

cos ϑ+ + cos ϑ− � hL

λ2
for L � λ. (2)

Depending on the interactions of the fluids F1,F2 and the
substrates S+,S−, which are metal electrodes (represented by
the hatched parts in Fig. 1) possibly coated with some dielectric
(represented by yellow layers on top of the electrodes in Fig. 1),
the respective contact angles ϑ+ and ϑ− can be smaller or
larger than π/2, which corresponds to positive or negative
contributions to the meniscus height h. Electrowetting can be
detected as the dependence of the contact angles ϑ+(U ) and
ϑ−(U ), and in turn, via Eq. (2), of the meniscus height h(U ),
on the electrostatic potential difference U = �+ − �− applied
between the electrodes.

B. Contact angle and effective interface potential

The contact angles ϑ+ and ϑ− in Fig. 1 provide a macro-
scopic description of the fluid-fluid-substrate three-phase
contact region (highlighted by the dashed box in Fig. 1 for
the anodic substrate S+). According to the chemical properties
of the fluids and the substrates, the contact of substrate S± with
one fluid, henceforth denoted by fluid A, is more preferable
than with the other fluid, henceforth denoted by fluid B. Here
it is assumed that both substrates are chemically equal such
that either fluid F1 or fluid F2 is preferred by both substrates
S+ and S−. Consequently, if substrate S± is macroscopically
in contact with the bulk of the less preferred fluid B and if the
thermodynamic state is away from wetting transitions such
that the substrate is only partially wet by phase A, a film of
microscopic extension �± > ξ composed of the preferred fluid
A forms in between substrate S± and the bulk of fluid B [20],
where ξ denotes the bulk correlation length, which is of the
order of the particle size if the thermodynamic state is away
from critical points. Then the fluid structure is similar to that of
a composition of an S±-A interface at the substrate surface and
a free A-B interface at a distance �± away from the substrate,
both being of typical extension ξ [20]. This structure leads to a
surface contribution 
s,±B (�±) = γ±A + γ12 + ω±(�±) to the
grand potential of the system, where γ±A and γ12 denote the
S±-A and F1-F2 interfacial tensions, respectively, and where
ω±(�±) is the effective interface potential [20]. It is important
to distinguish 
s,±B from the interfacial tension γ±B of an
S±-B interface in the absence of phase A. Here 
s,±B �= γ±B

because the presence of the preferred phase A leads to a
structural change, i.e., the formation of A films, as compared to
the situation in the absence of phase A. Ignoring the difference
between 
s,±B and γ±B is equivalent to ignoring the formation
of A films and it is this crucial misconception which underlies
the electrocapillarity approach to electrowetting. In contrast,
if substrate S± is in contact with the bulk of the preferred
fluid A, the fluid is nonuniform only close to the substrate
surfaces up to distances ξ , and this interfacial structure is
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FIG. 2. (Color online) Closeup of the possible geometries of the
three-phase contact region formed by the anodic substrate S+ (and
similarly for the the cathodic substrate S−) and two immiscible fluids
F1 and F2 marked by the dashed box in Fig. 1. The fluid which is
preferred by the substrates S± is denoted by A, whereas the other,
less preferred fluid is called B. Panel (a) corresponds to the case of
an F1-philic (A = F1) substrate S+, while panel (b) displays the case
of an F2-philic (A = F2) substrate S+. Here it is assumed that both
substrates S+ and S− prefer the same fluid. The macroscopic contact
angle ϑ+ (ϑ−) shown in Fig. 1 describes the asymptotic inclination
of the F1-F2 interface far away from the substrate S+ (S−), whereas
close to the substrate S+ (S−) a film of microscopic thickness �+ (�−)
of the preferred fluid A is formed.

not modified by the presence of fluid B, hence 
s,±A = γ±A.
Depending on whether the preferred fluid A is fluid F1 or fluid
F2 the substrates S± are referred to as F1-philic or F2-philic,
respectively. A closeup of the fluid-fluid-substrate three-phase
contact region close to substrate S+ marked by the dashed box
in Fig. 1 is sketched respectively in Figs. 2(a) and 2(b) for an
F1-philic (A = F1) and an F2-philic (A = F2) substrate.

