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The influence of contact friction on the behavior of dense, polydisperse granular assemblies under uniaxial
(oedometric) loading and unloading deformation is studied using discrete element simulations. Even though the
uniaxial deformation protocol is one of the “simplest” element tests possible, the evolution of the structural
anisotropy necessitates its careful analysis and understanding, since it is the source of interesting and unexpected
observations. On the macroscopic, homogenized, continuum scale, the deviatoric stress ratio and the deviatoric
fabric, i.e., the microstructure behave in a different fashion during uniaxial loading and unloading. The maximal
stress ratio and strain increase with increasing contact friction. In contrast, the deviatoric fabric reaches its
maximum at a unique strain level independent of friction, with the maximal value decreasing with friction. For
unloading, both stress and fabric respond to unloading strain with a friction-dependent delay but at different
strains. On the micro-level, a friction-dependent non-symmetry of the proportion of weak (strong) and sliding
(sticking) contacts with respect to the total contacts during loading and unloading is observed. Coupled to this,
from the directional probability distribution, the “memory” and history-dependent behavior of granular systems
is confirmed. Surprisingly, while a rank-2 tensor is sufficient to describe the evolution of the normal force
directions, a sixth order harmonic approximation is necessary to describe the probability distribution of contacts,
tangential force, and mobilized friction. We conclude that the simple uniaxial deformation activates microscopic
phenomena not only in the active Cartesian directions, but also at intermediate orientations, with the tilt angle
being dependent on friction, so that this microstructural features cause the interesting, nontrivial macroscopic

behavior.
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I. INTRODUCTION AND BACKGROUND

Granular materials are omnipresent in nature and widely
used in various industries such as food, pharmaceutical,
agriculture, and mining, among others. In many granular
systems, interesting phenomena like dilatancy, anisotropy,
shear-band localization, history dependence, jamming, and
yield have attracted significant scientific interest over the past
decade [1-3]. The bulk behavior of these materials depends
on the behavior of their constituents (particles) interacting
through contact forces. To understand their behavior, various
laboratory element tests can be performed [4,5]. Element tests
are (ideally homogeneous) macroscopic tests in which one
can control the stress and/or strain path. Such macroscopic
experiments are important ingredients in developing and
calibrating constitutive relations, but they provide little in-
formation on the microscopic origin of the bulk flow behavior.
An alternative is the discrete element method (DEM) [3], since
it provides information about the micro-structure beyond what
is experimentally accessible.

One element test which can easily be realized (exper-
imentally or numerically) is the uniaxial (or oedometric)
compression in a cylindrical or box geometry, involving an
axial deformation of a bulk sample while the lateral boundaries
of the system are fixed. During uniaxial loading, isotropic
compression and nonisotropic deformation are superposed, so
that both pressure and shear stress build up. After reversal,
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pressure and shear stress decay and the latter changes sign
after a finite strain, which depends on friction. When a granular
material is sheared, along with the shear stress, also anisotropy
of the contact network begins to develop. Besides density and
stress, anisotropy is an important ingredient to fully understand
the micro-macro mechanics of granular materials.

In addition, the effects of contact friction between the
constituent grains influence the micromechanical response
under uniaxial loading, such that a rather simple element
test begins to reveal interesting features. Several studies have
numerically investigated the extent to which the response of
granular media is affected by friction [6—10], especially in
the triaxial geometry, but not many studies exist on uniaxial
loading and unloading of frictional systems [11].

Also, the transmission of stress between contacts is relevant,
as detailed in this study. Visualizations of the distribution of
forces using photoelastic particles in two dimensions is about
the only way to access this information experimentally—
see [12,13] and references therein—even though three-
dimensional (3D) photoelasticity and other neutron diffraction
methods [14] have also been employed. Earlier numerical
studies have highlighted the particular character of the contact
force network, showing that strong contacts carrying force
larger than the average are oriented anisotropically, with
preferred direction parallel to the axis of compression, while
those originating from weak contacts are isotropic or have a
weak orientation orthogonal to the compression axis [15,16].
Another interesting issue is the distribution and orientation
of tangential forces during the deformation of dense fric-
tional packings [16—18]. In early, two-dimensional studies on
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frictional avalanching [17], it has been observed that friction is
mobilized mostly from weak contacts, whereas strong contacts
resist friction mobilization.

It is important at this point to distinguish between the
three-dimensional uniaxial element test and the triaxial test.
In the standard triaxial test, stress (or strain) is imposed on
the sample in the axial (vertical) direction (o) while the
stress in the lateral (horizontal) directions (o, and o03) are kept
constant (i.e., o7 # 0, = 03). A striking difference between
both tests is in the lateral direction where stress is kept
constant in the triaxial test (oo = 03 = 0p) but considerably
increases from its initial value oy, in the uniaxial test where
(02 & 03) > 0y, since the walls are fixed. As with the uniaxial
test, the stress in the axial direction is typically higher than
the two lateral stresses during triaxial loading. Even though
the difference in the boundary conditions has been shown to
lead to different response [19], what has been less explored
is the microscopic origin of the observed differences. This
is surprising as oedometric (uniaxial) tests are also greatly
relevant and widely used for the mechanical characterization
and study of the consolidation properties of soils, as they
reproduce field conditions. Thus, a deep understanding of
the kinematics at particle scale in such a device is of great
importance. It is also worth mentioning that the triaxial test is
mostly used in geotechnical applications such as the testing of
sands and rocks at very high stress levels. Since the broader
focus of our research is the testing of frictional and cohesive
granular materials for applications in the food, chemical,
and agricultural industries, we focus on the much simpler
uniaxial compression test where strong decrease in volume
leads to compression and considerable increase in pressure and
juxtapose our findings with those obtained in the triaxial test.

In the present study, we use discrete element simulations of
confined uniaxial compression tests to investigate and relate
the dependencies between the microscopic observations pre-
sented hereafter with the evolution of macroscopic quantities
such as pressure and deviatoric stress—and to further extend
this to explain the evolution of the structural or contact and
force or stress anisotropies.

This work is structured as follows. We first describe the
simulation method and model parameters along with the
preparation and test procedures in Sec. II. The definitions
of averaged micro-macro quantities including strain, stress,
and structural anisotropies are presented in Sec. III. Where
given, anisotropy refers to not only the deviatoric stress, but
also to the direction dependence and inhomogeneity of forces,
i.e., its microscopic origin. Next, we discuss the results of
the current study by presenting the evolution of the stress and
structural anisotropies during uniaxial loading and unloading
in Sec. IV B followed by the magnitude and orientation of their
respective eigenvalues in Sec. IV C. Furthermore, we discuss
friction mobilization in Sec. IV E followed by the probability
density functions of the normal and tangential forces in
Sec. IVF and the classification of weak and strong forces
in Sec. IVF. In Sec. V, we discuss the polar representation
of the contact distribution based on the constant surface and
constant bin width method and extract the structural anisotropy
parameters using a sixth order Legendre spherical harmonic
approximation in Sec. V A. Finally, the summary, conclusions,
and outlook are presented in Sec. VI.
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TABLE I. Summary and numerical values of particle parameters
used in the DEM simulations, where u, the contact coefficient of
friction, is varied in the following. For more details, see Ref. [3].

Value unit Description
N 9261 Number of particles
(r) 1 (mm) Average radius
w 1.5 Polydispersity w = ryax/ Fmin
0 2000 (kg/m?) Particle density
ky, 10° (kg/s%) Normal spring stiffness
k, 2.10* (kg/s?) Tangential spring stiffness
7 vary Coefficient of friction
Y 1000 (kg/s) Viscosity—normal direction
1z 200 (kg/s) Viscosity—tangential direction
Vor 100 (kg/s) Background damping—translational
Vor 20 (kg/s) Background damping—rotational
t, 0.64 (us) Contact duration (average)

II. SIMULATION DETAILS

We use the discrete element method (DEM) [3] with a
simple linear viscoelastic normal contact force law f"fi =
(ké + yS)ﬁ, where k is the spring stiffness, y,, is the contact
viscosity parameter, and & or & are the overlap or the relative
velocity in the normal direction fi. The normal force is
complemented by a tangential force law [3], such that the
total force at contact c is f. = f,i + f,f, where fi - t = 0, with
tangential force unit vector t. A summary of the values of the
parameters used is shown in Table I, with sliding and sticking
friction u = puy = py and rolling—and torsion—torques
inactive (i, = p, = 0). An artificial viscous dissipation force
proportional to the velocity of the particle is added for both
translational and rotational degrees of freedom, resembling the
damping due to a background medium, as, e.g., a fluid.

A. Simulation setup and boundary conditions

The simulation setup is a cuboid volume [20], triaxial box,
with periodic boundaries on all sides. Since careful, well-
defined sample preparation is essential, to obtain reproducible
results [21], we follow a three-step procedure where friction
is active in all the preparation stages:

(i) Spherical particles are randomly generated in the 3D box
with low volume fraction and rather large random velocities,
such that they have sufficient space and time to exchange places
and to randomize themselves.

(ii) This granular gas is then isotropically compressed to a
target volume fraction vy slightly below the jamming volume
fraction.

(iii) This is followed by a relaxation period at constant
volume fraction to allow the particles to dissipate their kinetic
energy before further preparation or the actual element test is
initiated.

B. Isotropic compression methods

After the three-step preparation, an isotropic compression
test can be initiated to measure isotropic properties and
to prepare further initial configurations at different volume
fractions, with subsequent relaxation, so that we have a series
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FIG. 1. (Color online) Evolution of volume fraction as a function
of time. Region A represents the initial isotropic compression below
the jamming volume fraction. B represents relaxation of the system
to fully dissipate the systems potential and kinetic energy and C
represents the subsequent isotropic compression up to vp,x = 0.820
and then subsequent decompression. Cyan dots represent some of the
initial configurations, at different v;, during the loading cycle; blue
stars, for the same v;, are different configurations, since obtained
during the unloading cycle; both can be chosen for further study.

of different reference isotropic configurations, achieved during
loading and unloading, as displayed in Fig. 1. The goal here
is to approach a direction independent isotropic configuration
above the jamming volume fraction v, i.e., the transition point
from fluidlike behavior to solidlike behavior [22]. Note that the
initial packings for the respective frictional configurations are
inherently different since they are prepared with the different
friction coefficients active from the beginning of the first
isotropic preparation stage (stage A in Fig. 1). We only keep
as control parameter the volume fraction which is identical for
the different configurations even though other micro-macro
quantities such as pressure and coordination number will be
different at a given volume fraction.

