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Time-dependent elastic response to a local shear transformation in amorphous solids
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The elastic response of a two-dimensional amorphous solid to induced local shear transformations, which mimic
the elementary plastic events occurring in deformed glasses, is investigated via molecular-dynamics simulations.
We show that for different spatial realizations of the transformation, despite relative fluctuations of order one, the
long-time equilibrium response averages out to the prediction of the Eshelby inclusion problem for a continuum
elastic medium. We characterize the effects of the underlying dynamics on the propagation of the elastic signal. A
crossover from a propagative transmission in the case of weakly damped dynamics to a diffusive transmission for
strong damping is evidenced. In the latter case, the full time-dependent elastic response is in agreement with the
theoretical prediction, obtained by solving the diffusion equation for the displacement field in an elastic medium.
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I. INTRODUCTION

In the past two decades, the understanding of plasticity
in amorphous systems has greatly benefited from numerical
simulations (for recent reviews, see [1–3]). It is now well
established that at low temperature the onset of plastic, irre-
versible deformation is due to the accumulation of elementary
plastic events, consisting of localized (in space and time)
atomic rearrangements involving only a few tens of atoms. This
events were first identified by Argon [4,5] and later described
by Falk et al. [6] in terms of shear transformations (STs)
or shear transformation zones (STZs). A recent experiment
in colloidal glasses supported this idea [7]. STs have been
extensively studied in atomic-scale simulations. Athermal
quasistatic simulations (AQSs), which consist of applying
quasistatic deformation to zero-temperature solids, have made
it possible to identify unambiguously single STs, allowing to
study their spatial organization and size distribution [8–10].

Unlike dislocations in crystals, STZs cannot be identified
a priori. Therefore, the possibility of predicting regions liable
to plastic rearrangement has attracted considerable interest.
Criteria have been proposed based on the observation of
particle displacement fields [11], local elastic moduli [12,13],
or “soft spots” from low-frequency vibrational modes [14].
On the other hand, the description of the consequences of
a localized plastic event also received attention. Localized
plastic events induce long-range deformation in the system:
the stress that was maintained by the particles involved in
the rearrangement is released to the neighbors, which act
as a continuum elastic body. The perturbation field has a
quadrupolar symmetry and a decay away from the source
characteristic of the Eshelby inclusion model [9,10,15,16].
The emergence of this behavior takes place within a finite
time, corresponding to the propagation of the elastic signal
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in the system. Rather surprisingly, a clear description of this
mechanism is still missing.

Modeling the reaction of the elastic matrix to plastic
rearrangements is a key element in several mesoscale ap-
proaches for the flow of amorphous solids [17–20]. Long-range
effects are taken into account via elastic propagators having
fourfold quadrupolar symmetry, supported by experimental
and numerical observation. However, all these models assume
that the system response is instantaneous. This last point can
clearly be improved by introducing a transmission mechanism
with a finite speed. On these bases, it is apparent that the lack
of a microscopic description of the elastic propagation after a
ST is a significant limitation.

The present paper addresses, using atomic-scale simula-
tions, the fundamental problem of the propagation of elastic
perturbation due to a ST in amorphous systems. Instead of
looking for single plastic events in nonequilibrium simulations,
we follow a different but equivalent approach, consisting of
inducing artificial STs in a quiescent system. To investigate
how inertia affects the response, different conditions of the
underlying dynamics, from overdamped to underdamped, are
considered. This is motivated by recent work by Salerno et al.
[21] in which the role of inertia on the critical behavior of
avalanches in strained amorphous solids is discussed.

The paper is organized as follows. Details about the model
and the procedure to simulate artificial shear transformations
are given in Sec. II. In Sec. III, we first review the Eshelby
model for circular inclusion, then we develop, according to
continuum elasticity theory, the full time-dependent elastic
response. The results of numerical simulations are discussed
and compared to theoretical predictions in Sec. IV. Section V
provides a short summary and discussion.