The macroscopic contact angle ϑ± (see Fig. 2) is related
to the surface contributions 
s, ± 1, 
s,±2 and the interfacial
tension γ12 of the S±-F1, S±-F2, and F1-F2 interface, respec-
tively, by Young’s equation [33–35]


s,±2 = 
s,±1 + γ12 cos ϑ±. (3)

It is common to assume 
s,±α = γs,±α,α ∈ {F1,F2}, but
this misconception to ignore the structural differences of a
macroscopic S±-α contact in the presence and in the absence
of additional phases can have significant consequences. The
surface contributions 
s,±1 and 
s,±2 are related to the depth
of the effective interface potential ω+(�) evaluated at the
equilibrium film thickness � = �± by [20]


s,±1 = γ±1,
(4)


s,±2 = γ±1 + γ12 + ω±(�±)

for F1-philic substrates S± [see above the three-phase contact
region in Fig. 2(a)] and by


s,±1 = 
s,±2 + γ12 + ω±(�±),
(5)


s,±2 = γs,±2

for F2-philic substrates S± [see below the three-phase contact
region in Fig. 2(b)]. Hence, one obtains [20]

cos ϑ± = 
s,±2 − 
s,±1

γ12
= p

(
1 + ω±(�±)

γ12

)
, (6)

where p = +1 for F1-philic and p = −1 for F2-philic sub-
strates S±. This equation connects the macroscopic contact
angle ϑ± with the microscopic structure represented by the
effective interface potential ω±(�) of A films at substrate S±
in macroscopic contact with bulk fluid B.

The next Sec. II C describes an approximate calculation of
the effective interface potentials ω±(�) for the setting of Fig. 1.
The dependence of ω±(�±; U ) on the electrostatic potential
difference U between the electrodes, together with Eq. (6),
then leads to the electrowetting equations derived in Sec. II D.

However, already without explicit expressions for the effec-
tive interface potentials, one can draw an important conceptual
conclusion from Eq. (6): Electrowetting is not an electrocap-
illarity effect, since no U -dependent substrate-fluid interfacial
tensions, which describe the contact of the substrate with one
fluid, occur on the right-hand side. Instead, electrowetting is
related to the depth of the effective interface potential, which
describes the U dependence of the microscopic fluid structure
close to the substrate in the presence of two fluids.

C. Density functional theory of wetting

In order to obtain the effective interface potential ω±(�)
of an A film of thickness � at substrate S± in Fig. 1, whose
value for the equilibrium film thicknesses � = �± is related
to the contact angle ϑ± via Eq. (6), one may represent the
structure in Fig. 1 far above [for an F1-philic substrate S±; see
Fig. 2(a)] or below [for an F2-philic substrate S±; see Fig. 2(b)]
the three-phase contact region by the quasi-one-dimensional
slab depicted in Fig. 3(a). The chemically identical substrates
S+ and S−, which comprise metal electrodes coated with
dielectric layers of thickness d, are separated by a distance L

and covered with films of thicknesses �+ and �−, respectively,
of the preferred fluid A. Moreover, the electrodes are assumed
to be ideally polarized; i.e., electrochemical reactions do
not occur. Even under these conditions the film thicknesses
�+ and �− can differ, if unequal partitioning of ions at the
film-bulk fluid interfaces takes place. This is expected to occur
in general due to generic differences in solubility contrasts
[36]. The macroscopic distance L between the substrates is
typically the largest length scale such that only the limit
L → ∞ is considered in the following. Hence the effective
interface potentials ω+(�) and ω−(�) at the substrates S+ and
S−, respectively, are those of semi-infinite systems. For each
substrate S± a coordinate axis in normal direction with the
origin z = 0 at the substrate surface and the fluid at z > 0 is
introduced [see Fig. 3(b)]. The interface between the A film
and the bulk of phase B is located at position z = �± and the
electrode is at z = −d, where the electrostatic potential is �±
and the surface charge density is σ±.

Considering the two bulk phases of fluids F1 and F2 outside
the capacitor in Fig. 1 as particle reservoirs, one is naturally led
to a grand-canonical description of the thermodynamic state.
A starting point for the derivation of the effective interface
potential ω±(�) is the grand potential functional per thermal

042409-3



MARKUS BIER AND INGRID IBAGON PHYSICAL REVIEW E 89, 042409 (2014)

+ − (a)

S+ A B A S−

d L d

U

(b)
Ψ±, σ±

S± A B

z−d 0 ±

FIG. 3. (Color online) (a) Far above [Fig. 2(a)] or below
[Fig. 2(b)] the three-phase contact regions (see Fig. 1) the dielectric
substrates S+ and S− of thickness d and distance L are covered by
films of the preferred fluid A of microscopic thicknesses �±, which
separate the substrates from the bulk of the less preferred fluid B. (b)
Since the separation L between the substrates S+ and S− is typically
the largest length scale, one can consider the limit L → ∞, which
renders the effective interface potential ω±(�) at substrate S± that of
a semi-infinite system. A coordinate axis normal to each substrate is
introduced with the origin z = 0 at the surface and the fluids in the
range z > 0. The interface between the A film and the bulk fluid B is
located at z = �± and the electrode is at position z = −d , where the
electrostatic potential is �± and the surface charge density is σ±.