In the current study, to obtain a homogeneous initial
isotropic configuration, several driving modes have been
compared and these modes are discussed briefly in the
following section. Later, for uniaxial tests, unless explicitly
mentioned, the wall-driven uniaxial deformation protocol is
applied. We tested the wall-driven against the strain-rate driven
protocols for some quantities of interest to this work and realize
that they lead to mostly the same results—besides some small
details (see Sec. II B 5). Note that particular attention must
be placed on the choice of the preparation protocol when
other boundary conditions or quantities are considered as this
conclusion may no longer hold. Even though strain-rate driven
produces more homogeneous systems, we use the wall-driven
mode since it more resembles the real experiment therefore
important for future experimental validation of this work [23].

1. Wall-driven isotropic compression

In the first method, the periodic walls of the box are sub-
jected to a strain-controlled motion following a co-sinusoidal
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law such that the position of, e.g., the top wall as a function of
time ¢ is

20 — 2y
) =z;+ %(1 + cos 2 f1) (1)
with engineering strain
z(1)
€x()=1-—, 2
20

where zj is the initial box length and z is the box length at
maximum strain, respectively, and f = 7! is the frequency.
The maximum deformation is reached after half a period
t = T /2, and the maximum strain rate applied during the de-
formation is €™ = 27 f(z0 — z5)/(2z0) = 7 f(z0 — 21)/20-
The co-sinusoidal law allows for a smooth start-up and finish
of the motion so that shocks and inertia effects are reduced.
Also, the walls were driven in a quasistatic manner such that
the ratio of the kinetic and potential energy is as low as possible
(Ex/E, < 1075). By performing slower deformations, the
energy ratio can be reduced even further [20].

2. Pressure controlled isotropic deformation

In the pressure controlled mode, the (virtual) periodic walls
of the system are subjected to a co-sinusoidal periodic pressure
control until the target pressure is achieved; for details see [24].
To achieve this, we set the mass of the virtual periodic walls
of the system my, to be of the order of the total mass of the
particles in the system, leading to consistent behavior. The
pressure controlled motion of the walls is described by [24]

my Xy (1) = F(t) — pAx(1) — ywX (1), 3)

where Fy(t) is the force due to the bulk material, p As(¢) is the
force related to the external load, and the last term is a viscous
force, which damps the motion of the wall so that oscillations
are reduced. Ay is the area of the wall perpendicular to x
where x can be replaced by y or z in Eq. (3) for other
walls. We find that large values of m,, generally lead to large
energy fluctuations or oscillations while the final pressure
is more rapidly approached for systems with smaller m.,,.
In contrast, too small m, can lead to violent motions and
should be avoided. Additionally, we must mention that for our
simulations, the sensitivity of the system to the wall dissipation
is small since the simulations are performed in the very slow,
quasistatic regime.

3. Homogeneous strain-rate controlled isotropic deformation

In this method, we apply a homogeneous strain rate to
all particles in the ensemble and to the walls in each time
step, such that each particle experiences an affine simultaneous
displacement according to the diagonal strain rate tensor:

-1 0 0
E=¢| 0 -1 0],
0 0 -1

where €, (>0) is the rate amplitude applied until a target max-
imum volume fraction of, e.g., vy,x = 0.82 is achieved. The
DEM dynamics allows the particles to approach mechanical
equilibrium by following the new unbalanced forces that lead
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to nonaffine displacements due to the new forces at each time
step, or after a relaxation period.

4. Swelling of particles

An alternative isotropic deformation protocol is to allow
the particle radii r to slowly “grow” at rate g, from an initial
volume fraction according to the relation dr/dt = g,r. The
swelling of the particles leads to a change in the volume
fraction until the target volume fraction is achieved [25,26].
During the growth period, the particle mass changes with the
radius. Additionally, the volume fraction also changes with
time according to the relation dv/dt = 3vg,, leading to the
volume fraction v = vy exp{3g,¢} as a function of time ¢. The
detailed form of the growth law with time is not relevant here,
since all rates are very small.

5. Comparison of driving modes

In summary, comparing the preparation methods, we find
that isotropic quantities like pressure, coordination number,
or isotropic fabric evolve in a similar fashion for all driving
modes. However, the strain-rate controlled isotropic prepa-
ration leads to very homogeneous configurations especially
when viewed in terms of the mobilized friction. In the wall
driven case, we find that friction is more highly mobilized
in the contacts closest to the virtual periodic walls of the
system leading to slight inhomogeneities. However, when the
particles closest to the wall (up to 230% of the box length)
are excluded from the computation, the resulting probability
distributions as well as the field quantities show negligible
differences with respect to the data from the full sample
analysis. Due to this assessment, we choose here to focus
on the wall driven isotropic compression since this more
resembles experimental setups and is especially suitable for
the subsequent uniaxial compression mode. Additionally, the
co-sinusoidal wall motion allows for a smooth start-up and
end of the compression cycle unlike the “kick” (even though
tiny) to each particle in the strain rate controlled protocol. To
be confident with our conclusions, some data are checked
by comparing them with simulations performed with the
strain-rate protocol, without coming to different conclusions.

C. Uniaxial loading and unloading

After isotropic compression, initial states can be chosen
from the loading or unloading branch (after relaxation to allow
for kinetic energy dissipation) from which the uniaxial test is
initiated.

As an element test, uniaxial compression is achieved by
moving the periodic walls in the z direction according to a
prescribed co-sinusoidal strain path [20], as shown in Eq. (1),
with diagonal strain-rate tensor

0 0 0
E=¢10 00 0,
0 0 -1

where €, is the strain rate (compression >0 and decompres-
sion/tension <0) amplitude applied in the uniaxial mode. The
negative sign (convention) of E_, corresponds to a reduction
of length, so that tensile deformation is positive. During
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loading (compression) the volume fraction increases from
Vo (at dimensionless time 7 =t/ T = 0) to a maximum
Vmax = 0.820 (r = 0.5) and reverses back to the original v
at the end of the cycle (r = 1), after complete unloading. For
more details on preparation and other parameters, see Ref. [20].
Even though the strain is imposed only on one mobile
periodic “wall” with normal in the z direction, which leads to
an increase of compressive stress during compression, also the
nonmobile x and y directions experience some stress increase
as expected for “solid” materials with nonzero Poisson ratio,
as discussed in more detail in the following sections.
However, during decompression the stress on the passive
walls is typically smaller than that of the mobile, active wall,
as consistent with anisotropic materials and findings from
simulations and laboratory element tests using the biaxial tester
[27,28] or the so-called lambdameter [29]. One of the main
goals of this study is to also understand the behavior of the
packing when compression is changed or reversed to tension.

III. DEFINITIONS OF AVERAGED QUANTITIES

In this section, we present the general definitions of
averaged microscopic and macroscopic quantities.

A. General tensor formulation

To describe and better understand the relationships between
macroscopic quantities, tensors are split up into isotropic,
deviatoric, and antisymmetric parts. Each tensor can be
decomposed as

T:%(T+TT)+%(T_TT)=Tsym+Tsker “4)

where Ty, and T g, are the symmetric and antisymmetric
parts of the tensor and the superscript 7' stands for transpose.
Since we will focus on the symmetric part, we further
decompose T gy, uniquely into its spherical and deviatoric
parts as

T=T,0+T) 5)

with T, = (1/3)tr(T) and the traceless deviator Tp =T —
T, 1. The latter contains information about the eigensystem of
T, that is identical to the eigensystem of T p, itself.

Any (deviatoric) tensor can be transformed using a trans-
formation matrix R to obtain its diagonal form:

" 0 0

TyE=| 0 7 o0 |=R"-Tp-R, (6
3)
0o 0 T

Tp =T; — T,/3, where T;’s are eigenvalues of T. Also, T(l),
Tlgz), and T[()3) are the eigenvalues sorted such that, as con-
vention, T\ > T, > T, R = (#,,f2.3) is the orthogonal
transformation matrix, composed of the corresponding eigen-
vectors, which transforms T p to its eigensystem. According
to linear algebra, Eq. (6) can also be expressed as

Tp i, =Tpiy, )

with 77 and 7, the o eigenvalue and eigenvector of T p,
respectively. The symbol “.” represents the inner product of
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the tensor T p and the vector 72, which leads to a vector parallel
to flg.

In the following, we provide a consistent decomposition for
strain, stress, and fabric tensors. We choose here to describe
each tensor in terms of its isotropic part (first invariant of
the tensor) and the second (J;) and third (J3) invariant of the
deviatoric tensor:

=3[ + (1) + (15)]: ®)
J3 = det(Tp) = TS"TPTS. 9)

J; can further be written as J; = T]gl)T]gz)(—Tél) - T[()z)), since
we are dealing with deviators.

B. Strain

For any deformation, the isotropic part of the infinitesimal
strain tensor €, (in contrast to the true strain ¢, ) is defined as

€xx + €yy + €
3

where €,,= €,,dt With o = xx, yy, and zz as the diagonal
elements of the strain tensor E in the Cartesian x, y, z reference
system. The integral of 3¢, denoted by &, = 3 |, ‘Z €, is the true
or logarithmic strain, i.e., the volume change of the system,
relative to the initial reference volume Vj [30].