II. METHODS

A. Model

We consider a generic two-dimensional (2D) model of
glass, consisting of a mixture of A and B particles, with NA =
32 500 and NB = 17 500, interacting via a Lennard-Jones
potential Vαβ(r) = 4εαβ[( σαβ

r
)12 − ( σαβ

r
)6], with α,β = A,B
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and r being the distance between two particles. The parameters
εAA, σAA, and mA define the units of energy, length, and
mass; the unit of time is given by τ0 = σAA

√
(mA/εAA). We

set εAA = 1.0, εAB = 1.5, εBB = 0.5, σAA = 1.0, σAB = 0.8,
σBB = 0.88, and mA = mB = 1. This choice of parameters
makes the system stable against crystallization [22]. A similar
system was used by Falk and Langer [6] to study plasticity in
2D metallic glasses. The potential is truncated at r = rc = 2.5
for computational convenience. The system sizes Lx = Ly =
205 are fixed and periodic boundary conditions are used. The
equations of motion are integrated using the velocity Verlet
algorithm with a time step δt = 0.005. The temperature T

is controlled via a Langevin thermostat [23]; the associated
equations of motion are

dri

dt
= pi

m
, (1)

dpi

dt
= −

∑
j �=i

∂V (rij )

∂rij

− pi

τ
+ ηi, (2)

where (pi ,ri) are the momentum and the position of particle
i, − pi

τ
is a damping force, and ηi is a random force obeying

〈ηi(t)ηj (t ′)〉 = (2kBT mi/τ )δij δ(t − t ′). This thermostat intro-
duces a characteristic time scale τ , related to the relaxation
of temperature fluctuations. The dissipation time τ controls
the relative importance of inertia in the dynamics. As τ

decreases, the dynamics changes from underdamped, i.e.,
inertia-dominated, to overdamped. The latter is usually con-
sidered appropriate for colloidal and other soft glasses. Here
we extend the analysis to the intermediate and underdamped
regimes, which better describe foams, granular systems, and
metallic glasses where inertial effects are still present. In the
next sections, results for different values of the damping time
τ are discussed.

The glassy states were prepared by quenching at constant
volume equilibrated systems at T = 1 to zero temperature with
a fast rate dT /dt = 2 × 10−3. The shear and bulk modulus,
μ2 = 17 and K2 = 98, have been measured with the method
described in Ref. [24]; the associated Poisson ratio is ν2 = 0.70
(the subscript is used to indicate two-dimensional quantities).
Note that in two dimensions, the Poisson ratio has an upper
bound of 1 rather than 0.5 as in the 3D case. The simulations
were carried out using LAMMPS molecular dynamics software
[25,26].

B. Fictitious local shear transformations

A local shear transformation (see Fig. 1) is replicated by
shearing along the x and y directions particles inside a circular
region of radius R, which will be designated as the shear
transformation region (STR), to distinguish it from authentic
STZs. We fix the radius at R = 2.5; this corresponds to about
n � 23 particles inside a STR, which is consistent with the
number of particles involved in a 2D shear transformation
[10]. The center of the STR defines the origin of our coordinate
system (x,y). The coordinates of particles inside the STR are
transformed according to

xi → x ′
i = x + εy,

yi → y ′
i = y + εx,

(3)

FIG. 1. (Color online) Sketch of a local shear transformation.
Frozen particles inside the shear transformation region STR (dark
gray particles), a circular region of radius a, are instantaneously
displaced along the x and y directions according to the transformation
defined in Eq. (3).

where ε is the shear strain. The transformation is instantaneous
and sets the time origin. Particles inside the STR are frozen
while the behavior of the surrounding ones at later times is
observed.

To reduce the noise, the response of the system is averaged
over an isoconfigurational ensemble with 10 trajectories.
The angular bracket 〈〉ic will indicate the isoconfigurational
average, where particles start from the same positions but have
different momenta. In addition, we introduce an average over
disorder, i.e., over realizations of the ST in different positions
of the system. In particular, the disorder average involves
48 different STRs. The combination of isoconfigurational
and disorder average will be indicated with simple angular
brackets 〈〉.

Now we examine briefly the shear strain ε. If ε is large,
it could induce additional plastic events in other positions
breaking down the elastic response. On the other hand, a small
value for the strain could generate a too weak response to be
detected. To set the best value for ε, we operate as follows. We
induce the shear transformation and let the system evolve for
a time �t , until everything has come to a new equilibrium
state. Then we displace back to the original positions the
particles inside the STR and let the system evolve again
for a time �t . The final configuration is compared to the
initial one. We observe that for ε = 0.025, the differences
in the quenched energies are within numerical precision. The
associated relative displacement of particles is of the order of
1/10 of the particle size, in agreement with the observations
in spontaneous STs [10]. In the next section, we show that the
perturbation in an elastic medium due to a ST is equivalent to
that generated by two force dipoles of strength f � εG2R. If
one takes R = 2.5 and ε = 0.025, then f � 1. In Ref. [27], it
is shown that a source point force of order one is sufficiently
small to ensure an elastic behavior in an amorphous elastic
body. We therefore adopt the value ε = 0.025 for the following
investigation.
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III. TIME-DEPENDENT DISPLACEMENT FOR A 2D
CIRCULAR INCLUSION