energy kBT = 1/β and per area A of the electrode

β
1[φ,�±]

A = β
0[φ]

A + βdD(0)2

2εvacεS

− β�±D(0)

+
∫ ∞

0
dz

[ ∑
i=±

�i(z)

(
ln

�i(z)

ζi

− 1+βVi(φ(z))
)

+ βD(z)2

2εvacε(φ(z))

]
(7)

in terms of the solvent composition profile φ and the ±-ion
number density profiles �±. Here the permittivity εvac of the
vacuum, the relative permittivity εS of the substrate S±, and the
fugacities ζ± of ± ions are used. The density functional 
0[φ]
describes the grand potential of the pure, i.e., salt-free fluids.
The electric displacement D(z) is determined by Gauß’s law
and the boundary condition of global charge neutrality:

D′(z) =
∑
i=±

qie�i(z), D(∞) = 0. (8)

Here q± = ±1 denotes the valency of ± ions and e is the
elementary charge. Since the substrate S± is free of ions the
electrode surface charge density is given by σ± = D(−d+) =
D(0−) [see Fig. 3(b)]. In the absence of specific adsorption
of ions at the substrate surface, the electric displacement is
continuous at z = 0, i.e., D(0−) = D(0+) = D(0), so that
σ± = D(0). The electric displacement D(z) is related to the
electrostatic potential ψ(z) by D(z) = −εvacε(φ(z))ψ ′(z). The
electrostatic potential of the electrode is given by �± =
ψ(−d) [see Fig. 3(b)]. The second term on the right-hand
side and the term in the last line of Eq. (7) account for
the electrostatic field energy inside the substrate and the
fluids, respectively, whereas the last term in the first line
represents the internal energy of the voltage source sustaining
the electrostatic potential ψ(−d) = �± of the electrode [see
Fig. 3(b)]. The expressions V±(φ(z)) and ε(φ(z)) denote
respectively the local solvation free energy of a ± ion and
the relative permittivity at a position z > 0 where the solvent
composition is given by φ(z) [36]. Finally, the second line of
Eq. (7) describes the grand potential of the ions, where the ion
number densities are assumed to be sufficiently small such that
ions interact with each other only via the electrostatic field.

The equilibrium bulk state (φ̄,I ) with the bulk solvent
composition φ̄ and the bulk ionic strength I minimizes the
bulk grand potential density 
b(φ̄,I )/V , which can be derived
from Eq. (7) by inserting uniform profiles φ(z) = φ̄ and
�±(z) = I , omitting all surface terms, and noting D = 0 in
the bulk. The two immiscible fluids A and B at coexistence in
Fig. 3(a) correspond to two equilibrium bulk states (φ̄A,IA) and
(φ̄B,IB), respectively, with equal bulk grand potential density:

b(φ̄A,IA)/V = 
b(φ̄B,IB )/V .

Since the present analysis is concerned with films of
thicknesses �± > ξ but not with interfacial structures on length
scales less than ξ it is natural to approximate the solvent
composition profile φ in Eq. (7) within the so-called sharp-kink
approximation [20]

φ�(z) :=
{

φ̄A, z < �,

φ̄B, z > �.
(9)

Furthermore, in view of the small ionic strengths IA and IB to
be considered here and for sufficiently small surface potential
|ψ(0) − ψ(∞)|, the term in the second line of Eq. (7) can
be expanded up to quadratic order in the ion number density
deviations ��i(z) := �i(z) − Iα,i = ±, with α = A for z < �

and α = B for z > � if Iα > 0. This leads to an approximate
grand potential functional

β
(�,[��±])

A = β
0[φ�]

A + βdD(0)2

2εvacεS

− β�±D(0)

+
∫ �

0
dz

[
fA(��+(z),��−(z)) + βD(z)2

2εvacεA

]

+
∫ ∞

�

dz

[
fB(��+(z),��−(z)) + βD(z)2

2εvacεB

]
(10)

042409-4



DENSITY FUNCTIONAL THEORY OF ELECTROWETTING PHYSICAL REVIEW E 89, 042409 (2014)

with

fα(��+,��+)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i=±

[
Iα

(
ln Iα

ζi
− 1 + βVi(φ̄α)

)
+ (

ln Iα

ζi
+ βVi(φ̄α)

)
��i + ��2

i

2Iα

]
, Iα > 0,

0, Iα = 0.