Several definitions are available in the literature [31] to
define the deviatoric magnitude of the strain. Here, we use
the objective definition of the deviatoric strain in terms of its
eigenvalues e((jl), 632), and e((f) which is independent of the sign
convention.

The deviatoric strain is defined as

N G R
dev — )

1 1 .
€ = éydt = = Ju®) = cu@®dr, (10)

(11)
where €4ey > 0 is the magnitude of the deviatoric strain.

Note that the wall motion is strain controlled and the
infinitesimal strain corresponds to the external applied strain.
Hence the eigenvalues for the strain tensor are in the Cartesian
coordinate system (thus no transformation is needed). For the
purely isotropic strain, €° = ¢,I, with €4, = 0, which is
direction independent by definition. The corresponding shape
factor for the deviatoric strain A9, is represented as the ratio

—€) . @), (1)
AT =€ /e, .

C. Stress

From the simulations, one can determine the stress tensor
(compressive stress is positive as convention) components:

1 p cjc
oup = | 2om"vivg = DLl ] 2

peVv ceV

with particle p, mass m?, velocity v”, contact c, force £, and
branch vector /¢, while Greek letters represent components
x, ¥, and z [20,32]. The first sum is the kinetic energy
density tensor while the second involves the contact-force
dyadic product with the branch vector. Averaging, smoothing,
or coarse graining [33,34] in the vicinity of the averaging
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volume V weighted according to the vicinity is not applied
in this study, since averages are taken over the total volume.
Furthermore, since the data in this study are quasistatic, the first
sum can mostly be neglected. The isotropic stress is denoted
as hydrostatic pressure:

p = oy = 1tr(o). (13)

As already mentioned, we will focus on the eigenvalues
of the deviatoric stress tensor A{ = 0° = 0; — p, as defined
in Sec. IIT A, with the principal directions being the same for
o and o . The (scalar) deviatoric stress for our 3D uniaxial

simulations is

2 2 2
Al =AY 4+ (A = A)T + (A5 — A5
%:J(l o G,

The deviatoric stress ratio, Sgeyv = Odev/ P, quantifies the
“stress anisotropy”’—where o4y = /3J7, with J7 the
second invariant of the deviatoric stress tensor. The
third stress invariant J7 = AJA3A5 = AAS(=A] — A)) =
)&1'3[—A‘17 — (A‘l’)z] can be replaced by the shape factor A% :=
A3/A3, which switches from +1 at maximum uniaxial loading
to —1/2 after some unloading as will be shown below.

D. Structural (fabric) anisotropy

Besides the stress of a static packing of powders and grains,
an important microscopic quantity of interest is the fabric
or structure tensor. For disordered media, the concept of a
fabric tensor naturally occurs when the system consists of an
elastic network or a packing of discrete particles. A possible
expression for the components of the fabric tensor is provided
in Refs. [32,35]:

N
v = (FP) = %ZV”ann%, (15)
pev c=1
where V7 is the particle volume of particle p which lies inside
the averaging volume V, and n¢ is the normal vector pointing
from the center of particle p to contact c. F,, are thus the
components of a symmetric rank two 3 x 3 tensor. In a large
volume with some distribution of particle radii, the relationship
between the trace of fabric, volume fraction v, and the average
coordination number C is given by 3F) := F,, = g3vC, as
reported in Ref. [36] and also confirmed from our wider friction
(w) data. The term g3 corrects for the fact that the coordination
number for different sized particles is proportional to their
surface area such that for a monodisperse packing gz = 1 and
for a polydisperse packing gz > 1 [30,35,37].
A different formulation for the fabric tensor considers
simply the orientation of contacts normalized with the total
number of contacts N, as follows [38—40]:

N
1
Faﬁ = F anl’l; , (16)
¢ =1
The relationship between Eqgs. (15) and (16) is
F? 3F)
Fpp = —0 = (17)
g3vC F,

with the equality holding in the case of monodisperse systems.
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We can define the deviatoric tensor F° and calculate
the eigenvalues k;f =F; — F,/3 with F, =1, and F; the
eigenvalues of the deviatoric fabric based on Eq. (16). We
assume that the structural anisotropy in the system is quantified
(completely) by the anisotropy of fabric, i.e., the deviatoric
fabric, with scalar magnitude similar to Egs. (11) and (14) as

. / (=) + (0 = 2) + 04 = 20)’
ev — 2 ’

(18)

proportional to the second invariant of F D Fiey = V3]2F s
where )v,f , A{ ,and k_{ are the three eigenvalues of the deviatoric
fabric tensor.

Alternatively, a simpler definition of the deviatoric fabric
for an axial symmetric element test takes into account
the difference between the fabric eigenvalue of the main
compressive (axial) direction and the average values in the
isotropic plane as follows:

19)

Note that if )»g = )»{ , Egs. (18) and (19) coincide. Analo-
gous to Egs. (18) and (19), Fyey and Fj,, can also be described

dev

using the definition of fabric presented in Eq. (15).

E. Eigenvector orientation

Due to the axial symmetry of the uniaxial compression
mode, the orientation of the eigenvectors of stress and fabric
can be defined with reference to the main compressive z
direction as

0, = arccos(i'® - 2), (20)

where Z is the unit vector in the z direction. Additionally,
orientations are projected such that they lie within the range
tom/2.

IV. RESULTS AND OBSERVATIONS

In this section, as results of the current study, first we
will discuss the influence of friction on the evolution of
stress and structural anisotropy as functions of deviatoric
strain during loading and unloading. To complement these
results, we investigate the magnitude and orientation of the
eigenvalues of stress and fabric during loading and unloading
and their respective shape factors. To gain insights into the
relationship between the normal and tangential force on
the macroscopic stress and structure, we report briefly their
probability density functions (pdfs) for different frictional
systems, as well as the force intensity weighted by the contact
state. Finally, we present a sixth order harmonic approximation
of the polar representation of contacts and forces to describe
the axial-symmetric structural anisotropy, relating fabric to
the pdfs.

A. Pressure and coordination number

Isotropic quantities during loading and unloading for
various deformation paths were presented in Ref. [20] for
frictionless particles and in Ref. [41] for frictional particles

PHYSICAL REVIEW E 89, 042210 (2014)

and will not be discussed in detail here. We only note that
the coordination number and the hydrostatic pressure scale
quantitatively differently with isotropic strain but behave in a
very similar fashion in the cases of isotropic, pure deviatoric
and uniaxial compression. The effects of polydispersity on the
evolution of the isotropic quantities have also been extensively
studied in Ref. [42] for various deformation paths. The
isotropic quantities, namely pressure, coordination number,
and fraction of rattlers, show a systematic dependence on
the deformation mode and polydispersity via the respective
jamming volume fractions. In addition, the pressure is coupled
to the deviatoric strain via the structural anisotropy, as
discussed in the next subsection.

Our uniaxial test starts from an initial volume fraction
v; =0.692 above the jamming volume fraction and reaches a
maximum volume fraction vp,x = 0.82 during loading before
returning to v; for unloading. In Figs. 2(a) and 2(b), we plot the
nondimensional pressure p for different friction coefficients
@ = 0 to 1 during loading and unloading, respectively. Here
we define the nondimensional pressure as

2(r)
3k,

tr(o), 2n

where tr(o) is the trace of the stress tensor. The loading and
unloading branches are close to the unloading branch having
a tiny shift to the right due to hysteretic effects [30]. We
observe that even though the different initial configurations are
identical with respect to the initial volume fraction, their initial
pressure states are different since their friction coefficients
are activated right from the initial preparation stage (as in
material being filled into a constant volume sample holder). An
increase in p with increasing u is observed. Also, p increases
with increasing v during uniaxial loading for all friction
coefficients and for any given volume fraction. Extrapolating
the pressure data towards smaller v to p — 0 leads to the
respective jamming densities v.(u), which decrease with
 increasing [41]. Higher friction leads to more strongly
compacted packings, since jamming sets in at lower densities,
relative to the target density v;. The initial states (with constant
v;) are the basis of the sometimes counterintuitive behavior,
observed in the uniaxial tests below.

Furthermore, in Figs. 2(c) and 2(d), we plot the evolution
of the coordination number C* as function of the volume
fraction v and show its dependence on friction during loading
and unloading, respectively. The coordination number here
is defined as the average number of contacts per particle in
the ensemble. Here, we exclude the particles with less than
four contacts (called rattlers) since they do not contribute to
the mechanical stability of the packing [20,30,42]. During
loading, we observe an increase in the coordination number
followed by a decrease after strain reversal. We observe a
systematic decrease in the coordination number with friction
with the largest friction showing the smallest coordination
number. This indicates that fewer contacts are necessary for
stability with increasing friction, even though p is larger. For
both p and C*, the we observe a decreasing slope with friction.

In the following sections, we will focus on the nonisotropic
quantities and their evolution with respect to the deviatoric
strain.
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FIG. 2. (Color online) The nondimensional pressure plotted as function of volume fraction under uniaxial deformation for different friction
coefficients during (a) loading and (b) unloading and coordination number (excluding rattlers) for the same dataset during (a) loading and
(b) unloading. The vertical arrows show increasing (and decreasing) ¢ while the tilted arrows show the loading and unloading direction.

B. Deviatoric stress and fabric

Under uniaxial compression, shear stress, anisotropy of the
contact and force networks develop, related to the creation
and destruction of new contacts [20]. We term the deviatoric
part of the stress tensor and its microscopic force-direction
dependence as the “stress anisotropy,” in parallel to the contact
direction dependency of the structural anisotropy.