In this section, we work out the analytical prediction for the
displacement field due to a ST in the transient and equilibrium
regime according to classical elasticity theory. We model the
equilibrium situation as a 2D Eshelby inclusion problem [15].
We consider a circular inclusion in a homogeneous elastic solid
that has been strained into an ellipse using an eigenstrain or
stress-free strain ε∗

αβ = ε∗(2n̂αn̂β − δαβ), where ε∗ is a scalar
and n̂α is a unit vector. The displacement field uα(R) at a

given point R in the elastic medium is the solution of the
Lamé-Navier equation [28]:

(μ + λ)
∂2uβ

∂Rα∂Rβ

+ μ
∂2uα

∂Rβ∂Rβ

= 0, (4)

where μ and λ are Lamé coefficients. Boundary conditions for
Eq. (4) are given by the expression of the field at the inclusion
boundary, provided by Eshelby theory, and the requirement
that the field vanishes for r → ∞. The explicit solution [29]
is then

u(r) = ε∗

4(1 − ν)

(a

r

)2
{[

2(1 − 2ν) +
(a

r

)2
]

[2n̂ (n̂ · r) − r] + 2

[
1 −

(a

r

)2
] [

2 (n̂ · r)2

r2
− 1

]
r

}
, (5)

where a is the radius of the inclusion and ν is the Poisson ratio. We point out that Eq. (5) is correct in three dimension in plane
strain conditions and then also in two dimensions. If φ is the angle between the unit vector n̂ and the x axis, Eq. (5) in Cartesian
components becomes

ux∞ = ε∗

4(1 − ν)

(a

r

)2
{[

2(1 − 2ν) +
(a

r

)2
]

(x cos 2φ + y sin 2φ) + 2x

[
1 −

(a

r

)2
]

(x2 − y2) cos 2φ + 2xy sin 2φ

r2

}
, (6)

uy∞ = ε∗

4(1 − ν)

(a

r

)2
{[

2(1 − 2ν) +
(a

r

)2
]

(x sin 2φ − y cos 2φ) + 2y

[
1 −

(a

r

)2
]

(x2 − y2) cos 2φ + 2xy sin 2φ

r2

}
. (7)

We note that shearing simultaneously along the x and y directions, as in the case of the shear transformation we considered,
corresponds to φ = π/4.

To derive the expressions for the displacement field in the transient regime, we follow the approach of Ref. [30]. First, we
switch to a pure two-dimensional description of the problem and we focus on the overdamped limit. The tensor equation for the
diffusion of the vector displacement field can be written as

�
∂uα

∂t
= μ2

∂2uα

∂Rβ∂Rβ

+ μ2

1 − ν2

∂2uβ

∂Rα∂Rβ

, (8)

where ν2 = ν/(1 − ν). The left side of Eq. (8) represents the damping with a coefficient �, related to the time parameter τ in the
Langevin equation, Eq. (2), via τ = �−1. From the right-hand side, one can define

D1 = 2

1 − ν2

μ2

�
, (9)

D2 = μ2

�
, (10)

corresponding to the diffusion coefficients in the longitudinal and transverse directions, respectively.
To solve Eq. (8) for the response to a ST, we notice that, in the limit a → 0, the perturbation displacement is equivalent to

the one induced by a set of two orthogonal force dipoles with magnitude a2με∗, located at the origin [16]. The Green’s tensor
Gijk(r) relates the displacement u to a source term P via

uk(r) =
∫

dr′Gijk(r − r′)Pij (r′). (11)

The Green’s tensor associated with Eq. (8) is given by [30]

Gijk(r,t) = − 1

μ2r

{[(
1 − ν2

2
+ 8D2t

r2

)
e−r2/4D1t −

(
1 + 8D2t

r2

)
e−r2/4D2t

]
rirj rk

r3

− 2D2t

r2

[
e−r2/4D1t − e−r2/4D2t

]
φijk + δik

rj

r
e−r2/4D2t

}
(12)

with φijk = δij
rk

r
+ δik

rj

r
+ δjk

ri

r
. Explicitly calculating the response for a shear transformation, we obtain

ux(x,y,t) = 2ε∗a2

r

{[(
1 − ν2

2
+ 8D2t

r2

)
e−r2/4D1t −

(
1 + 8D2t

r2

)
e−r2/4D2t

]
x2y

r3

− 2D2t

r2

[
e−r2/4D1t − e−r2/4D2t

]y

r
+ 1

2

y

r
e−r2/4D2t

}
, (13)
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FIG. 2. (Color online) An example of the response to an induced local shear transformation. Snapshots of the vector displacement field
were taken at different times, which feature the propagation of the elastic signal in the system.
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uy(x,y,t) = 2ε∗a2

r

{[(
1 − ν2

2
+ 8D2t

r2

)
e−r2/4D1t −

(
1 + 8D2t

r2

)
e−r2/4D2t

]
xy2

r3

− 2D2t

r2

[
e−r2/4D1t − e−r2/4D2t

]x

r
+ 1

2

x

r
e−r2/4D2t

}
. (14)