(11)

By minimizing β
(�,[��±])/A in Eq. (10) with respect
to the profiles ��± one obtains the equilibrium profiles
��

(�)
± . Inserting ��

(�)
± into Eq. (10) and subtracting the bulk

contribution β
b(φ̄B,IB)/A leads to the surface contribution
to the grand potential [20]


s(�) = 

(
�,

[
��

(�)
±

]) − 
b(φ̄B,IB)

A . (12)

Finally, the effective interface potential at substrate S± is
given by ω±(�) = 
s(�) − 
s(∞) [20], which, in the present
context, can be written in the form

ω±(�) = ω0(�) + A(�)

2
(�± − ψ̄A)2

+B(�)(�± − ψ̄A) + C(�). (13)

Here ω0(�) denotes the effective interface potential
corresponding to the grand potential functional 
0[φ]
of the pure fluids, ψ̄α := −[kBT ln(Iα/ζ+) + V+(φ̄α)]/e =
[kBT ln(Iα/ζ−) + V−(φ̄α)]/e is the Galvani potential of phase
α ∈ {A,B}, and

A(�) = εvac

Q(�)λB

λB − λA

λS + λA

exp

(
− λ�

λA

)
,

B(�) = − εvac

Q(�)λB

(ψ̄A − ψ̄B),

(14)

C(�) = εvac

2Q(�)λB

λS − λA

λB + λA

exp

(
− λ�

λA

)
(ψ̄A − ψ̄B)2,

Q(�) = cosh

(
λ�

λA

)(
1 + λS

λB

)
+ sinh

(
λ�

λA

)(
λA

λB

+ λS

λA

)
,

with the length scales λA := 1/(κAεA), λB := 1/(κBεB), λS :=
d/εS , and λ� := �/εA, where κ2

α := 2βe2Iα/(εvacεα) is the
square of the inverse Debye length in the bulk of phase
α ∈ {A,B}. In addition, the electrode charge density can be
written as

σ± = D(0) = F (�±)(�± − ψ̄A) − B(�±) (15)

with

F (�) = εvac

Q(�)

[
1

λA

sinh

(
λ�

λA

)
+ 1

λB

cosh

(
λ�

λA

)]
. (16)

The Galvani potential difference (Donnan potential) between
the phases A and B, ψ̄A − ψ̄B = {[V−(φ̄A) − V+(φ̄A)] −
[V−(φ̄B) − V+(φ̄B)]}/(2e), can be inferred from the solubility
of the ± ions in the solvents A and B [22,37–39]. Moreover,
�± − φ̄A is determined by the potential difference U = �+ −
�− and the fact that no chemical reactions take place at the

electrodes so that the total charge of both electrodes vanishes:
σ+ + σ− = 0. Using Eq. (15) leads to

�+ − ψ̄A = F (�−)U + B(�+) + B(�−)

F (�+) + F (�−)
,

(17)

�− − ψ̄A = −F (�+)U + B(�+) + B(�−)

F (�+) + F (�−)
.

D. Electrowetting equation

The equilibrium film thicknesses �+ and �− are both similar
in magnitude (�+ ≈ �−) of the order of a few bulk correlation
lengths ξ away from wetting transitions. Hence, Eq. (17) leads
to �± − ψ̄A ≈ ±U/2 + [B(�+) + B(�−)]/[F (�+) + F (�−)];
i.e., the U -dependent part of �± − ψ̄A is rather insensitive to a
variation of �+ ≈ �−. Moreover, the film thicknesses �+ and �−
are typically much smaller than the Debye length 1/κA in the
A film. Consequently, the leading U -dependent contribution
∼U 2 to the effective interface potential ω±(�) in Eq. (13),
which decays exponentially with � on the length scale of half of
a Debye length, 1/(2κA) [see Eq. (14)], does not significantly
shift the equilibrium film thickness �± but it merely lifts the
depth ω±(�±; U ) of the effective interface potential. Therefore,
in the following, the film thicknesses �± are considered as
independent of the applied voltage U .

Hence, Eq. (6) can be written as [7]

cos ϑ±(U ) = cos ϑ±(0) + η±(U ) (18)

with the electrowetting number

η±(U ) := p
ω±(�±; U ) − ω±(�±; 0)

γ12
. (19)

Inserting Eq. (17) into Eq. (13) leads to

η±(U ) = p

γ12

[
A(�±)F (�∓)2

2[F (�+) + F (�−)]2
U 2

±
(

A(�±)F (�∓)[B(�+) + B(�−)]

[F (�+) + F (�−)]2

+ B(�±)F (�∓)

F (�+) + F (�−)

)
U

]
. (20)

This equation is expected to be valid for sufficiently small
voltages |U | such that the quadratic approximation Eq. (11)
is applicable. The electrowetting number η±(U ) in Eq. (20)
differs from those in the literature [7] in a number of aspects,
as is discussed in the next section. The most obvious difference
is the occurrence of a correction term ∼U , which vanishes
exactly only if B(�) = 0 due to a vanishing Donnan potential
(Galvani potential difference) ψ̄A − ψ̄B . For ψ̄A − ψ̄B �= 0,
i.e., B(�) �= 0, the electrowetting number η±(U ) in Eq. (20)
is not minimal at and not symmetric with respect to U = 0.
However, for a sufficiently large voltage |U | the subleading
term ∼U is dominated by the leading term ∼U 2.