The deviatoric stress ratio Sgey = Ogey/p 1S shown in
Figs. 3(a) and 3(b) for a frictionless (u = 0) and several
frictional (u = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, and 1.0)
systems during uniaxial loading and unloading, respectively.
As the deviatoric strain applied to the system is increased
during uniaxial loading, the deviatoric stress ratio initially
grows for all the friction coefficients shown. In some cases
(for small w), the maximal 54y is reached before the maximum
deviatoric strain applied (¢35 = 0.1549) is reached. For some
of the configurations studied, an asymptote (or steady state) is
observed in which further application of deviatoric strain does
not lead to visible further increase or decrease in the deviatoric
stress. At the maximum applied deviatoric strain, we observe
that not all configurations (especially the highest friction

coefficients) have reached full saturation. For the systems with
lower microscopic friction coefficients, a slight decrease of the
deviatoric stress ratio for larger deviatoric strains is seen. The
slope of the deviatoric stress ratio, which represents its growth
rate, shows a decreasing trend with increasing friction. Recall
that the initial packings are different since they are prepared
with different friction coefficients. Due to this, the pressure in-
creases with increasing friction while the coordination number
decreases with friction. The slope of the deviatoric stress ratio
in Fig. 3(a), related to the initial shear stiffness of the isotropic
packing, is proportional to these two quantities [43—45].

The evolution of the deviatoric stress during unloading
(after strain reversal) is presented in Fig. 3(b). Note that due
to the square-root definition used in Eq. (14), the deviatoric
stress remains positive.! During deviatoric unloading, Sgey

An alternative way to enforce the sign convention is to multiply
the deviatoric stress Eq. (14) by the sign of the difference between the
eigenvalue of the main compressive direction and the average in the
other two fixed directions as given for fabric in Eq. (19). This leads
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FIG. 3. (Color online) The deviatoric stress ratio plotted as a function of deviatoric strain during uniaxial (a) loading and (b) unloading. The
corresponding plots of the deviatoric fabric plotted during uniaxial (c) loading and (d) unloading, for different microscopic friction coefficients.

begins to decrease until the system approaches an isotropic
stress configuration, where sqey = 0. The &4y values where
Sqev & 0 consistently decrease with increasing friction—as is
consistent with the trend of the maximum sg4., values reached
during uniaxial loading at larger &g4ey for stronger friction. For
systems with large friction coefficients (u = 0.3, 0.5, and 1.0),
the e4ey values at which sgey = 0 are closer to each other than
for weakly frictional systems—see Fig. 9 below.

Along with the deviatoric stress ratio, for a characterization
of the contact network, we plot the deviatoric fabric magni-
tudes Fyey [as defined in Eq. (18)] of the systems discussed
above as a function of the deviatoric strain during uniaxial
loading and unloading in Figs. 3(c) and 3(d), respectively.
In Fig. 3(c), the deviatoric fabric magnitude builds up from
different (random, but small) initial values and reaches
different maxima within the same range of deviatoric strain
(8dev & 4-6%). For larger strains, we observe a decrease in the
structural anisotropy towards zero. This is explained by the
fact that more contacts are created in the axial compressive
direction compared to the horizontal plane at the beginning of

to positive and negative sqy, Which should take care of the strain
reversal [46].

the loading cycle. At the maximum (g4ey & 0.06), the material
behavior changes such that the number of contacts created in
the horizontal plane becomes higher with respect to the vertical
plane. This interesting behavior will be further discussed when
we analyze the magnitude and orientation of the respective
eigenvectors in Sec. [V C.

After strain reversal, as presented in Fig. 3(d), the initial
isotropic state is not recovered—a clear signature of history
dependence and structural anisotropy being independent of
(or decoupled from) the deviatoric stress ratio. Additionally,
a strong difference can be seen in the fabric response of
systems with lower and higher friction, respectively. As we will
see later, the orientation of the eigenvalues of these systems
provide interesting insights into these observations.

In general, comparing the evolution of deviatoric stress
ratio and deviatoric fabric, we observe a strongly nonlinear
qualitative even behavior though a linear contact model used.
This confirms that the nonlinearity observed is due to the
structural reorganization in the packing.

In Fig. 4, we plot the maximum deviatoric stress ratio
and maximum deviatoric fabric reached from Figs. 3(a) and
3(c) for the respective friction coefficients. Interestingly, the
maximum deviatoric stress ratios increase with increasing fric-

tion coefficient until u & 0.25, where it peaks at sjio- ~ 0.43
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FIG. 4. (Color online) Trend of the peak deviatoric stress and
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1 under uniaxial loading, given a maximal strain g = 0.1549. 5323
values for u > 0.1 are taken at eg" since no clear maximum is

achieved. Dashed line indicates u™*" = u.

and subsequently decrease for higher friction coefficients.
From Fig. 3(a) we observe that the highest friction coefficients
(between = 0.1 and 1.0) appear not to have reached a
final saturation; the application of further strain could lead
to a higher maximum deviatoric stress ratio. Due to this, the
decrease in the maximum deviatoric stress ratio at higher fric-
tion coefficients under uniaxial compression requires further
attention. For our system where we control volume, we argue
that at a maximum volume fraction vy, = 0.82, we are already
close to the upper limit for realistic deformations with about
5% average overlaps, i.e., compression is very strong. Note
that the maximum deviatoric stress ratio reached is termed
the “macroscopic friction coefficient,” pu™** := sz2* [20],
representing the macroscopic mobilized friction. We note that
the maxima reached are higher than the microscopic friction
coefficient for systems with low friction, between u = 0 and
0.4, while for higher friction, the maxima are lower [47].

In Fig. 4, we also show the trend of the maximum structural
anisotropy reached, Fj>*, with increasing friction. Besides
for u = 0, the maximum deviatoric fabric shows a decreasing
trend with increasing friction and saturates at Fi>* ~ 0.025 for
the highest friction coefficients. In comparison, the structural
anisotropy is much smaller than the deviatoric stress ratio.
The decrease in the maximal structural anisotropy is in
disagreement with observations reported for triaxial tests
[8,48], where it is observed to increase with increasing friction.
One main reason is that under triaxial loading, the coordination
number decreases with increasing strain (dilatancy), but it
increases under uniaxial loading (due to ongoing compaction)
while in both cases fabric anisotropy is induced by shearing.
The second reason is the stronger compaction established
initially for increasing . For our system and preparation
procedure, at a given density, the distance from the jamming
point increases with increasing friction. The maximum fabric
anisotropy decreases as the distance from the jamming volume

fraction increases [20].

PHYSICAL REVIEW E 89, 042210 (2014)

C. Eigenvalues and eigenvectors of stress and fabric

In this section, we will discuss the magnitude of the
eigenvalues of deviatoric stress and deviatoric fabric during
uniaxial loading and unloading as well as the orientation of
the eigenvectors. As reference and representative example, we
will show the data for only one of the coefficients of friction
(u = 0.1) and discuss in words the interesting trends for the
others. Finally, we will couple the observations to the evolution
of stress and structural anisotropies presented in Sec. IV B.

In Figs. 5(a) and 5(b), we plot the eigenvalues of the
deviatoric stress for the frictional system with ;4 = 0.1 during
loading and unloading against deviatoric strain &4ey. During
loading, A{, which corresponds to the stress eigenvalue of
the axial compression direction, increases linearly from 0
and remains positive while the eigenvalues A5 and A5 of
the two nonmobile directions are negative and very similar
in magnitude. During unloading, A] decreases but remains
positive; at gqey & 0.075, all eigenvalues become zero and
then switch order, so that the axial direction eigenvalue
becomes increasingly negative. The intermediate A3 then
becomes identical to Aj, both growing to positive values.
After strain reversal, A] returns along a different path, visible

from the difference in slope before and after strain reversal.
The orientation of the corresponding eigenvectors during
loading and unloading are shown in Figs. 5(c) and 5(d). At
g4ey = 0, the orientations are different and random which is an
indication of the almost isotropic initial configuration. With
increasing strain, 87, which corresponds to the orientation of
the compressive stress eigenvalue, converges to 6°= 0° and
remains until the end of the loading path. During this period,
the stress and strain eigenvectors are said to be colinear with
respect to each other. On the other hand, the orientation 65 and
05 of the other eigenvalues also drops to 6° = 90° showing

a perpendicular alignment with respect to the compression
direction. After strain reversal, the eigendirections of stress
do not instantaneously respond to the directional change until
&dev ~ 0.10 where 6 begins to increase to 90° and finally
reaches &4y & 0.03. Accordingly, 63 drops to 0°, while 6;
remains close to 90° all the time.

The corresponding eigenvalue and eigenvector orientations
of the deviatoric fabric for 4 = 0.1 are presented in Figs. 6(a)
and 6(b) during uniaxial loading and unloading. Similar to
the eigenvalues of stress, the major eigenvalue k'{ , remains
positive while the two lower eigenvalues are negative. In
contrast to stress, k{ increases and reaches a peak at g4y &

0.05 after which it begins to decrease towards zero as the

maximum strain is approached. Also, )\'Zf and )\f are not

identical, i.e., kf has a slightly higher magnitude than A{ .

This is an indication of the existence of anisotropy in the

plane perpendicular to A{ even though the stress picture

shows isotropy. At maximum deviatoric strain, however, the
magnitudes of all the eigenvalues are close to zero. After
strain reversal, )»',f and Ag show an increasingly positive trend
from e4ey & 0.08 but are not exactly identical in magnitude
while k{ is negative and consistently decreases from &gey &~

0.08 until the end of the decompression cycle. We observe

however that immediately after strain reversal, )ulf returns

with the same slope as the loading [indicated by the black
dotted lines in Figs. 6(a) and 6(b)] before finally changing
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FIG. 5. (Color online) Eigenvalues of deviatoric stress for u = 0.1 plotted as functions of the deviatoric strain for (a) loading and (b)
unloading along with their corresponding orientations with respect to the compressive direction during uniaxial (c) loading and (d) unloading.

direction. When viewed in terms of the opening and closing of
contacts, this indicates that immediately after strain reversal,
contacts that just closed (mainly in the horizontal direction)
re-open, leading to the initial increase in X{ along the same
path. With further unloading, more contacts are lost in the
vertical direction. With increasing friction, we observe that
the reversible range increases leading to longer delays before
the system responds actively to strain reversal deviating from
such a trend. In general, we conclude that the response of stress
and fabric to strain reversal are very different with respect to
each other.