If we take the limit t → ∞ in Eqs. (13) and (14), we obtain
exactly the expression for a stationary field, Eqs. (6) and (7),
respectively, in the limit a → 0 with the product ε∗a2 kept
constant.

IV. RESULTS AND DISCUSSION

A typical example of a fictitious shear event in a regime
of intermediate damping τ = 1 is shown in Fig. 2, where we
plot the time evolution of the displacements 〈ui(t)〉ic = 〈ri(t +
t0) − ri(t0)〉ic with the shear transformation taking place at time
t0. The propagation of the elastic signal is apparent. At very
short times, only particles very close to the STR are affected
by the transformation. Later the response propagates in the
system and an increasing number of particles are displaced
from the original position. At very long time, a new equilibrium
state, different from the original one, is achieved; in the
following, we will refer to this configuration as the long-time
or stationary one. Realizations of shear transformations in
different regions of the system result in extremely different
transient and equilibrium patterns of the displacement field.
This is a clear signature of the microscopic heterogeneity of
the elastic properties, which is a well-known feature of glasses.

We focus on the mean response, i.e., the displacement field
averaged over disorder. In Fig. 3, the mean long-time displace-
ment field 〈u∞〉 is shown for the intermediate damping case.
Not surprisingly, the fictitious shear transformation produces
an elastic displacement field with quadrupolar symmetry. This
agrees with the behavior observed in single localized plastic
events occurring in amorphous systems under deformation.
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FIG. 3. (Color online) Long-time mean displacement field 〈u∞〉
after a local shear transformation (in the origin) obtained averaging
over realizations of the transformation in different regions of the
system. The quadrupolar structure is equivalent to one observed in
isolated plastic events occurring in sheared glasses.

To test the prediction for the elastic response, because of
symmetry reasons, we move to a coordinate system (r,θ ). In
Fig. 4, we show the radial component of the long-time field
along the θ = π/4 direction. Different values of the damping
time τ are considered. Two points have to be made here. First,
while the transient regime is expected to be strongly dependent
on the damped dynamics (and this is the case, as will be shown
later), the stationary solution is not as follows: curves for
different values of τ , spanning from the very weak (τ = 100)
to the strong damping (τ = 0.01) regime, collapse. Second,
the data show a very good agreement with the prediction
according to Eq. (5). We point out that no adjustable parameter
was used in this comparison. The agreement is very good even
for small distances from the sources, where the response is
affected by the finite size of the STR. The 1/r dependence
of the radial component lasts until distances of the order of
Lbox/4. Then the field drops to zero due to periodic boundary
conditions. In the inset of Fig. 4, we compare the average
displacement with the respective fluctuation from sample to
sample, 〈δu∞〉 = (〈u2

∞〉 − 〈u∞〉2)1/2. A different distance de-
pendence between the two quantities is observed: while the
mean radial displacement decays essentially analytically, due
to the effect of boundary conditions, equilibrium fluctuations
are almost flat (very weak exponential behavior for short
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FIG. 4. (Color online) Main panel: symbols are the radial com-
ponent of the long-time displacement field 〈ur∞(r,θ )〉, along the
θ = π/4 direction, for different values of the damping τ . Both
isoconfigurational and disorder average are considered. Periodic
boundary conditions are responsible for the field going to zero at the
box boundaries. Full line is the prediction according to continuum
elasticity theory, given by Eq. (5). Inset: fluctuations of the long-time
radial displacement 〈δur∞(r,θ )〉 (symbols), compared to the mean
displacement (lines). Relative fluctuations 〈δur∞〉/〈ur∞〉 are found
of order one.
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FIG. 5. (Color online) Time dependence of the total radial dis-
placement �r (t), defined in Eq. (15), in different conditions of
damping. The transmission of the elastic response to a shear
transformation changes from propagative, �r (t) ∝ t , at short time
to diffusive, �r (t) ∝ t1/2, at times longer than τ .

distances, 5 � r � 30). Moreover, we note that fluctuations
are of the order of the mean displacement, in agreement with
the observation of Ref. [27], where the response to a point
source force was considered.