Whereas the full expression for the electrowetting number
η±(U ) in Eq. (20) depends on the five possibly largely
different length scales λA, λB , λS , λ�+ , and λ�− , the latter two,
corresponding to the thicknesses of the A films at the substrates
S+ and S−, respectively, are typically of similar magnitude:
�+ ≈ �−, i.e., λ�+ ≈ λ�− . This case �+ = �− =: � is discussed
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in detail in the next section, for which the electrowetting
number η±(U ) in Eq. (20) simplifies to

η±(U ) = p

γ12

[
A(�)

8
U 2 ± B(�)

2

(
A(�)

F (�)
+ 1

)
U

]
. (21)

Moreover, the film thicknesses �+ and �− are typically smaller
than the Debye lengths 1/κA and 1/κB so that the limiting case
λ� � λA,λB is considered throughout, within which

A(�) � εvac

Q(�)

λB − λA

λB(λS + λA)
, (22)

B(�) = − εvac

Q(�)

ψ̄A − ψ̄B

λB

, (23)

F (�) � εvac

Q(�)

(
λ�

λ2
A

+ 1

λB

)
, (24)

Q(�) � 1 + λS

λB

+ λ�λS

λ2
A

. (25)

III. DISCUSSION

A. Electrowetting and electrocapillarity

Before discussing the electrowetting number in Eq. (21)
obtained within the present density functional analysis, the
traditional approach based on the assumption of electrowetting
being an electrocapillarity effect [2,3,5,7–19] is repeated. Here
only the classical method based on Lippmann’s equation is
presented. However, calculations using alternative methods,
e.g., based on Maxwell’s stress tensor [7,40], suffer from the
same misconceptions.

The starting point is Young’s equation (3) but with the
incorrect assumption 
s,±α = γ±α,α ∈ {F1,F2}. In order to
obtain the U dependence of the interfacial tension γ±α one
considers a semi-infinite fluid α bound by a planar substrate
S±. The interfacial tension γ±α changes upon changing the
electrostatic potential ψ±α of substrate S± with respect to that
of the bulk of phase α according to Lippmann’s equation [1,4]

∂γ±α

∂ψ±α

= −σ±α, (26)

where σ±α is the surface charge density of substrate S±
in contact with phase α. Describing the S±-α interface by
means of the potential-independent differential capacitance
CSα = ∂σ±α/∂ψ±α , which is assumed to not depend on S±
for chemically identical substrates, and integrating twice with
respect to the electrostatic substrate potential ψ±α using
Lippmann’s equation (26) leads to

γ±α(ψ±α) = γ±α(0) − CSα

2
ψ2

±α. (27)

Young’s equation (3) in conjunction with the assumption

s,±α = γ±α reads

γ±2(ψ±2) = γ±2(0) − CS2

2
ψ2

±2

= γ±1(ψ±1) + γ12 cos ϑ±

= γ±1(0) − CS1

2
ψ2

±1 + γ12 cos ϑ±. (28)

Noting γ±2(0) − γ±1(0) = γ12 cos ϑ±(0) leads to

cos ϑ± − cos ϑ±(0) = CS1

2γ12
ψ2

±1 − CS2

2γ12
ψ2

±2. (29)

Using σ±α = CSαψ±α , one obtains the analog of Eq. (17)
from U = ψ+α − ψ−α and σ+α + σ−α = 0 as ψ±α = ±U/2.
This leads to the commonly used form of the electrowetting
equation [2,3,5,7–19]

cos ϑ±(U ) − cos ϑ±(0) = CS1 − CS2

8γ12
U 2 =: ηec(U ) (30)

with the differential capacitances CSα being those of a substrate
in macroscopic contact with only one fluid phase α. These
differential capacitances CSα can typically be interpreted as
those of a capacitor of capacitance CS = εvacεS/d, repre-
senting substrate S±, connected in series with a capacitor of
capacitance Cα , representing fluid α: 1/CSα = 1/CS + 1/Cα .
If fluid α is an electrolyte solution the fluid capacitance is
that of the electric double layer in a semi-infinite system,
Cα = εvacκαεα , whereas for a nonconducting dielectric fluid
Cα = limL→∞ εvacεα/L = 0. Using the length scales defined
after Eq. (14), this leads to