Similar to the stress, the orientations of the fabric com-
ponents are interesting. Starting from random values, Olf
decreases and is close but distinct from 0° during loading,
while 0{ and 9{ are close to 90° during the same period. This

indicates that 91'" is not fully aligned with the strain eigenvector
with the deviation showing the noncolinearity. After strain
reversal, a delay can be seen before 91f and 63f transit to 90°
and 0°, respectively, while sz remains close to 90°.
Additionally, to fully describe the tensors, one can calculate
the respective shape factors for stress and fabric, respectively,
as the ratio of the eigenvalues as shown in Table II at

the initial, maximum, and end of the uniaxial compression-
decompression cycle.

In the following analysis, we will investigate how the
orientation changes with increasing the microscopic friction
coefficient and the relationships with the force network.

In Figs. 8(a) and 8(b), we plot the orientations of the first

eigenvectors of stress 6 and fabric 9{ for all contacts and
different friction coefficients, respectively. The initial value
of 6 is random at the beginning of the loading path for the
different friction coefficients. As loading begins, 67 decreases
and at ggey ~ 0.02, 67 ~ 0° for all friction. The relaxation rate
(data scaled with the initial value of the respective 0} ), shown as
aninseton alog scale, is nonsystematic for the different friction
coefficients possibly due to the initial isotropic configuration.
Note that the angle 6] does not exactly decrease to zero since
0; is always positive even though it fluctuates around zero.
Observing the behavior of the eigenvectors, we find that during
loading, they approach zero (aligned with the compression
direction) and remain until maximum compression. A slight
delay is seen before the vectors finally flip back to the plane
[49].After strain reversal at 4oy = 0.16, the response of 0
is slow and it only begins to increase at g4¢y ~ 0.12 for u = 0.
It is interesting to note that the delay time increases with
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FIG. 6. (Color online) Eigenvalues of the deviatoric fabric for u = 0.1 plotted as functions of the deviatoric strain for (a) loading and
(b) unloading along with their corresponding orientations with respect to the compressive direction during uniaxial (c) loading and (d)
unloading. Dotted lines indicated the slope of the path, identical before and after strain reversal.

friction possibly due to the higher maximum deviatoric stress
values reported with increasing friction. The corresponding
orientation of the major eigenvector of fabric 6;y) for all con-
tacts and different friction coefficients also starts from different
random values before decreasing to 0° with increasing loading.
Surprisingly at e4ey = 0.08, for the configurations with lower
friction (u = 0, 0.01, 0.02, and 0.05), ;) remains close to
0° while those with higher friction (© = 0.2, 0.3, 0.5, and
1.0) begin to increase towards 90° as we approach maximum
compression. This indicates that the orientations and build-up
of contacts for systems with lower or higher friction behave in
an opposite fashion to each other and makes clear the reason for

TABLEII. Shape factors of deviatoric stress and deviatoric fabric
in the respective tensor eigensystem at the beginning, maximum, and
end of uniaxial compression.

Shape factor T~0 T~0.5 T~1
A7 = A /A] random -1/2 1
A = A{/Alf random -1/2 1
ACO =P el undefined -1/2 1

the decrease seen in the deviatoric fabric evolution in Fig. 6(a).
At the beginning and with increasing loading, contacts are
mostly built along the main compression direction. However
with increasing friction, a “saturation” of contact build-up
in the vertical direction sets in and an increasing number of
contacts begin to build-up in the horizontal direction. As strain
is reversed, the eigenvector orientation for systems with low
friction increases to 90° while a decrease before an increase to
90° is seen for systems with higher friction.

We also plot the respective shape factors as a ratio of the
eigenvalues of stress and fabric for some exemplary friction
coefficients during uniaxial loading and unloading in Fig. 7.
For stress, shown in Fig. 7(a), beginning from random values,
A decreases to —1/2 during loading and reverses to 1 at the
end of the unloading cycle. The rates of change during loading
and unloading are almost identical, for different ;« while during
unloading, the deviatoric strain at which the increase occurs
decreases with increasing friction. As with the stress, the shape
factor of fabric A/, shown in Fig. 7(b), also begins from
random values and during loading approaches A/ ~ —1/2
with stronger fluctuations for higher friction coefficients. At
the end of unloading however A/ approach unity.
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FIG. 7. (Color online) Shape factors of (a) stress and (b) fabric as function of the deviatoric strain for some exemplary friction coefficients.

D. Weak and strong subnetworks

To further understand this interesting observation we
subdivide the respective systems into strong and weak contacts
and we plot the orientation of the stress and fabric eigenvector
corresponding to the compression direction for the two sub-
divisions. Strong contacts are termed as those whose normal
force intensity is greater than the mean normal force while
those with lower intensity with respect to the mean normal
force are termed weak.

We plot the orientation of the major direction eigenvector
of stress and fabric respectively in Figs. 8(c) and 8(d) for
strong contacts. From Fig. 8(c), the orientation of the strong
contact main eigenvector of stress and fabric behaves in a
similar fashion as the total contact in the ensemble. This
is consistent with earlier findings [16] where the strong
contacts have been observed to carry most of the load during
deformation. Interestingly and in contrast to the observation
for all contacts, the fabric eigenvalue for systems with both
low and high friction all stay close to 0° during loading and
initial unloading.

Next, the orientation of the main eigenvector of stress and
fabric for weak contacts is shown in Figs. 8(e) and 8(f). Similar
to the strong contacts, the stress and fabric orientation of weak
contacts are mostly oriented at 90° during loading. During
unloading, the orientation tends towards 0°.

Comparing Figs. 8(b), 8(d), and 8(f), it can be seen that
strong contacts predominate for the system with very low
friction while for higher friction, the orientation of the weak
contacts plays a much more significant role.

In Fig. 9, we plot the deviatoric strains at which the major
eigenvalues 0y cross 45° during unloading for different friction
coefficients. Additionally, we also plot the deviatoric strains
at which the deviatoric stress ratio, deviatoric fabric, and
the stress shape factor cross zero from Figs. 3(b), 3(d), and
7(a), respectively. As shown, the transition point decreases
nonlinearly with increasing friction. All data originating from
the stress tensor, namely the major eigenvalue of stress, its
orientation, and the stress shape factor, all collapse on each
other. On the other hand, it is not surprising that the transition
points for the fabric quantities are slightly off since the fabric
behaves differently from the stress. The definition of the fabric
tensor takes into account only the normal directions and does
not include the strong tangential contributions to the force
introduced by friction. Therefore, as friction is increased, the
deviations can be stronger.

In the following section, we will investigate in more detail
the fraction of weak and strong contacts in these systems
and discuss their interplay and relation to the observations
on the orientations of the strong and weak contacts. For clarity
and to better view the evolution of the quantities, instead of
the deviatoric strain €4y, we will study the evolution of the
quantities against dimensionless time t = ¢/ T, where T is the
simulation time.

E. Friction mobilization

Mobilization of contact friction, during uniaxial deforma-
tion of the bulk material, is quantified by the factor f;/uf, < 1
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FIG. 8. (Color online) Orientation of the largest positive (a) stress eigenvector for all contacts, (b) fabric eigenvector for all contacts,
(c) stress eigenvector for strong contacts, (d) fabric eigenvector for strong contacts, (e) stress eigenvector for weak contacts, (f) fabric
eigenvector for weak contacts plotted against dimensionless time for different coefficient of friction.

for each contact. The tangential forces grow towards their limit
and support larger shear stress; for tangential forces at or above
the Coulomb limit, i.e., at fully mobilized friction, sliding
sets in and rearrangements of contacts can lead to new, more
stable configurations. It has been observed [50] that sliding
is mostly active at weak contacts (termed weak sliding, wsl),
while stronger contacts stay in the sticking regime and sustain
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FIG. 9. (Color online) Strains at which the orientations of the
stress eigenvectors cross 8 = 45° and at which the deviatoric stress
ratio, deviatoric fabric, and the stress shape factor cross zero for
frictions u = 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0.

larger friction forces while being less mobilized (termed strong
sticking sst). We refer to this as the ws rule. Weak and strong
contacts are defined relative to the average normal force at
each time step;

o= ha/fa) <1 (22)

are termed weak and

5=l fa) > 1

are termed strong [50], with dominating sliding and sticking,
respectively.

As we will see shortly, we find that this friction mobilization
rule may not strictly hold in certain cases, as there may be
a considerable number of weak contacts with friction not
fully mobilized (termed weak sticking, wst), as well as strong
contacts fully mobilized (termed strong sliding, sst).

As representative examples, in Fig. 10 we track two differ-
ent contacting pairs during uniaxial loading and unloading
of the system with u = 0.1 and study the force intensity
and friction mobilization as they evolve as function of the
dimensionless time t. For the first contact pair shown in
Fig. 10(a), during the first stages of loading, the contact is
weak since f* < 1; friction is fully mobilized and sliding
occurs at the contact, i.e., weak contacts tend to full friction
mobilization. For a short period at t = (0.2, the contact
becomes stronger and f;/uf, correspondingly reduces (with
strong fluctuations) indicating a strong contact where sticking
predominates. At T ~ 0.36, the contact between this particle
pair is lost (opened) and is only recovered at T & (.7, where it

(23)
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FIG. 10. (Color online) Tracking f,/uf, and f* = f,/(f,) for two single particle pairs randomly selected from the ensemble during
compression and decompression where 7 is the dimensionless time. (a) Particle pair 1. (b) Particle pair 2.

can again be classified as a weak sliding (ws!) contact. As the
end of the compression cycle is reached, the contact intensity
increases and f; /uf, decreases, with strong fluctuations again,
and sometimes sliding. In general, the ws rule is mostly
true for this contact pair except during the transition from
weak to strong where some fluctuations in f;/uf, can be
seen; transitions from sliding to sticking can happen for weak
contacts (wst) well below f* = 1 during increase of f*, but
also sliding can happen for strong contacts (ss/).