Now we discuss the transient regime, in which the elastic
signal propagates in the system. First we focus on the role
played by the damping. We define the total radial displacement
as

�r (t) =
∫∫

|〈ur (r,θ,t)〉|r dr dθ, (15)

where the integration is performed over the full simulation box.
�r (t) gives a measure of the propagation of the elastic field.
In fact, if one assumes that after a time t the elastic signal has
traveled for a distance R(t) and accordingly the radial displace-
ment ur (r,θ,t) is given by ur (r,θ,t) = ucet

r (r,θ )� [r − R(t)],
where ucet

r (r,θ ) is the continuum elasticity expression, with
a leading 1/r dependence, then one finds �r (t) ∝ R(t). In
Fig. 5, we show �r (t) for the different conditions of damping.
At short times, the transmission of the elastic response is
propagative, �r (t) ∝ t , as can be clearly seen in the low-
damped simulations (τ = 10 and 100). On the other hand,
at times longer than τ , diffusion controls the propagation of
the displacement field and we have �r (t) ∝ t1/2.

We are now in the position to compare simulation data with
the full time-dependent solution of the elastic response in the
overdamped regime, namely Eqs. (13) and (14). Figure 6 shows
such a comparison. We restrict to strongly damped cases,
τ = 0.1 and 0.01, where we observe diffusive propagation.
The agreement is surprisingly good and it improves further
with increasing time. By contrast, larger deviations become
apparent at short times (t � 2 for τ = 0.1 and t � 20 for
τ = 0.01), where the propagation is not yet diffusive (see
Fig. 5).
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FIG. 6. (Color online) Open symbols: 〈ur (r,θ,t)〉, time-
dependent radial component of the displacement field along the
θ = π/4 direction for highly damped dynamics, τ = 0.1 (top) and
τ = 0.01 (bottom). Both isoconfigurational and disorder average are
considered. Full lines: theoretical predictions according to Eqs. (13)
and (14).

V. CONCLUDING REMARKS

We have investigated in atomic scale simulations the
response of a standard 2D model of glass to a fictitious
local shear transformation, which replicates the elementary
plastic events observed in amorphous systems under shear
deformation. Focusing on the displacement field, we fully
characterized the propagation of the elastic signal for different
conditions of the underlying dynamics.

First, we show that, despite large fluctuations (relative
fluctuations of order one), the average (over different real-
izations of the ST) displacement agrees very well with the
prediction of continuum elasticity theory in both the stationary
and transient regimes. A similar averaging behavior, restricted
to the stationary regime, was observed for plastic T1 events in
2D simulations of foams under shear strain [31].

Concerning the effect of inertia in the propagation of elastic
response, our study may serve as an interpretation key for the
results of Ref. [21] where the critical scaling of avalanches
in quasistatic shear of disordered systems is discussed. Those
results showed that �c = 0.1 (τ = 10) is a critical damping
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rate separating the overdamped (larger �) and underdamped
(smaller �) regimes, which are characterized by different
scaling behavior. Avalanches are due to the organization
of individual ST, where long-range elastic fields and the
corresponding stress changes act as mechanical signals. Now,
if we examine Fig. 5 of the present work, we note that different
propagation mechanisms dominate in the two previous limits,
propagative or ballistic for the inertial or underdamped limit
(large τ ) and diffusive for the overdamped one (small τ ),
with a crossover occurring for τ ∼ 1–10 (� ∼ 0.1–1), in
pretty good agreement with �c. Therefore, we observe that
the critical scaling behavior of avalanches, underdamped-like
or overdamped-like, results from a particular propagation
mechanism, propagative or diffusive, respectively, for the
elastic signals that trigger them.

The extension of our results to a three-dimensional system
seems rather natural. It is known that the Eshelby inclusion
theory describes the plastic events also in 3D amorphous
solids [32]. In that case, the quadrupolar symmetry of the
displacement field is preserved whereas the radial dependence
becomes 1/r2. Therefore, we expect that, in spite of quantita-
tive differences, all our results will carry over qualitatively.

Lastly, we believe that the analysis of the present study can
help in the improvement of mesoscale models for the flow

of amorphous solids, in particular regarding the question of a
finite time propagation and the effects of structural disorder,
which represent the major drawbacks of several models
[18–20]. In this sense, finite-element methods (FEMs) seem
to be a promising approach since they can provide, by solving
numerically the equation of the elastic equilibrium, the precise
perturbation due to a ST, allowing in this way an immediate
comparison with microscopic observations. This test will be
the next step of the present work.
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