CSα =
{

εvac
λS+λα

, α electrolyte solution,

0, α nonconducting fluid.
(31)

Equations (30) and (31) represent the interpretation of
electrowetting as an electrocapillarity effect [7]. However,
the crucial misconception underlying this interpretation is to
use the approximation 
s,±α = γ±α and hence the differential
capacitance CSα , which corresponds to a semi-infinite system
of a single phase α bound by substrate S±, instead of
accounting for the actual fluid structure at the substrate. The
interfacial structure, and therefore surface quantities such as
the surface contribution to the grand potential as well as
the differential capacitance, of substrate S± in macroscopic
contact with the bulk fluid B depend significantly on whether
the preferred fluid A is present or not because an A film forms
in between the substrate S± and the bulk fluid B in the former
case whereas it does not in the latter case. In contrast, these
structural properties are naturally accounted for within the
present density functional approach, which relates the contact
angle to the effective interface potential [see Eq. (6)], a quantity
which correctly describes the contact of a substrate with both
fluids A and B.

B. Electrowetting on uncoated metal electrodes

The early investigations of electrocapillarity by Lippmann
[1] and Pellat [2,3] have been performed for metal electrodes
without any dielectric coating. At that time for some decades
mercury electrodes became the experimental standard for
investigations of the electric double layer [4]. Pure metal
electrodes can be considered as substrates with thickness d

being the smallest length scale: λS � λ� � λA,λB . Within
this limit one obtains Q(�) � 1 from Eq. (25) and subsequently
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from Eqs. (22)–(24)

A(�) � εvac

(
1

λA

− 1

λB

)
, (32)

B(�) � −εvac

λB

(ψ̄A − ψ̄B), (33)

F (�) � εvac

(
λ�

λ2
A

+ 1

λB

)
. (34)

For the case λA � λB , which is typically the case for
hydrophilic substrates, an aqueous electrolyte solution F1 = A

(i.e., p = +1), and an oil F2 = B, one obtains for the the
electrowetting number Eq. (21)

η±(U ) � εvac

8γ12λA

U 2 ∓ εvac(ψ̄A − ψ̄B)

2γ12(λA + λ�λB/λA)
U

� εvac

8γ12λA

U 2, for |U| � 4|ψ̄A − ψ̄B|. (35)

Hence, if the voltage |U | is much larger than the Donnan
potential (Galvani potential difference) |ψ̄A − ψ̄B |, the elec-
trowetting number η±(U ) agrees with that in Eq. (30), where
CS1 � εvac/λA,CS2 = 0 due to Eq. (31).

Similarly, for the case λA � λB , which is typically the case
for hydrophobic substrates, an oil F2 = A (i.e., p = −1), and
an aqueous electrolyte solution F1 = B, one obtains for the
electrowetting number Eq. (21)

η±(U ) � εvac

8γ12λB

U 2 ± εvac(ψ̄A − ψ̄B)

2γ12λA

U

� εvac

8γ12λB

U 2, for |U| � 4|ψ̄A − ψ̄B|. (36)

Again, if the voltage |U | is much larger than the Donnan
potential (Galvani potential difference) |ψ̄A − ψ̄B |, the elec-
trowetting number η±(U ) again agrees with that in Eq. (30),
where CS1 � εvac/λB,CS2 = 0 due to Eq. (31).

Therefore, the present formalism [Eqs. (21)–(25)] confirms
the electrocapillarity-based form of the electrowetting number
for the case of uncoated metal electrodes [η±(U ) � ηec(U )],
provided the voltage |U | is sufficiently large as compared to
the Donnan potential (Galvani potential difference) |ψ̄A −
ψ̄B |. Interestingly, for uncoated metal electrodes it is irrel-
evant whether they are F1-philic (hydrophilic) or F2-philic
(hydrophobic).

However, a small voltage |U | � |ψ̄A − ψ̄B | or λA ≈ λB ,
e.g., for two immiscible electrolyte solutions, leads to elec-
trowetting numbers η±(U ) ∼ U , in contrast to ηec(U ) ≈ 0 in
Eq. (30) due to CS1 ≈ CS2 according to Eq. (31). Since these
conditions are rather special, this scenario is not expected to
be of practical relevance, but it might provide a test for the
present approach.