The second contact pair shown in Fig. 10(b) is even more
interesting. Like the first particle pair, the second pair also
begins as a weak sliding contact and f* grows until 7 = 0.15,
where it becomes strong. Interestingly, while the contact
remains very strong for almost all of the loading-unloading
cycle, friction is highly mobilized; f;/uf, remains close to 1.

Since studying just two contact pairs within an ensemble
containing tens of thousands of contacts provides very little
information, we first extract the total fraction of weak and
strong contacts in the system. In Fig. 11(a), we plot the
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total proportion of weak contacts with reference to the total
number of contacts for the different friction coefficients (which
was studied in detail in Refs. [20,42], so those data are not
shown here). Surprisingly, as with the orientation of the largest
eigenvalue of fabric for weak and strong forces plotted in
Fig. 8, we see a clear difference between the fraction of weak
and strong contacts. In the following, we will discuss in detail
the observations for weak contacts—which have opposite
trends as the observations for strong contacts.

The first observation from Fig. 11(a) is that a greater
fraction (over 50%) of the contacts in the respective systems
are weak—an indication that fewer contacts carry a larger
proportion of the load in the system, which is related to the
shape of the force probability density function P(f*); see
Sec. IV F. Second, for systems with lower friction, the fraction
of weak contacts at the beginning of the loading cycle is
significantly higher than for higher friction, meaning that the
load is more evenly (not exactly proportionally) distributed
between weak and strong contacts for systems with higher
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FIG. 11. (Color online) Proportion of (a) weak contacts (b) sliding contacts with respect to the total number of contacts during uniaxial

loading and unloading cycle for different friction coefficients.
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friction coefficient. With increasing loading, while the total
number Cy, strongly increases [see Fig. 2(c)], the fraction
of weak contacts decreases for packings with lower friction
coefficients, and increases for those with higher friction. Also,
the decrease of weak contacts with increasing loading for
lower friction systems is stronger and occurs earlier than
the increase for systems with higher friction. At maximum
loading t = 0.5, the proportion of weak contacts are close
for all friction coefficients with slightly higher fraction for the
highest friction coefficients . = 0.5 and 1.0. This observation,
that the packings with higher friction behave in a qualitatively
different fashion, is consistent with the earlier observation in
Fig. 8(b), where the difference in orientation of strong or weak
contacts for low or high friction coefficients can be seen too.

It is surprising that the fractions of weak contacts are close
for systems with lower friction and evolve in a similar (almost
symmetric) fashion during loading and unloading. For u =
0.01 and 0.05, the fractions of weak contacts at the end of
unloading are slightly lower than at the beginning of loading.
With increasing friction, the fractions of weak contacts at the
end of unloading are higher than at the beginning of loading;
the antisymmetry between the loading and unloading phases
is more visible for u > 0.1.

From Fig. 11(b), we plot the number of sliding contacts
with respect to the total contacts for different contact friction
coefficients. The number of sliding contacts increases as the
contact friction coefficient reduces with stronger fluctuations
for lower contact friction. The configurations with low friction
are less stable and require more contacts to stabilize them.
This contrasts with the observation when contact friction is
high, where fewer contacts are needed for stability. Also, the
fluctuations for lower friction coefficient resemble stick-slip
behavior where sliding and sticking alternate. Comparing the
kinetic energies for low and high friction, we observe that
the kinetic energy reduces with increasing friction leading
to higher kinetic energy during slip events and thus stronger
fluctuations for the systems with lower friction coefficients.

To evaluate the proportion of weak and strong contacts
contributing to sliding and sticking at contacts, we plot in
Fig. 12, the number of weak sliding (3 ws!) and strong stick-
ing (3_ ss7) contacts with respect to the the total weak (3~ w)
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and strong () s) contacts, respectively. From Fig. 12(a), the
fraction of weak sliding contacts grows during loading and
reaches a peak before it begins to decrease towards zero
as maximum loading (r = 0.5) is approached. The initial
growth rate of the weak sliding contacts and the peak reached
decreases with increasing friction but all approach zero at
T = 0.5 because the deformation rate decreases to zero before
reversal. During unloading, a second growth phase of the
weak sliding contacts is seen and the maximum reached
is higher than that reached during loading—thus leading
to nonsymmetry around v = 0.5. Additionally, only a small
proportion (much less than ~50%) of the total weak contacts
are sliding. This indicates that even though an increase in the
number of weak sliding contacts is seen during loading and
unloading, more and more weak contacts stick (f;/uf, < 1)
for increasing u.

In contrast to the weak sliding contacts, the fraction of
strong sticking contacts, as presented in Fig. 12(b), decreases
during loading until it reaches a minimum before an increase
towards T = 0.5 can be seen. The rate of decrease and
the minima reached decrease with increasing friction and
the minima are lower during unloading, i.e., all data are
nonsymmetric around T = 0.5.

In Fig. 13, we plot the number of weak sliding (3 wsl)
and strong sticking (3 sst) contacts with respect to the total
sliding and sticking contacts, respectively. In Fig. 13(a), we
confirm that a higher proportion (>0.5) of the sliding contacts
are weak [50-53]. The proportions of weak sliding contacts
for 4 = 0.01-0.3 are almost identical and decrease during
loading. During unloading, however, the proportions of weak
sliding contacts behave differently with increasing friction. We
again observe the nonsymmetry of the loading and unloading
data. In Fig. 13(b), we plot the fraction of strong sticking
contacts with respect to the total sticking contacts. A little less
than 50% of the sticking contacts are strong. The fractions of
strong sticking contacts increase initially during loading and
later decrease as maximum compression is approached. The
fraction of strong sticking contacts show a decreasing trend
at T = 0.5 with increasing . During unloading, the fractions
of strong sticking contacts increase and later decrease towards
the end of the unloading branch. With increasing friction, the
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FIG. 12. (Color online) Fraction of (a) weak sliding contacts (ws/) and (b) strong sticking contacts (sst¢) with respect to the total number
of weak (D_ w) and strong (D_ s) contacts, respectively, during uniaxial loading and unloading for different friction coefficients.
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FIG. 13. (Color online) Fraction of (a) weak sliding contacts (ws/) and (b) strong sticking contacts (sst) with respect to the total number
of sliding (3_ s/) and sticking (> _ st) contacts, respectively, during uniaxial loading and unloading for different friction coefficients.

nonsymmetry of the data decreases. For the highest friction
coefficients, the fraction of strong sticking contacts during
loading is slightly more than those present during unloading.

In summary, strong and weak forces have been analyzed
along with the level of friction mobilization. It has been shown
that a higher proportion of the total contacts in the system
are weak, irrespective of the friction coefficient. Among these
weak contacts, the contacts which are sliding are less in number
compared to the sticking contacts. In contrast, when the total
sliding contacts are considered, a higher proportion of them
are weak, as also reported in earlier literature.

F. Probability density function

To better understand the relationship between contact
forces and the macroscopic stress and structure, we study
the probability density function of normal contact forces in
different directions [48,54]. We will consider the probability
distribution of the normal forces during uniaxial compression
with reference to the compressive z direction and the two
lateral x and y direction. Keeping each direction as reference,
we define a cutoff y such that the contact forces admitted
for the probability distribution analysis fulfill the criteria

|7ic - fie| > x where fi. is the normal unit vector of the reference
direction and 7i. is the strain eigenvector corresponding to
a compressive or tensile direction. The strain eigenvector is
fixed due to the deformation mode, but will be different for
other test setups. In the case x = 0, all contact forces in the
ensemble will be considered while no contacts exist when
x = 1. For the present study, we set x = 0.8 and only note that
as x approaches 1, less data are available and the noise level
increases, but the general trend of the results is not affected.
In Fig. 14, we plot the normalized probability density of
the normal force P(f/(fau)) against the normalized force
f/{fan) for the three reference directions (x, y, and z) and
for all contacts. In this case, © = 0.1 and cutoff x has been
set to 0.8. To allow for comparison, the forces have been
normalized with the mean of the normal force for all contacts.
As shown in Fig. 14(a), at T = 0, the force probabilities from
the three reference directions and for all contacts are virtually
the same evidenced by the apparent collapse of the different
curves on each other. This is not surprising since the initial
state is isotropic and no direction-dependent deformation has
taken place. At maximum compression [in Fig. 14(b)], a
difference between the force distribution in the compression z
direction and the radial x and y direction is evident. First, we

Pt =)
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FIG. 14. (Color online) Normalized probability density of the normal force P(f/( fa)) for the three reference directions and for all contact
forces plotted against the normalized force f, = f/(fa) for © = 0.1 and cutoff x = 0.8. Three snapshots are shown at (a) initial state T = 0,

(b) maximum, t = 0.5, and (¢) final state T = 1.0.
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observe that the force probability in the radial directions (x,y)
are close since no relative deformation takes place in these
directions. Another observation is that the proportion of weak
forces in the radial direction significantly exceeds those in the
compression direction. Also, the mean force in the z direction
is observed to be higher than in the radial direction. Finally,
at maximum compression, we observe a wider distribution in
the compressive z direction compared to the force distribution
for all contacts and the two lateral directions. The longer tail
seen in the force distribution in the z direction is due to the
presence of stronger forces compared to the other directions.

At the end of the decompression cycle, shown in Fig. 14(c),
we observe that the initial state is not recovered due to
the deformation history of the sample and there is a higher
proportion of weak forces in the decompression z direction
compared to the radial directions.

V. POLAR REPRESENTATION

To understand the orientation and arrangement of the
contacts over the whole angular spectrum during uniaxial
deformations, we introduce now the polar representation of
contacts, forces, and mobilized friction. For the analysis, we
test two different averaging methods, namely the constant bin
width (b) and constant height (#), which give comparable
results and are shown in detail in Appendix A. In the following,
we will use data obtained using the constant bin width method.

A. Harmonic approximations

The axial distribution of contact force orientations P(6),
along with the degree of anisotropy in a granular packing,
can be approximated by a Legendre polynomial based on
spherical harmonics of the form Y;"(0,¢) [48,54-56]. The
approximation is simplified by admitting only functions that
are consistent with the symmetry of the deformation mode,
namely functions independent with respect to ¢ and periodic
as a function of 6. With these criteria, the two lowest admissible
functions are Y(? =1 and Y20 =3cos’6 — 1 such that the
second order harmonic representation of contacts is of the form

Py(0) = ao[1 + €(3cos’ 6 — 1)] (24)

with the factor ay as constant and a unique anisotropy
descriptor €. In our case, due to normalization, ag & 0.5. For
the uniaxial mode, snapshots of the contact probability density
data are presented in Fig. 16(a) during uniaxial loading and
unloading. We observe distributions with two peaks and a dip
around /2 indicating that a higher approximation with order
higher than 2 (when only one peak is expected) is needed. The
higher order required to describe the present uniaxial dataset
is possibly due to the peculiarity of the deformation mode.
Unlike the triaxial test which involves an active stress control
on the lateral boundaries of the system, the stress on the lateral
boundaries of the uniaxial mode evolve, albeit with smaller
magnitude in comparison to the stress in the axial direction.
Equation (24) can be extended to admit higher order
spherical harmonic functions with [ =4,6. For [ =4, Y, 0 —
35cos*6 —30cos?6 + 3 and for [ =6, Yé) =231cos 6 —
315cos* 6 + 105 cos? § — 5 all with different prefactors. For
a sixth order expansion, the contact distribution will take the

PHYSICAL REVIEW E 89, 042210 (2014)

TABLE III. Second and sixth order harmonic expansion of the
contact distribution for the axial direction (compression: 8 = 0,7)
and the lateral direction (6 = 7 /2).

0 Py(0) Ps(0)
0 = a()[l + 26] a()[l + 262 + 864 + 1665]
0=m/2 aoll — €] aoll — €3 + 3€4 — S€6]
0=m aoll + 2¢€] aoll + 2¢€; + 8¢4 + 16¢4]
form

Ps(8) = ao[1 + €2Y; + e4Y) + €6 Y¢ |, (25)

where the axial symmetry is implied. Equation (25) introduces
now three anisotropy state descriptors ¢€;, withi =2,4, 6. Also,
Egs. (24) and (25) can be further simplified for the well defined
limits at 8 = 0,7 /2 and 7 as shown in Table III.

Different methods of obtaining the anisotropy state de-
scriptors have been attempted in this study. The details and
comparison of the methods are discussed in Appendix B.
For all methods, we consistently observe that the contact
distribution is approximated by a sixth order polynomial with
two peaks and a strong depression at /2. In the following,
as a reference case, we use the azimuthal fit to the constant
probability data discussed in Appendix B.

B. Discussion of results

Having established that the contact distribution is approx-
imated by a sixth order distribution with three anisotropy
state descriptors, we compare descriptors €, €4, and €g for
different friction coefficients as functions of the deviatoric
strain during uniaxial loading and unloading. From Fig. 15(a),
besides a slight increase in the maximum €, values between
© =0 and 0.02, the maximum €, value shows a decreasing
trend with friction and almost saturates for the highest friction
coefficients. This is consistent with the trend of the maximum
deviatoric fabric shown in Fig. 4. Also consistent with the
deviatoric fabric evolution during unloading is that the initial
state is not recovered. In Fig. 15(b), beginning from different
random values, €4 is negative and systematically decreases for
all friction coefficients during loading followed by a slight
increase during unloading. The descriptor € is distributed
around zero and remains fairly constant during loading and
unloading but has some variation within either deformation.

In addition to the contact probabilities in Fig. 16(a), we
now study the probability distribution for other quantities. The
polar distributions of the normal force shown in Fig. 16(b)
during loading displays a high and increasing normal force
along the compression (0°) direction compared to the lateral
(r/2) direction reaching their maximum at 7 = 0.5. After
strain reversal (unloading), the normal force in the tensile
(extension) direction is reduced until the force in the lateral
(7r/2) direction becomes higher. Interestingly, in contrast to
P(0), the distribution of the normal forces f,(0) is well
described by a second-order harmonic approximation similar
to Eq. (24) during loading and unloading.

For the distribution of the tangential force and mobilized
friction, shown respectively in Figs. 16(c) and 16(d), we
observe a distribution similar to that of the contacts shown in
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FIG. 15. (Color online) Comparison of the sixth order anisotropy state descriptors (a) €, (b) €4, (c) €6 as a function of the deviatoric strain
for different friction coefficients during loading (left) and unloading (right).

Fig. 16(a), with two strong peaks and a depression around /2.
This indicates the need for a higher order tensorial descriptor
also for these two quantities that appear to be strongly
related with the behavior of the contact network, rather than
with the normal forces. Similar to f,(6), the distribution
of the tangential force f;(0) also shows an increase along
the compression direction followed by a decrease during
decompression. We also find that during loading, the mobilized
friction increases along the tensile (7/2) direction while
remaining fairly stable and flat in the lateral direction. After
strain reversal, the mobilized friction increases again along
the tensile direction (which is now 0°). Coupling these
observations to the normal force distribution, we find that
friction is less mobilized along the direction where stronger
forces exist (compression) and more mobilized along the
direction where weaker forces (tension) are seen. Similar to

the directional probability distribution of the normal force
presented in Sec. IVF, the initial state (at T = 0) which is
mostly isotropic is not recovered at the end of unloading
(r = 1). As a complement, in Fig. 17, we show the pictorial
representation of the distributions of contacts, normal force,
tangential force, and mobilized friction at T = 0.5 for the same
dataset shown in Fig. 16, clearly visualizing the €4 and €¢
contributions in Figs. 17(a), 17(c), and 17(d).

VI. SUMMARY AND OUTLOOK

The discrete element method has been used to investigate
the microscopic and macroscopic response of frictional,
polydisperse granular assemblies under uniaxial loading and
unloading paths. The main goal was to investigate the effects
of contact friction on the force and contact network orientation
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FIG. 16. (Color online) Snapshots of the polar distribution of the (a) contacts Ps(6), (b) normal force f,(6), (c) tangential force f;(6),
(d) mobilized friction v,(0) at different dimensionless time (7) during uniaxial loading and unloading for friction u = 0.1.

and distribution and to relate this to the evolution of structural
anisotropy—which is the key ingredient that quantifies the
response of granular materials under nonisotropic loading
conditions. Since the uniaxial test is readily realizable in
laboratory experiments, our findings should be relevant for
both experimental and numerical research on the behavior of
packings under different deformation and stress conditions.
The present study covers a wide range of friction coefficients
for systems that are already “jammed.” Since the boundary
walls are periodic, the effects of walls and system geometry
should be minimal, which allows us to understand the bulk
behavior with rather few particles (N = 10000).

£,(0),7=05 -

n

As preparation procedure, in order to obtain homogeneous
initial isotropic states, we attempted several preparation
protocols and found that the methods lead to mostly identical
initial states even though care has to been taken in the presence
of friction which leads to protocol dependence.

Given the same initial density, packings with different
coefficients of friction are highly different in many respects.
The evolution of the deviatoric stress ratio and the deviatoric
fabric, as functions of the deviatoric strain, in the presence
of friction, are different with respect to each other. Even
though the contact model is linear, both quantities show
a nonlinear behavior due to the structural changes during

FIG. 17. (Color online) Polar distribution of the (a) contacts Pg(0), (b) normal force f,(0), (c) tangential force f;(0), (d) mobilized friction

¥,(6) at dimensionless time (t = 0.5) for friction u = 0.1.
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loading and unloading. For the configurations with lower
friction, a saturation in the deviatoric stress ratio during loading
was observed. However, when friction is increased, a clear
saturation of the deviatoric stress ratio is not seen within
the same maximum strain. During loading, the deviatoric
fabric, which quantifies the structural anisotropy, reaches a
maximum before maximum &4,y independent of u, and then
decreases as the maximum strain is approached. Interestingly
for the higher friction coefficients, a second increase was
observed. The peak deviatoric stress ratio sg.; reached during
uniaxial loading increases up to a peak at sy = 0.42 and
subsequently decreases for higher friction to sz ~ 0.33.
The peak deviatoric fabric reached, Fi7*, largely shows
a decreasing trend with increasing friction and eventually
saturates at F.o* ~ 0.025.

The orientation of the largest stress eigenvector 65, during
loading, with nonsystematic rates, aligns to 0°, i.e., the
compression direction. When strain is reversed, we observe
that 67 remains oriented along the vertical direction before
reverting to 90°. The deviatoric strain at which the reversal
happens is observed to decrease with increasing friction. On
the other hand, the orientation of the largest fabric eigenvector
91f shows a stronger dependence on friction. For systems

with low friction, Gif aligns with the compressive direction
during loading, whereas the configurations with high friction
begin to align perpendicular to the axial direction as maximum
deviatoric strain is approached.

The deviatoric strains (relative to the original configuration)
at which the stress tensor changes can be identified in different
ways, i.e., Sgev = 0, 6] = 45° and stress shape factor A =0
(zero). All are identical to each other and show a decreasing
dependence on friction, i.e., reversal happens later for larger
. Quantities relating to the microstructure, e.g., the strain at
which, e.g., F4ey = 0, are different from the stress.

In comparison to other deformation protocols studied in
literature, while the coordination number is found to decrease
with increasing triaxial loading (or increasing deviatoric strain)
[8,57], we find that the coordination number always increases
with strain under uniaxial compression. Under triaxial loading,
the number of contacts is found to increase in the vertical
(compression) direction while decreasing or dilating in the
horizontal (fixed stress) direction [48], but in the uniaxial
mode, the number of contacts is found to increase in both the
horizontal and vertical directions. Also, the peak deviatoric
fabric is found to increase with increasing friction under
triaxial loading [8,57], whereas in the uniaxial mode, the peak
deviatoric fabric decreases with increasing friction.