C. Electrowetting of water on hydrophobic dielectrics in oil

In the last few decades most electrowetting settings used
electrodes coated with an isolating dielectric for technical
advantage [9]. Almost all of these studies used drops of
an aqueous electrolyte solution F1 placed on a hydrophobic
dielectric and an oil F2 as the environmental fluid in order
to achieve large contact angle ranges being covered by

electrowetting [7]. Within the present notation this situation
corresponds to A = F2 (i.e., p = −1) and B = F1. Since the
thickness � of the microscopic oil film on the substrates S± is
typically smaller than the the Debye length 1/κB of the dilute
electrolyte solution B = F1, which in turn is typically much
smaller than the thickness d of the dielectric substrates S±, one
identifies the case λ� � λB � λS � λA, where a (practically)
ion-free oil A = F2 (IA ≈ 0) is assumed. For this regime
Eqs. (22)–(25) read

Q(�) � λS

λB

, (37)

A(�) � −εvac

λS

, (38)

B(�) � −εvac

λS

(ψ̄A − ψ̄B), (39)

F (�) � εvac

λS

, (40)

and hence Eq. (21) is given by

η±(U ) � εvac

8γ12λS

U 2 ± εvac(ψ̄A − ψ̄B)

2γ12λA

U

� εvac

8γ12λS

U 2, for |U| � 4
λS

λA
|ψ̄A − ψ̄B|. (41)

Since λS/λA � 1, the approximation in the second line of
the previous equation almost always applies. It shows that
the electrowetting number η±(U ) for water on a hydrophobic
dielectric in oil is also in agreement with ηec(U ) in Eq. (30)
with CS1 � εvac/λS,CS2 = 0 due to Eq. (31).

D. Electrowetting of water on hydrophilic dielectrics in oil

Replacing the hydrophobic dielectric substrate of the
previous Sec. III C by a hydrophilic one leads to the case
A = F1 (i.e., p = +1), B = F2, and λ� � λA � λS � λB ,
where again a (practically) ion-free oil B = F2 (IB ≈ 0) is
assumed. For this regime Eqs. (22)–(25) read

Q(�) � 1 + λ�λS

λ2
A

= 1 + εA

εS

κA� κAd, (42)

A(�) � εvac

Q(�)

1

λS

, (43)

B(�) = − εvac

Q(�)

ψ̄A − ψ̄B

λB

, (44)

F (�) � εvac

Q(�)

(
λ�

λ2
A

+ 1

λB

)
, (45)

which leads to Eq. (21) of the form

η±(U ) � 1

Q(�)

[
εvac

8γ12λS

U 2 ∓ εvac(ψ̄A − ψ̄B)

2γ12λB

×
(

1

λS(λ�/λ
2
A + 1/λB)

+ 1

)
U

]

� 1

Q(�)

εvac

8γ12λS

U 2, for |U| � 4|ψ̄A − ψ̄B|. (46)
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Within the electrocapillarity approach one again expects,
as in the previous Sec. III C, an electrowetting number
ηec(U ) = εvacU

2/(8γ12λS) [see Eqs. (30) and (31)]. However,
the electrowetting number η±(U ) within the present density
functional approach in Eq. (46), for sufficiently large voltage
|U | � 4|ψ̄A − ψ̄B |, is actually smaller than ηec(U ) by a factor
1/Q(�): η±(U ) � ηec(U )/Q(�).

It is apparent from Eq. (42) that Q(�) is not necessarily
close to unity, because the typically small value κA� � 1
is multiplied with the typically large value κAdεA/εS � 1.
Assuming typical values of, e.g., dielectric layers of thick-
nesses d = 1 μm and dielectric constant εS = 2, a Debye
length 1/κA = 10 nm in the aqueous (εA = 80) electrolyte
solution F1 = A, and thicknesses � = 1 nm of the electrolyte
films on the substrates, Eq. (42) leads to Q(�) ≈ 400.
Hence, for this example of electrowetting on a hydrophilic
dielectric, the analysis leads to electrowetting numbers η±(U )
which are more than two orders of magnitude smaller than
expected within the electrocapillarity approach: η±(U ) ≈
0.0025ηec(U ) � ηec(U ).

It appears as if no experimental studies of electrowetting
on hydrophilic substrates have been reported so far. This is
remarkable since the preparation of hydrophilic substrates is
standard in surface science.

E. Electrowetting of immiscible electrolyte
solutions on dielectrics

Whereas the previous two Secs. III C and III D considered
an electrolyte solution and an oil, here the case of two
immiscible electrolyte solutions is discussed. This situa-
tion is characterized by λ� � λA,λB � λS , which leads to
Eqs. (22)–(25) of the form

Q(�) � λS

λA

(
λA

λB

+ λ�

λA

)
= εB

εS

κBd + εA

εS

κA� κAd, (47)

A(�) � εvac

Q(�)

λB − λA

λSλB

, (48)

B(�) = − εvac

Q(�)

ψ̄A − ψ̄B

λB

, (49)

F (�) � εvac

Q(�)

(
λ�

λ2
A

+ 1

λB

)
. (50)

If electrolyte solutions F1 and F2 are defined by λF1 �
λF2 , i.e., εF1IF1 � εF2IF2 , the following three cases have to
be distinguished: (i) A = F1 (i.e., p = +1) and B = F2 with
λA � λB , (ii) A = F2 (i.e., p = −1) and B = F1 with λA �
λB , and (iii) λA ≈ λB .

Case (i) leads to the electrowetting number Eq. (21)

η±(U ) � 1

Q(�)

(
εvac

8γ12λS

U 2 ∓ εvac(ψ̄A − ψ̄B)

2γ12λB

U

)

� 1

Q(�)

εvac

8γ12λS

U 2, for |U| � 4
λS

λB
|ψ̄A − ψ̄B|.

(51)

Hence η±(U ) � ηec/Q(�), where, however, the depression
factor 1/Q(�) here is typically much smaller than that of

the previous Sec. III D because typically εBκBd/εS � 1 [see
Eqs. (42) and (47)].

The electrowetting number of case (ii) is given by

η±(U ) � λA

λS

(
εvac

8γ12λS

U 2 ± εvac(ψ̄A − ψ̄B)

2γ12λA

U

)

� λA

λS

εvac

8γ12λS

U 2, for |U| � 4
λS

λA
|ψ̄A − ψ̄B|.

(52)

This expression bears some resemblance to Eq. (41) except for
the typically very small prefactor λA/λS � 1 here. Therefore,
electrowetting is also expected to be strongly suppressed for
two immiscible electrolyte solutions with εF1IF1 �≈ εF2IF2 , a
condition which is typically fulfilled.

For completeness the rather special case (iii) is mentioned,
for which the electrowetting number reads

η±(U ) � ∓pεvac(ψ̄A − ψ̄B)

2γ12λS

U. (53)

IV. CONCLUSIONS AND SUMMARY

Electrowetting is studied in the present work by analyzing
the capillary rise of a fluid in the environment of another fluid,
where at least one of the two fluids is an electrolyte solution,
for Pellat’s setup [2,3] (Fig. 1) within the density functional
theory of wetting. Here, the widely ignored possibility of the
formation of films of microscopic thickness on the substrates
is taken into account (Fig. 2). Considering the quasi-one-
dimensional situation far away from the three-phase contact
region [Fig. 3(a)] allows one to transparently derive the
electrowetting equation (18).

The derivation shows that electrowetting is a consequence
not of the voltage dependence of the substrate-fluid interfacial
tensions, i.e., electrowetting is not an electrocapillarity effect,
but of the voltage dependence of the depth of the effective
interface potential. The traditional electrocapillarity approach
to electrowetting is shown to be compromised by the reliance
on the incorrect assumption that the surface structure of a fluid
does not change upon bringing the system into contact with
another fluid phase.

The present analysis of Pellat’s setup for electrowetting
studies leads to effectively four length scales corresponding
to the Debye lengths in both fluids, the thickness of the
substrates, and the film thicknesses, the latter being assumed
to be approximately equal here, which serve to classify
various relevant experimental situations, e.g., uncoated metal
electrodes, hydrophilic or hydrophobic dielectric substrates, or
fluids comprising water+oil systems or immiscible electrolyte
solutions. The full dependence of the electrowetting number on
these length scales is derived here [Eq. (20)], which can be used
for an actual experimental system. By considering limiting
cases of general interest it is found that for uncoated metal
electrodes [Eqs. (35) and (36)] and wetting of hydrophobic
dielectric substrates by water in an oil environment [Eq. (41)]
the electrowetting number within the present density func-
tional approach agrees with that within the electrocapillarity
picture as well as with numerous experimental studies.
However, a significantly reduced tendency of electrowetting
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is predicted here as compared to the predictions within the
electrocapillarity approach for electrowetting on hydrophilic
dielectric substrates [Eq. (46)] or situations with both fluids
being immiscible electrolyte solutions [Eqs. (51)–(53)]. Due
to a lack of experimental data, verification of these predictions
is an open issue.

One can conclude that it is a matter of fortune that the tradi-
tional electrocapillarity approach to electrowetting [Eqs. (30)
and (31)] leads to an electrowetting equation, which, although

derived by means of physically questionable arguments, turns
out to be yet a precise approximation for many practical
cases. However, the present study highlights conditions for
which significant deviations from the electrocapillarity picture
are expected to be experimentally detectable. The density
functional theory of electrowetting presented here is sug-
gested to be considered as an approach to fundamentally
understand as well as to reliably quantify the phenomenon of
electrowetting.
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