As reported in previous studies [15], we also confirm that
the orientations of the eigenvectors of stress corresponding
to the compression direction for strong (forces greater than
average) and weak (forces less than average) contacts are
orthogonal with respect to each other. As a consequence of
the definition of the stress tensor, the effects of strong contacts
are more dominant for stress. For fabric, however, strong
contacts are more dominant when friction is low while the
weak contacts are found to play a bigger role for stronger
friction, causing the qualitatively different behavior.

In terms of the behavior of contacts, we confirm that a larger
proportion of the total contacts are weak, while the proportion
of sliding contacts out of the total contacts is less than 45%.
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More importantly, we find less than 50% weak sliding contacts
with respect to the total number of weak contacts. On the other
hand, the proportion of weak sliding contacts with respect to
the total sliding contacts is significantly higher. The latter is in
agreement with earlier studies that show that friction is more
highly mobilized in weak contacts [50,53].

As a consequence of the isotropic initial configuration, we
find that the directional distribution of normal forces at the
initial state are isotropic for all ;. At maximum compression,
we observe a higher mean, a lower peak, and a wider tail of
the force distribution in the compressive z direction, while
the distributions in the two lateral directions remain identical,
narrower, with a shorter tail. Due to history, after uniaxial
compression and tension, the initial states are not recovered
when the original state, g4.y = 0, is reached. Forces are weaker
and one has fewer contacts in the tensile z direction.

We have also presented two averaging methods for the polar
representation of contacts using the constant azimuthal and
constant height methods. For our data, a second order tensor is
insufficient to describe the structural anisotropy. We find a sixth
order distribution with two peaks leading to three anisotropy
state descriptors (€;, €4, and €g).

The second harmonic ¢, is close to Fy3, / \/3 so that for
different friction, the maximum €, values behave in a similar
fashion to the maximum deviatoric fabric. A second order
tensorial descriptor is sufficient for the normal force but the
tangential force and mobilized friction show a similar behavior
to the contact distribution—requiring a higher order harmonic
approximation due to the two strong peaks at 7 /4 and the dip
around /2, i.e., the microstructural and force features that
kick in at nonaxial different directions.

Future studies should concern exploring higher order
tensors and the validity of the findings for other nonisotropic
deformation modes (e.g., under simple and pure shear or
triaxial tests). Furthermore, recent experiments [23] will allow
us to validate the present observations from DEM. The final
goal is to develop constitutive models of particulate matter
based on the microscopic insights gained [58], and apply those,
e.g., to cyclic loading as relevant in many applications such
as, e.g., roads.
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APPENDIX A: AVERAGING METHODS

In this Appendix, we describe the two averaging methods,
namely the constant azimuthal angle method (b) and the
constant height method (h).

1. Constant azimuthal angle (bin width) method

Given the three normal unit vector components 7, i1,
and 71, for each contact pair, to calculate the azimuthal angle,
one needs the polar orientation arccos(7i;) of the normal unit
vector in the direction relative to the active (axial) direction
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(b)

FIG. 18. (Color online) Schematic representation of the angles of
the contact unit vector (green arrow) for (a) the constant bin width
A6 method and (b) the constant height method. The angles 6 and ¢
are the azimuthal angle and polar angle of the system, respectively.

as schematically described in Fig. 18(a). We average over
the spherical azimuthal (vs polar) (r,¢) coordinate and then
distribute the vectors, based on their orientation into bins of
width A6.

The fraction of contacts in a single bin is defined as
¢9 = CQ/Ctm, where C? = ZCeb land b € [0 — AO/2;0 +
A6 /2]. Furthermore, ¢ is normalized with the surface of the
spherical annulus for each b by the factor Af sin 6 to yield the
azimuthal contact probability density P(6) = (¢?/A6 sin6)
such that fon P(0)sinfAB = 1.2 The polar distributions of
the normal forces, tangential forces, and mobilized friction
are given, respectively, by f,(0) = (an; £)/(CP), f(6) =
(Xeep f/CO), and ¥,(0) = [Xcep(fi/ 1f:)]/(C?), where
the normalization with the number of contacts in each bin has
been used.

2. Constant height method

In the constant height method, we sort the vectors based
on their orientations into n azimuthal spherical segments with
equal heights Ah = cos6, — cosf; as shown schematically
in Fig. 18(b). Given the polar radius r, and the height from
the center of each segment to the middle of the sphere #, the
polar angle 6 of each vector is calculated for every 7i, € h.
The fraction of contacts within each segment range is then

2 An alternative to the A# sin 6 normalization is a discrete formula-
tion cos 5 — cos6; where 6; =0 — Af/2and 0y =6 + AO/2.
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FIG. 19. (Color online) Sixth order fits of methods 1, 2, and 3 to
the P(0) = (¢’ /A8 sin #) data at dimensionless time T = 0.076. The
solid red symbols represent data obtained using the constant height
method (%), while the triangles are those obtained with the constant
bin width method ().

given as ¢" = C"/Cyy, where C" = Ycepl and he[h—
Ah/2;h + Ah/2]. With —1 < h < 1 specifying the number
of bins M}, (e.g., M;, = 20) allows us to compute all / intervals
and boundaries.

Other quantities, including the normal and tangential
forces and mobilized friction, can be computed similarly
to the constant bin width method, just by summation and
normalization with C” instead of C?.

APPENDIX B: FIT METHODS

In the following, we describe different methods of obtaining
the anisotropy state descriptors using the data obtained using
the constant bin width or the constant height methods.

1. Method 1: Fit azimuthal contact probability density
P#) = (¢°/Absin0)

In the first case, we fit the azimuthal contact probabil-
ity density data P(0) = (¢?/A@sin@) using the harmonic
equation (25). Note that for the special case of uniaxial
compression, Eq. (24) does not lead to consistent results across
the methods and is thus disregarded. However, as shown

TABLE IV. Selected references on the orientational contact distribution for various modes. For an isotropic sample, K = C/4m and C is

the coordination number.

Contact
Reference Mode probability P(0) Harmonic function

1. Azema et al. [55] triaxial second order i [1+eBcos?6 — 1)]
2. Deng and Dave [60] particle settling in a higher order

cylindrical geometry
3. Ishibashi et al. [61] triaxial second order K(1 — € + 3ecos?0)
4. Jenkins [62] triaxial second order % [(1 —€) + 3ecos? 0]
5. Silbert et al. [63] 3D particle settling higher order

on a flat base
6. Staron and Radjai [50] 2D avalanche higher order
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FIG. 20. (Color online) Evolution of the anisotropy state descriptors ¢, €4, and €4 of the sixth order expansion Eq. (25) as function of

deviatoric strain using the three methods for u = 0.

in different literature especially under triaxial compression,
the second order approximation P,(6) is sufficient to fully
capture the contact probability density data. Exemplary (not
exhaustive) references of works where forms of Eq. (24) as
applied to various triaxial tests are presented in Table IV. Other
experimental and numerical setups are also shown. Note that
in these cases, the orientational contact distribution obtained
is not of second order and are not fitted.

2. Method 2: Fit to the constant height data

In the second case, we directly fit the fraction of contacts
¢", generated using the constant height method such that the
bad statistics at the poles are not overexposed, as in Method 1.
In this case, we set the zero order parameter ay = 0.5.

3. Method 3: Fit to fraction of contacts ¢’ with
a Af sin 0 scaling

In the third case, we fit the fraction of contacts ¢’ data
directly using harmonic Equations (24) or (25) multiplied by
A6 sinf. The original signal is a first order sinus, i.e., less
weighting is given to the areas close to the poles such that
their larger statistical errors are suppressed.

In Fig. 19, we show the sixth order harmonic fits using
methods 1 (M1), 2 (M2), and 3 (M3) to the constant bin width
(b) and constant height (k) data for u = 0. For each method,
three anisotropy state descriptors, namely €;, €4, and €g are
obtained. Here, as an example, we show a single snapshot,
namely at v = 0.076. Note that the original data are from
0 to /2 and the extension from /2 to m is only a mirror
image. Focusing on the numerical data (symbols), we observe
two strong peaks at about 7/2 + /4 and a local maximum
at /2. The twin peaks indicate that a distribution higher than

second order is needed. The data are well captured by a sixth
order approximation Pg(6) (solid lines). Comparing the b and
h, we observe stronger scatter at the boundaries for the b data
due to the weak statistics at the extreme 6 values (0 and ).
For the fits, we observe that M1, M2, and M3 are close and the
major differences between them are most pronounced at both
peaks and extrema.

In Fig. 20, we plot the evolution of the anisotropy state
descriptors €;, €4, and €¢ as functions of the deviatoric strain
and compare the three methods. From Fig. 20(a), during
loading, €, grows and reaches a maximum at &gey &~ 0.025
from where it slightly decreases. After maximum loading,
€, decreases (taking well into account the sign change) and
becomes increasingly negative until it reaches €, ~ —0.055
at complete unloading (z = 1). Comparing the three methods,
M3 is slightly off (higher) during loading while M1 is also
slightly off at the end of unloading. Interestingly, we find that
the evolution of ¢, is similar to the simple definition of the
deviatoric fabric in Eq. (19) involving a difference between
the fabric component of the axial direction and the average
of the components of the two lateral components. Note that
the definition of the fabric used here is based on Eq. (16)
which considers only the contacts and not the dependence
on the volume fraction. We note that the magnitude of ¢, is
proportional to Fyey/ V3 [black diamonds in Fig. 20(a)] with
M3 slightly off during loading and the unloading data also
showing slight variations. From Figs. 20(b) and 20(c), the
values of €4 and €4 appear small compared to €, but must not
be neglected. When ¢, is taken as the structural anisotropy
state descriptor, it much resembles Fg.,. However, the higher
order anisotropy is quantified by the €4 (which is negative)
and €g (which is strongly fluctuating and different for different
methods).
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